Бытовые электроприборы

С помощью чего происходит фотосинтез. Фотосинтез: что такое, определение, фазы

С помощью чего происходит фотосинтез. Фотосинтез: что такое, определение, фазы

А вы знаете, что каждый зеленый листик является миниатюрной «фабрикой» питательных веществ и кислорода, который нужен для нормальной жизнедеятельности не только животным, но и для человека. Фотосинтез – это процесс выработки из воды и углекислоты из атмосферы данных веществ. Это очень сложный химический процесс, происходящий с участием света. Бесспорно, всем интересно, как же происходит процесс фотосинтеза. Процесс состоит из двух этапов: первый этап – это поглощение квантов света, а второй этап – это использование в разных химических реакциях их энергии.

Как протекает процесс фотосинтеза?
С помощью зеленого вещества, которое называется хлорофилл, растение поглощает свет. Содержится хлорофилл в хлоропластах, которые находятся в плодах и стеблях. Но особенно их большое количество находится в листочках, потому что листочек из-за своей довольно простой структуры может притянуть большое количество света, соответственно, получить для процесса фотосинтеза намного больше энергии.
Хлорофилл, после поглощения, находится в возбужденном состоянии и энергию передает другим молекулам организма растения, особенно получают ее те, которые непосредственно принимают участие в фотосинтезе. Второй этап процесса фотосинтеза происходит без обязательного участия света и состоит в получении химической связи с участием углекислого газа, который получается из воды и воздуха. На этой стадии происходит синтезирование разных очень полезных веществ для жизнедеятельности, таких как глюкоза и крахмал.

Сами растения используют эти органические вещества для питания разных его частей, а так же для того, чтобы поддержать нормальную жизнедеятельность. Помимо этого, эти вещества получают и животные, которые питаются растениями. Человек же получает эти вещества, употребляя в пищу продукты растительного и животного происхождения.

Условия фотосинтеза
Процесс фотосинтеза может происходить не только под действием искусственного света, но и солнечного. На природе, как правило, растения интенсивно осуществляют свою деятельность в весенне-летний период, то есть в то время, когда необходимо много солнечного света. Света в осенний период меньше, день укорачивается, листочки желтеют, а потом опадают. Но только появиться весеннее теплое солнышко, как зеленая листва просыпается и снова возобновляют свою работу зеленые «фабрики» для того, чтобы давать большое количество питательных веществ и кислорода, который так необходим для жизни.

Где происходит процесс фотосинтеза?
Фотосинтез, в основном, происходит, как мы уже говорили выше, если вы помните, в листьях растений, по той причине, что именно у них есть способность принимать на себя большое количество света, который так необходим для процесса фотосинтез.

В заключение можно подвести итоги и сказать то, что такой процесс, как фотосинтез – это неотъемлемая часть жизнедеятельности растений. Надеемся, что наша статья помогла понять многим, что же такое фотосинтез, и для чего он необходим.

Воду и минеральные вещества растения получают с помощью корней. Листья обеспечивают органическое питание растений. В отличие от корней они находятся не в почве, а в воздушной среде, поэтому осуществляют не почвенное, а воздушное питание.

Из истории изучения воздушного питания растений

Знания о питании растений накапливались постепенно. Около 350 лет назад голландский ученый Ян Гельмонт впервые поставил опыт по изучению питания растений. В глиняном горшке с почвой он выращивал иву, добавляя туда только воду. Опадавшие листья ученый тщательно взвешивал. Через пять лет масса ивы вместе с опавшими листьями увеличилась на 74,5 кг, а масса почвы уменьшилась всего на 57 г. На основании этого Гельмонт пришел к выводу, что все вещества в растении образуются не из почвы, а из воды. Мнение о том, что растение увеличивается в размерах только за счет воды, сохранялось до конца XVIII века.

В 1771 г. английский химик Джозеф Пристли изучал углекислый газ, или, как он его называл, «испорченный воздух» и сделал замечательное открытие. Если зажечь свечу и накрыть оо стеклянным колпаком, то, немного погорев, она погаснет. Мышь под таким колпаком начинает задыхаться. Однако если под колпак вместе с мышью поместить ветку мяты, то мышь не задыхается и продолжает жить. Значит, растения «исправляют» воздух, испорченный дыханием животных, то есть превращают углекислый газ в кислород.

В 1862 г. немецкий ботаник Юлиус Сакс с помощью опытов доказал, что зеленые растения не только выделяют кислород, но и создают органические вещества, служащие пищей всем другим организмам.

Фотосинтез

Главное отличие зеленых растений от других живых организмов - наличие в их клетках хлоропластов, содержащих хлорофилл. Хлорофилл обладает свойством улавливать солнечные лучи, энергия которых необходима для создания органических вещсств. Процесс образования органического вещества из углекислого газа и воды с помощью солнечной энергии называется фотосинтезом (греч. рЬо1оз свет). В процессе фотосинтеза образуются не только органические вещества - сахара, но и выделяется кислород.

Схематически процесс фотосинтеза можно изобразить так:

Вода поглощается корнями и по проводящей системе корней и стебля передвигается к листьям. Углекислый газ - составная часть воздуха. Он поступает в листья через открытые устьица. Поглощению углекислого газа способствует строение листа: плоская поверхность листовых пластинок, увеличивающая площадь соприкосновения с воздухом, и наличие большого числа устьиц в кожице.

Образующиеся в результате фотосинтеза сахара превращаются в крахмал. Крахмал это органическое вещество, которое не растворяется в воде. Кго легко обнаружить с помощью раствора йода.

Доказательства образования крахмала в листьях на свету

Докажем, что в зеленых листьях растений из углекислого газа и воды образуется крахмал. Для этого рассмотрим опыт, который в свое время был поставлен Юлиусом Саксом.

Комнатное растение (герань или примулу) выдерживают двое суток в темноте, чтобы весь крахмал израсходовался на процессы жизнедеятельности. Затем несколько листьев закрывают с двух сторон черной бумагой так, чтобы была прикрыта только их часть. Днем растение выставляют на свет, а ночью его дополнительно освещают с помощью настольной лампы.

Через сутки исследуемые листья срезают. Чтобы выяснить, в какой части листа образовался крахмал, листья кипятят в воле (чтобы набухли крахмальные зерна), а затем выдерживают в горячем спирте (хлорофилл при этом растворяется, и лист обесцвечивается). Затем листья промывают в воде и действуют на них слабым раствором йода. Тс участки листьев, которые были на свету, приобретают от действия йода синюю окраску. Это означает, что крахмал образовался в клетках освещенной части листа. Следовательно, фотосинтез происходит только на свету.

Доказательства необходимости углекислого газа для фотосинтеза

Чтобы доказать, что для образования крахмала в листьях необходим углекислый газ, комнатное растение также предварительно выдерживают в темноте. Затем один из листьев помещают в колбу с небольшим количеством известковой воды. Колбу закрывают ватным тампоном. Растение выставляют на свет. Углекислый газ поглощается известковой водой, поэтому его в колбе не будет. Лист срезается, и так же, как в предыдущем опыте, исследуется на наличие крахмала. Он выдерживается в горячей воде и спирте, обрабатывается раствором йода. Однако в этом случае результат опыта будет иным: лист не окрашивается в синий цвет, т.к. крахмал в нем не содержится. Следовательно, для образования крахмала, кроме света и воды, необходим углекислый газ.

Таким образом, мы ответили на вопрос, какую пищу получает растение из воздуха. Опыт показал, что это углекислый газ. Он необходим для образования органического вещества.

Организмы, самостоятельно создающие органические вещества для построения своего тела, называются автотрофамн (греч. autos - сам, trofe - пища).

Доказательства образования кислорода в процессе фотосинтеза

Чтобы доказать, что при фотосинтезе растения во внешнюю среду выделяют кислород, рассмотрим опыт с водным растением элодеей. Побеги элодеи опускают в сосуд с водой и сверху накрывают воронкой. На конец воронки надевают пробирку с водой. Растение выставляют на свет на двое-трое суток. На свету элодея выделяет пузырьки газа. Они скапливаются в верхней части пробирки, вытесняя воду. Для того чтобы выяснить, какой это газ, пробирку аккуратно снимают и вносят в нее тлеющую лучинку. Лучинка ярко вспыхивает. Это значит, что в колбе накопился газ, поддерживающий горение кислород.

Космическая роль растений

Растения, содержащие хлорофилл, способны усваивать солнечную энергию. Поэтому К.А. Тимирязев назвал их роль на Земле космической. Часть энергии Солнца, запасенная в органическом веществе, может долго сохраняться. Каменный уголь, торф, нефть образованы веществами, которые в далекие геологические времена были созданы зелеными растениями и вобрали в себя энергию Солнца. Сжигая природные горючие материалы, человек освобождает энергию, запасенную миллионы лет назад зелеными растениями.

В растениях (преимущественно в их листьях) на свету протекает фотосинтез.

Это процесс, при котором из углекислого газа и воды образуется органическое вещество глюкоза (один из видов сахаров). Далее глюкоза в клетках превращается в более сложное вещество крахмал. И глюкоза, и крахмал являются углеводами.

В процессе фотосинтеза образуется не только органическое вещество, но также, в качестве побочного продукта, выделяется кислород.

Углекислый газ и вода - это неорганические вещества, а глюкоза и крахмал - органические. Поэтому часто говорят, что фотосинтез - это процесс образования органических веществ из неорганических на свету. Только растения, некоторые одноклеточные эукариоты и некоторые бактерии способны к фотосинтезу. В клетках животных и грибов такого процесса нет, поэтому они вынуждены поглощать из окружающей среды органические вещества. В связи с этим растения называют автотрофами, а животных и грибов - гетеротрофами.

Процесс фотосинтеза у растений протекает в хлоропластах, в которых содержится зеленый пигмент хлорофилл.

Итак, для протекания фотосинтеза необходимы:

    хлорофилл,

    углекислый газ.

В процессе фотосинтеза образуются:

    органические вещества,

    кислород.

Растения приспособлены к улавливанию света. У многих травянистых растений листья собраны в так называемую прикорневую розетку, когда листья не затеняют друг друга. Для деревьев характерна листовая мозаика, при которой листья растут так, чтобы как можно меньше затенять друг друга. У растений листовые пластинки могут поворачиваться к свету за счет изгибов черешков листьев. При всем этом существуют тенелюбивые растения, которые могут расти только в тени.

Вода для фотосинтеза поступает в листья из корней по стеблю . Поэтому важно, чтобы растение получало достаточное количество влаги. При недостатке воды и некоторых минеральных веществ процесс фотосинтеза тормозится.

Углекислый газ для фотосинтеза берется непосредственно из воздуха листьями . Кислород, который вырабатывается растением в процессе фотосинтеза, наоборот, выделяется в воздух. Газообмену способствуют межклетники (промежутки между клетками).

Образовавшиеся в процессе фотосинтеза органические вещества отчасти используются в самих листьях, но в основном оттекают во все другие органы и превращаются в другие органические вещества, используются при энергетическом обмене, превращаются в запасные питательные вещества.

Фотосинтез растений

Фотосинтез — это уникальный физико-химический процесс, осуществляемый на Земле всеми зелеными растениями и некоторыми бактериями и обеспечивающий преобразование электромагнитной энергии солнечных лучей в энергию химических связей различных органических соединений. Основа фотосинтеза - последовательная цепь окислительно-восстановительных реакций, в ходе которых осуществляется перенос электронов от донора - восстановителя (вода, водород) к акцептору - окислителю (СО2, ацетат) с образованием восстановленных соединений (углеводов) и выделением O2, если окисляется вода

Фотосинтез играет ведущую роль в биосферных процессах, приводя в глобальных масштабах к образованию органического вещества из неорганического.

Фотосинтезирующие организмы, используя солнечную энергию в реакциях фотосинтеза, осуществляют связь жизни на Земле со Вселенной и определяют в конечном итоге всю ее сложность и разнообразие. Гетеротрофные организмы - животные, грибы, большинство бактерий, а также бесхлорофилльные растения и водоросли - обязаны своим существованием автотрофным организмам - растениям-фотосинтетикам, создающим на Земле органическое вещество и восполняющим убыль кислорода в атмосфере. Человечество все более осознает очевидную истину, впервые научно обоснованную К.А. Тимирязевым и В.И. Вернадским: экологическое благополучие биосферы и существование самого человечества зависит от состояния растительного покрова нашей планеты.

Процессы, происходящие в листе

Лист осуществляет три важных процесса – фотосинтез, испарение воды и газообмен. В процессе фотосинтеза в листьях из воды и двуокиси углерода под действием солнечных лучей синтезируются органические вещества. Днем, в результате фотосинтеза и дыхания, растение выделяет кислород и двуокись углерода, а ночью – только двуокись углерода, образующуюся при дыхании.

Большинство растений способно синтезировать хлорофилл при слабом освещении. При прямом солнечном освещении хлорофилл синтезируется быстрее.
Необходимая для фотосинтеза световая энергия в известных пределах поглощается тем больше, чем меньше затемнен лист. Потому у растений в процессе эволюции выработалась способность поворачивать пластину листа к свету так, чтобы на нее падало больше солнечных лучей. Листья на растении располагаются так, чтобы не притеснять друг друга.
Тимирязев доказал, что источником энергии для фотосинтеза служат преимущественно красные лучи спектра. На это указывает спектр поглощения хлорофилла, где наиболее интенсивная полоса поглощения наблюдается в красной, и менее интенсивное – в сине-фиолетовой части.


Фото: Nat Tarbox

В хлоропластах вместе с хлорофиллом имеются пигменты каротин и ксантофилл. Оба этих пигмента поглощают синие и, отчасти, зеленые лучи и пропускают красные и желтые. Некоторые ученые приписываю каротину и ксантофиллу роль экранов, защищающих хлорофилл от разрушительного действия синих лучей.
Процесс фотосинтеза слагается из целого ряда последовательных реакций, часть которых протекает с поглощением световой энергии, а часть – в темноте. Устойчивыми окончательными продуктами фотосинтеза являются углеводы (сахара, а затем крахмал), органические кислоты, аминокислоты, белки.
Фотосинтез при различных условиях протекает с разной интенсивностью.

Интенсивность фотосинтеза также зависит от фазы развития растения. Максимальная интенсивность фотосинтеза наблюдается в фазе цветения.
Обычное содержание углекислоты в воздухе составляет 0,03% по объему. Уменьшение содержания углекислоты в воздухе снижает интенсивность фотосинтеза. Повышение содержания углекислоты до 0,5% увеличивает интенсивность фотосинтеза почти пропорционально. Однако при дальнейшем повышении содержания углекислоты, интенсивность фотосинтеза не возрастает, а при 1% — растение страдает.

Растения испаряют или трансперируют очень большое количество воды. Испарение воды является одной из причин восходящего тока. Вследствие испарения воды растением в нем накапливаются минеральные вещества, и происходит полезное для растения понижение температуры во время солнечного нагрева.
Растение регулирует процесс испарения воды посредством работы устьиц. Отложение кутикулы или воскового налета на эпидерме, образование его волосков и другие приспособления направлены к сокращению нерегулируемой трансперации.

Процесс фотосинтеза и постоянное протекающее дыхание живых клеток листа требуют газообмена между внутренними тканями листа и атмосферой. В процессе фотосинтеза из атмосферы поглощается ассимилируемый углекислый газ и возвращается в атмосферу кислородом.
Применение изотопного метода анализа показало, что кислород, возвращаемый в атмосферу 16O принадлежит воде, а не углекислому газу воздуха, в котором приобладает другой его изотоп — 15О. При дыхании живых клеток (окисление свободным кислородом органических веществ внутри клетки до углекислого газа и воды) необходимо поступление из атмосферы кислорода и возвращение углекислоты. Этот газообмен также в основном осуществляется через устьичный аппарат.

Процесс фотосинтеза состоит из двух последовательных и взаимосвязанных этапов: светового (фотохимического) и темнового (метаболического). На первой стадии происходит преобразование поглощенной фотосинтетическими пигментами энергии квантов света в энергию химических связей высокоэнергетического соединения АТФ и универсального восстановителя НАДФН - собственно первичных продуктов фотосинтеза, или так называемой «ассимиляционной силы». В темновых реакциях фотосинтеза происходит использование образовавшихся на свету АТФ и НАДФН в цикле фиксации углекислоты и ее последующего восстановления до углеводов.
У всех фотосинтезирующих организмов фотохимические процессы световой стадии фотосинтеза происходят в особых энергопреобразующих мембранах, называемых тилакоидными, и организованы в так называемую электрон-транспортную цепь. Темновые реакции фотосинтеза осуществляются вне тилакоидных мембран (в цитоплазме у прокариот и в строме хлоропласта у растений). Таким образом, световая и темновая стадии фотосинтеза разделены в пространстве и во времени.

Интенсивность фотосинтеза древесных растений широко варьирует в зависимости от взаимодействия многих внешних и внутренних факторов, причем эти взаимодействия изменяются во времени и различны у разных видов.

Фотосинтетическую способность иногда оценивают по чистому приросту сухой массы. Такие данные имеют особое значение, потому что прирост представляет собой среднее истинное увеличение массы за большой промежуток времени в условиях внешней среды, включающих обычные периодически наступающие стрессы.
Некоторые виды покрытосеменных эффективно осуществляют фотосинтез как при низкой, так и при высокой интенсивности света. Многие голосеменные гораздо более продуктивны при высокой освещенности. Сравнение этих двух групп при низкой и высокой интенсивности света часто дает различное представление о фотосинтетической способности с точки зрения накопления питательных веществ. Кроме того, голосеменные часто накапливают некоторое количество сухой массы в период покоя, тогда как листопадные покрытосеменные теряют ее вследствие дыхания. Поэтому голосеменное растение с несколько более низкой интенсивностью фотосинтеза, чем листопадное покрытосеменное во время периода роста, может накапливать в течение года столько же или даже больше общей сухой массы благодаря гораздо большей продолжительности периода фотосинтетической активности.

Первые опыты по фотосинтезу были проведены Джозефом Пристли в 1770-1780-х годах, когда он обратил внимание на "порчу" воздуха в герметичном сосуде горящей свечой (воздух переставал быть способен поддерживать горение, помещённые в него животные задыхались) и "исправление" его растениями. Пристли сделал вывод что растения выделяют кислород, который необходим для дыхания и горения, однако не заметил что для этого растениям нужен свет. Это показал вскоре Ян Ингенхауз. Позже было установлено что помимо выделения кислорода растения поглощают углекислый газ и при участии воды синтезируют на свету органическое вещество. В 1842 Роберт Майер на основании закона сохранения энергии постулировал что растения преобразуют энергию солнечного света в энергию химических связей. В 1877 В. Пфеффер назвал этот процесс фотосинтезом.

Н.Ю.ФЕОКТИСТОВА

Ночная жизнь растений

Орхидея Dendrobium speciosum, раскрывающая цветы только ночью

Что «делают» растения ночью? На этот вопрос так и хочется ответить: «Отдыхают». Ведь, казалось бы, вся «активная жизнь» растения происходит днем. В дневные часы цветы раскрываются и опыляются насекомыми, развертываются листья, молодые стебли растут и тянут свои верхушки к солнцу. Именно в течение светлого времени суток растения используют солнечную энергию для того, чтобы преобразовывать углекислый газ, поглощаемый ими из атмосферного воздуха, в сахар.

Однако растение не только синтезирует органические вещества – оно их и использует в процессе дыхания, снова окисляя до углекислого газа и поглощая при этом кислород. Но количество кислорода, необходимого растениям для дыхания, примерно в 30 раз меньше того, что выделяется ими в процессе фотосинтеза. Ночью, в темноте, фотосинтез не происходит, но и в это время растения потребляют так мало кислорода, что это нисколько не сказывается на нас с вами. Поэтому старая традиция выносить растения из комнаты больного на ночь совершенно не обоснованна.

А еще есть ряд видов растений, которые потребляют углекислый газ именно ночью. Поскольку энергии солнечного света, необходимой для полного восстановления углерода, в это время нет, сахар, конечно, не образуется. Но поглощенная из воздуха углекислота сохраняется в составе яблочной или аспарагиновой кислот, которые потом, уже на свету, вновь разлагаются, высвобождая СО2. Именно эти молекулы углекислого газа включаются в цикл основных реакций фотосинтеза – так называемый цикл Кальвина. У большинства же растений этот цикл начинается с захвата молекулы СО2 непосредственно из воздуха. Такой «простой» способ носит название С3-пути фотосинтеза, а если углекислый газ предварительно запасается в яблочной кислоте – это С4-путь.

Казалось бы, зачем нужны дополнительные сложности? В первую очередь для того, чтобы экономить воду. Ведь поглощать углекислоту растение может только через открытые устьица, через которые происходит и испарение воды. И днем, в жару, воды через устьица теряется намного больше, чем ночью. А у С4-растений устьица днем закрыты, и вода не испаряется. Газообмен же эти растения осуществляют в прохладные ночные часы. Кроме того, С4-путь в целом более эффективен, он позволяет синтезировать большее количество органических веществ в единицу времени. Но только в условиях хорошей освещенности и при достаточно высокой температуре воздуха.

Так что С4-фотосинтез свойствен «южанам» – растениям из жарких областей. Он присущ большинству кактусов, некоторым другим суккулентам, ряду бромелиевых – например всем хорошо известному ананасу (Ananas comosus ), сахарному тростнику и кукурузе.

Интересно, что еще в 1813 г., задолго до того, как стали известны биохимические реакции, лежащие в основе фотосинтеза, исследователь Бенджамин Хейн написал в Линнеевское научное общество о том, что листья ряда суккулентных растений имеют особенно острый вкус по утрам, а затем, к середине дня, их вкус становится более мягким.

Способность использовать связанный в органических кислотах СО2 обусловлена генетически, но реализация этой программы находится и под контролем внешней среды. При сильном дожде, когда угрозы высыхания нет, а освещенность невысока, С4-растения могут открывают свои устьица днем и переходить на обычный С3-путь.

А что еще может происходить с растениями по ночам?

Некоторые виды приспособились привлекать своих опылителей именно в ночные часы. Для этого они используют разные средства: и усиливающийся к ночи запах, и приятный и заметный для глаза ночных опылителей цвет – белый или желтовато-бежевый. На такие цветы летят ночные бабочки. Именно они опыляют цветы жасмина (Jasminum ), гардении (Gardenia ), лунных цветов (Ipomea alba ), вечерницы, или ночной фиалки (Hesperis ), любки двулистной (Platanthera bifolia ), лилии кудреватой (Lilium martagon ) и ряда других растений.

Lilium martagon, старинный рисунок

А есть растения (их называют хироптерофильными), которые опыляются в ночные часы летучими мышами. Больше всего таких растений в тропиках Азии, Америки и Австралии, меньше в – Африке. Это бананы, агавы, боабабы, некоторые представители семейств миртовых, бобовых, бегониевых, геснериевых, синюховых.

Цветки хироптерофильных растений раскрываются только с наступлением сумерек и не отличаются яркостью окраски – как правило, они зеленовато-желтые, коричневые или фиолетовые. Запах у таких цветков весьма специфический, часто неприятный для нас, но, наверное, привлекательный для летучих мышей. Кроме того, цветки хироптерофильных растений обычно крупные, с прочным околоцветником и снабжены «посадочными площадками» для своих опылителей. В качестве таких площадок могут выступать толстые цветоножки и цветоносы или безлистные участки ветвей, примыкающих к цветкам.

Некоторые хироптерофильные растения даже «разговаривают» со своими опылителями, привлекая их. Когда цветок лианы Mucuna holtonii , принадлежащей к семейству бобовых и произрастающей в тропических лесах Центральной Америки, становится готовым к опылению, один из его лепестков приобретает специфическую вогнутую форму. Этот вогнутый лепесток концентрирует и отражает сигнал, издаваемый летучими мышами, отправившимися на поиски корма, и таким образом сообщает им о своем местонахождении.

Но не только рукокрылые млекопитающие опыляют цветы. В тропиках известно более 40 видов зверьков из других отрядов, активно участвующих в опылении около 25 видов растений. У многих из этих растений, как и у тех, которые опыляются летучими мышами, цветки крупные и прочные, часто неприятно пахнущие и образующие большое количество пыльцы и нектара. Обычно число цветков на таких растениях или в их соцветиях невелико, цветки располагаются низко над землей и раскрываются только к ночи, чтобы обеспечить максимальное удобство ночным зверюшкам.

Ночная жизнь цветов не ограничивается привлечением опылителей. Целый ряд растений закрывает лепестки на ночь, но при этом внутри цветка остаются ночевать насекомые. Наиболее известным примером подобной «гостиницы» для насекомых, является амазонская лилия (Victoria amasonica ). Впервые европейцы увидели ее в 1801г., а подробное описание растения было сделано в 1837 г. английским ботаником Шомбургом. Ученый был просто потрясен и его гигантскими листьями, и чудесными цветами и назвал цветок «Нимфея Виктория», в честь английской королевы Виктории.

Семена виктории амазонской впервые были присланы в Европу в 1827 г., но тогда они не проросли. В 1846 г. семена отправили в Европу снова, на этот раз в бутыли с водой. И они не только отлично перенесли дорогу, но и развились в полноценные растения, которые через 3 года зацвели. Произошло это в ботаническом саду «Кью» в Англии. Весть о том, что виктория должна зацвести, быстро распространилась не только среди служащих ботанического сада, но и среди художников и репортеров. В оранжерее собралась огромная толпа. Все с нетерпением следили за часами, ожидая раскрытия цветка. В 5 часов вечера еще закрытый бутон поднялся над водой, его чашелистики раскрылись и появились снежно-белые лепестки. По оранжерее распространился замечательный запах зрелого ананаса. Через несколько часов цветок закрылся и опустился под воду. Снова он появился только в 7 часов вечера следующего дня. Но, к удивлению всех присутствующих, лепестки чудо-цветка были уже не белые, а ярко-розовые. Вскоре они стали опадать, при этом их окраска становилась все более и более интенсивной. После полного опадения лепестков началось активное движение тычинок, которое, по свидетельству присутствующих, даже было слышно.

Но кроме необыкновенной красоты у цветков виктории есть еще удивительные особенности, связанные с привлечением насекомых. В первый день температура в белом цветке виктории повышается по сравнению с окружающим воздухом примерно на 11°С, и к вечеру, с наступлением прохлады, в этом «тепленьком местечке» скапливается большое количество насекомых. Кроме того, на плодолистиках цветка образуются особые пищевые тельца, также привлекающие опылителей. Когда цветок закрывается и опускается под воду, вместе с ним опускаются и насекомые. Там они проводят ночь и весь следующий день, – до тех пор, пока цветок снова не поднимется на поверхность. Только теперь он уже холодный и не ароматный, и насекомые, нагруженный пыльцой, летят в поисках новых теплых и ароматных белых цветов, чтобы опылись их, а заодно и переночевать в следующей теплой и безопасной «гостинице».

Еще один, пожалуй, не менее красивый цветок также предоставляет своим опылителям ночные квартиры – это лотос. Есть два вида лотоса. В Старом Свете растет лотос орехоносный с розовыми, а в Америке – лотос американский с желтыми цветками. Лотос способен поддерживать внутри своих цветков относительно постоянную температуру – значительно более высокую, чем температура окружающего воздуха. Даже если снаружи всего +10°С, внутри цветка – +30…+35°С!

Цветки лотоса разогреваются за 1–2 дня до раскрытия, и постоянная температура поддерживается в них в течение 2–4 дней. За это время созревают пыльники, а рыльце пестика становится способным воспринимать пыльцу.

Опыляют лотос жуки и пчелы, для активного полета которых нужна температура как раз около 30°С. Если насекомые оказываются в цветке после его закрытия и проводят ночь в тепле и уюте, активно передвигаясь и покрываясь пыльцой, то утром, когда цветок раскроется, они сразу же способны лететь на другие цветки. Таким образом «постояльцы» лотоса получают преимущество перед оцепеневшими насекомыми, проведшими ночь на холоде. Так тепло цветка, переданное насекомому, способствует процветанию популяции лотоса.

Многие представители семейства ароидных, такие как гигантский аморфофаллус (Amorphophallus titanus ), всем хорошо известная монстера и филодендроны имеют черешки цветков, которые продуцируют тепло в ночные часы, усиливая запах и помогая насекомым-опылителям с максимальными удобствами провести ночь. Малоприятный запах аморфофаллуса привлекает, например, массу жуков, которые находят среди лепестков гигантского соцветия и теплую квартиру, и еду, и брачных партнеров. Еще одно интересное растение из семейства ароидных – Typophonium brownii – мимикрирует под кучки помета животных, привлекая к себе навозных жуков, которых «отлавливает» на ночь и заставляет переносить на себе свою пыльцу.

Фотосинтез - это процесс синтеза органических веществ из неорганических за счет энергии света. В подавляющем большинстве случаев фотосинтез осуществляют растения с помощью таких клеточных органелл как хлоропласты , содержащих зеленый пигмент хлорофилл.

Если бы растения не были способны к синтезу органики, то почти всем остальным организмам на Земле нечем было бы питаться, так как животные, грибы и многие бактерии не могут синтезировать органические вещества из неорганических. Они лишь поглощают готовые, расщепляют их на более простые, из которых снова собирают сложные, но уже характерные для своего тела.

Так обстоит дело, если говорить о фотосинтезе и его роли совсем кратко. Чтобы понять фотосинтез, нужно сказать больше: какие конкретно неорганические вещества используются, как происходит синтез?

Для фотосинтеза нужны два неорганических вещества - углекислый газ (CO2) и вода (H2O). Первый поглощается из воздуха надземными частями растений в основном через устьица. Вода - из почвы, откуда доставляется в фотосинтезирующие клетки проводящей системой растений. Также для фотосинтеза нужна энергия фотонов (hν), но их нельзя отнести к веществу.

В общей сложности в результате фотосинтеза образуется органическое вещество и кислород (O2). Обычно под органическим веществом чаще всего имеют в виду глюкозу (C6H12O6).

Органические соединения большей частью состоят из атомов углерода, водорода и кислорода. Именно они содержатся в углекислом газе и воде. Однако при фотосинтезе происходит выделение кислорода. Его атомы берутся из воды.

Кратко и обобщенно уравнение реакции фотосинтеза принято записывать так:

6CO2 + 6H2O → C6H12O6 + 6O2

Но это уравнение не отражает сути фотосинтеза, не делает его понятным. Посмотрите, хотя уравнение сбалансированно, в нем общее количество атомов в свободном кислороде 12. Но мы сказали, что они берутся из воды, а там их только 6.

На самом деле фотосинтез протекает в две фазы. Первая называется световой , вторая - темновой . Такие названия обусловлены тем, что свет нужен только для световой фазы, темновая фаза независима от его наличия, но это не значит, что она идет в темноте. Световая фаза протекает на мембранах тилакоидов хлоропласта, темновая - в строме хлоропласта.

В световую фазу связывания CO2 не происходит. Происходит лишь улавливание солнечной энергии хлорофилльными комплексами, запасание ее в АТФ, использование энергии на восстановление НАДФ до НАДФ*H2. Поток энергии от возбужденного светом хлорофилла обеспечивается электронами, передающимися по электрон-транспортной цепи ферментов, встроенных в мембраны тилакоидов.

Водород для НАДФ берется из воды, которая под действием солнечного света разлагается на атомы кислорода, протоны водорода и электроны. Этот процесс называется фотолизом . Кислород из воды для фотосинтеза не нужен. Атомы кислорода из двух молекул воды соединяются с образованием молекулярного кислорода. Уравнение реакции световой фазы фотосинтеза кратко выглядит так:

H2O + (АДФ+Ф) + НАДФ → АТФ + НАДФ*H2 + ½O2

Таким образом, выделение кислорода происходит в световую фазу фотосинтеза. Количество молекул АТФ, синтезированных из АДФ и фосфорной кислоты, приходящихся на фотолиз одной молекулы воды, может быть различным: одна или две.

Итак, из световой фазы в темновую поступают АТФ и НАДФ*H2. Здесь энергия первого и восстановительная сила второго тратятся на связывание углекислого газа. Этот этап фотосинтеза невозможно объяснить просто и кратко, потому что он протекает не так, что шесть молекул CO2 объединяются с водородом, высвобождаемым из молекул НАДФ*H2, и образуется глюкоза:

6CO2 + 6НАДФ*H2 →С6H12O6 + 6НАДФ
(реакция идет с затратой энергии АТФ, которая распадается на АДФ и фосфорную кислоту).

Приведенная реакция – лишь упрощение для облегчения понимания. На самом деле молекулы углекислого газа связываются по одной, присоединяются к уже готовому пятиуглеродному органическому веществу. Образуется неустойчивое шестиуглеродное органическое вещество, которое распадается на трехуглеродные молекулы углевода. Часть этих молекул используется на ресинтез исходного пятиуглеродного вещества для связывания CO2. Такой ресинтез обеспечивается циклом Кальвина . Меньшая часть молекул углевода, включающего три атома углерода, выходит из цикла. Уже из них и других веществ синтезируются все остальные органические вещества (углеводы, жиры, белки).

То есть на самом деле из темновой фазы фотосинтеза выходят трехуглеродные сахара, а не глюкоза.

Осуществляется процесс фотосинтеза в листьях растений. Фотосинтез свойствен лишь зеленым растениям.

Эту важнейшую сторону деятельности листа полнее всего характеризует К. А. Тимирязев:

Можно сказать, что в жизни листа выражается самая сущность растительной жизни. Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались - в растении ли, в животном или в человеке, - прошли через лист, произошли из веществ, выработанных листом.

Строение листьев растений

Листья растений по анатомическому строению отличаются большим разнообразием, которое зависит и от вида растения, и от условий их роста. Лист сверху и снизу покрыт эпидермисом - покровной тканью с многочисленными отверстиями, называемыми устьицами. Под верхним эпидермисом расположена палисадная, или столбчатая паренхима, называемая ассимиляционной.

Под ней находится более рыхлая ткань - губчатая паренхима, за которой идет нижний эпидермис. Весь лист пронизан сетью жилок, состоящих из проводящих пучков, по которым проходят вода, минеральные и органические вещества.

В столбчатой и губчатой ткани листа расположены зеленые пластиды - хлоропласты, содержащие пигменты. Наличием хлоропластов и содержащихся в них зеленых пигментов (хлорофиллов) объясняется окраска растений.

Огромная листовая поверхность, достигающая 30 000 - 50 000 кв. м на 1 га у разных растений, хорошо приспособлена для успешного поглощения СО 2 из воздуха в процессе фотосинтеза.

Углекислый газ проникает в лист растения через устьица, расположенные в эпидермисе, поступает в межклетники и, проникая через оболочку клеток, попадает в цитоплазму, а затем в хлоропласты, где и осуществляется процесс ассимиляции.

Образующийся в этом процессе кислород диффундирует с поверхности хлоропластов в свободном состоянии.

Таким образом, через устьица осуществляется газообмен листьев с внешней средой - поступление углекислого газа и выделение кислорода в процессе фотосинтеза, выделение углекислого газа и поглощение кислорода в процессе дыхания. Кроме того, устьица служат для выделения паров воды.

Несмотря на то, что общая площадь устьичных отверстий составляет лишь 1-2% всей листовой поверхности, тем не менее при открытых устьицах углекислый газ проникает в листья со скоростью, превышающей в 50 раз поглощение его щелочью. Количество устьиц очень велико - от нескольких десятков до 1500 на 1 кв. мм.

Хлоропласты

Хлоропласты - зеленые пластиды, в которых происходит процесс фотосинтеза. Они расположены в цитоплазме. У высших растений хлоропласты имеют дискообразную или линзовидную форму, у низших они более разнообразны.


Размер хлоропластов у высших растений довольно постоянен, составляя в среднем 1 -10 мк. Обычно в клетке содержится большое количество хлоропластов, в среднем 20-50, а иногда и больше. Расположены они главным образом в листьях, много их в незрелых плодах. В растении общее количество хлоропластов огромно; во взрослом дереве дуба, например, площадь их равняется 2 га.

Хлоропласт имеет мембранную структуру. От цитоплазмы он отделен двухмембранной оболочкой. В хлоропласте находятся ламеллы, белково-липоидные пластинки, собранные в пучки и называемые гранами.

Хлорофилл расположен в ламеллах в виде мономолекулярного слоя. Между ламеллами находится водянистая белковая жидкость - строма; в ней встречаются крахмальные зерна и капли масла.

Строение хлоропласта хорошо приспособлено к фотосинтезу, так как разделение хлорофиллоносного аппарата на мелкие пластинки значительно увеличивает активную поверхность хлоропласта, что облегчает доступ энергии и перенос ее к химическим системам, участвующим в фотосинтезе.

Данные А. А. Табенцкого показывают, что хлоропласты все время изменяются в онтогенезе растения. В молодых листьях наблюдается мелкогранулярная структура хлоропластов, в листьях, закончивших рост,- крупногранулярная.

В старых листьях уже наблюдается распад хлоропластов. В сухом веществе хлоропластов содержится 20-45% белков, 20-40% липоидов, 10-12% углеводов и других запасных веществ, 10% минеральных элементов, 5-10% зеленых пигментов (хлорофилл а и хлорофилл б ), 1-2% каротиноидов, а также небольшое количество РНК и ДНК. Содержание воды достигает 75%.

В хлоропластах имеется большой набор гидролитических и окислительно-восстановительных ферментов. Исследованиями Н. М. Сисакяна показано, что в хлоропластах происходит и синтез многих ферментов. Благодаря этому они принимают участие во всем сложном комплексе процессов жизнедеятельности растения.

Пигменты, их свойства и условия образования

Пигменты можно извлечь из листьев растений спиртом или ацетоном. В вытяжке находятся следующие пигменты: зеленые - хлорофилл а и хлорофилл б ; желтые - каротин и ксантофилл (каротиноиды).

Хлорофилл

Хлорофилл представляет собой

одно из интереснейших веществ на земной поверхности

(Ч. Дарвин),

так как благодаря ему возможен синтез органических веществ из неорганических СО 2 и Н 2 О.

Хлорофилл не растворяется в воде, под влиянием солей, кислот и щелочей легко изменяется, поэтому было очень трудно установить его химический состав. Для извлечения хлорофилла обычно применяют этиловый спирт или ацетон.

Хлорофилл имеет следующие суммарные формулы: хлорофилл а - С 55 Н 72 О 5 N 4 Mg, хлорофилл б - С 55 Н 70 О 6 N 4 Mg.

У хлорофилла а больше на 2 атома водорода и меньше на 1 атом кислорода, чем у хлорофилла б . Формулы хлорофилла можно представить и так:


Формулы хлорофилла а и б

Центральное место в молекуле хлорофилла занимает Мg; его можно вытеснить, подействовав на спиртовую вытяжку хлорофилла соляной кислотой. Зеленый пигмент превращается в бурый, называемый феофитином, в котором Мg замещается двумя атомами Н из соляной кислоты.

Восстановить зеленый цвет вытяжки очень легко внесением в молекулу феофитина магния или другого металла. Следовательно, зеленый цвет хлорофилла связан с наличием в его составе металла.

При воздействии на спиртовую вытяжку хлорофилла щелочью происходит отщепление спиртовых групп (фитола и метилового спирта); в этом случае зеленая окраска хлорофилла сохраняется, что указывает на сохранение ядра молекулы хлорофилла при этой реакции.

Химический состав хлорофилла у всех растений одинаков. Содержание хлорофилла а всегда больше (примерно в 3 раза), чем хлорофилла б. Общее количество хлорофилла невелико и составляет около 1 % от сухого вещества листа.

По своей химической природе хлорофилл близок к красящему веществу крови - гемоглобину, центральное место в молекуле которого занимает не магний, а железо. В соответствии с этим различаются и их физиологические функции: хлорофилл принимает участие в важнейшем восстановительном процессе в растении - фотосинтезе, а гемоглобин - в процессе дыхания животных организмов, перенося кислород.

Оптические свойства пигментов

Хлорофилл поглощает солнечную энергию и направляет ее на химические реакции, которые не могут протекать без энергии, получаемой извне. Раствор хлорофилла в проходящем свете имеет зеленый цвет, но при увеличении толщины слоя или концентрации хлорофилла он приобретает красный цвет.

Хлорофилл поглощает свет не сплошь, а избирательно. При пропускании белого света через призму получается спектр, состоящий из семи видимых цветов, которые постепенно переходят друг в друга.

При пропускании белого света через призму и раствор хлорофилла на полученном спектре наиболее интенсивное поглощение будет в красных и сине-фиолетовых лучах. Зеленые лучи поглощаются мало, поэтому в тонком слое хлорофилл имеет в проходящем свете зеленый цвет.

Однако с увеличением концентрации хлорофилла полосы поглощения расширяются (значительная часть зеленых лучей также поглощается) и без поглощения проходит только часть крайних красных. Спектры поглощения хлорофилла а и б очень близки.

В отраженном свете хлорофилл кажется вишнево-красным, так как он излучает поглощенный свет с изменением длины его волны. Это свойство хлорофилла называется флюоресценцией.

Каротин и ксантофилл

Каротин и ксантофилл имеют полосы поглощения только в синих и фиолетовых лучах. Их спектры близки друг другу.


Спектры поглощения хлорофиллом а и б

Поглощенная этими пигментами энергия передается хлорофиллу а , который является непосредственным участником фотосинтеза. Каротин считают провитамином А, так как при его расщеплении образуются 2 молекулы витамина А. Формула каротина - С 40 Н 56 , ксантофилла - С 40 Н 54 (ОН) 2 .

Условия образования хлорофилла

Образование хлорофилла осуществляется в 2 фазы: первая фаза - темновая, во время которой образуется предшественник хлорофилла - протохлорофилл, а вторая - световая, при которой из протохлорофилла на свету образуется хлорофилл.

Образование хлорофилла зависит как от вида растения, так и от ряда внешних условий. Некоторые растения, например проростки хвойных, могут позеленеть и без участия света, в темноте, но у большинства растений хлорофилл образуется из протохлорофилла только на свету.

В отсутствие света получаются этиолированные растения, имеющие тонкий, слабый, сильно вытянутый стебель и очень мелкие бледно-желтые листья. Если выставить этиолированные растения на свет, то листья быстро позеленеют. Это объясняется тем, что в листьях уже имеется протохлорофилл, который под воздействием света легко превращается в хлорофилл.

Большое влияние на образование хлорофилла оказывает температура; при холодной весне у некоторых кустарников листья не зеленеют до установления теплой погоды: при понижении температуры подавляется образование протохлорофилла.

Минимальной температурой, при которой начинается образование хлорофилла, является 2°, максимальной, при которой образование хлорофилла не происходит, 40°. Кроме определенной температуры, для образования хлорофилла необходимы элементы минерального питания, особенно железо.

При его отсутствии у растений наблюдается заболевание, называемое хлорозом. По-видимому, железо является катализатором при синтезе протохлорофилла, так как в состав молекулы хлорофилла оно не входит. Для образования хлорофилла также необходимы азот и магний, входящие в состав его молекулы. Важным условием является и наличие в клетках листа пластид, способных к позеленению.

При их отсутствии листья растений остаются белыми, растение не способно к фотосинтезу и может жить только до тех пор, пока не израсходует запасы семени. Это явление называется альбинизмом. Оно связано с изменением наследственной природы данного растения.

Количественные отношения между хлорофиллом и усваиваемой углекислотой

При большем содержании хлорофилла в растении процесс фотосинтеза начинается при меньшей интенсивности света и даже при более низкой температуре. С увеличением содержания хлорофилла в листьях фотосинтез возрастает, но до известного предела. Следовательно, нет прямой зависимости между содержанием хлорофилла и интенсивностью поглощения СО 2 .

Количество ассимилированного листом СО 2 в час в пересчете на единицу содержащегося в листе хлорофилла тем выше, чем меньше хлорофилла. Р. Вильштеттером и А. Штолем была предложена единица, характеризующая соотношение между количеством хлорофилла и поглощенным углекислым газом.

Количество разложенной в единицу времени углекислоты, приходящееся на единицу веса хлорофилла, они назвали ассимиляционным числом .

Ассимиляционное число непостоянно: оно больше при малом содержании хлорофилла и меньше при высоком содержании его в листьях. Следовательно, молекула хлорофилла используется более продуктивно при низком его содержании в листе и продуктивность хлорофилла уменьшается с увеличением его количества. Данные введены в таблицу.

Таблица
Ассимиляционное число в зависимости от содержания хлорофилла
(по Р. Вильштеттеру и А. Штолю)

Растения

в 10г. листьев (мг)

Ассимиляционное число

зеленая раса

желтая раса

Сирень 16,2 5,8
Этиолированные проростки фасоли после освещения в течение:

Изданных таблицы видно, что нет прямой зависимости между содержанием хлорофилла и количеством поглощенной СО 2 . Хлорофилл в растениях всегда содержится в избытке и, очевидно, не весь участвует в фотосинтезе. Это объясняется тем, что при фотосинтезе наряду с процессами фотохимическими, которые осуществляются при участии хлорофилла, есть процессы чисто химические, которым свет не нужен.

Темновые реакции в растениях протекают значительно медленнее, чем световые. Скорость световой реакции равна 0,00001 секунды, темновой - 0,04 секунды. Впервые темновые реакции в процессе фотосинтеза обнаружены Ф. Блэкманом.

Он установил, что темновая реакция зависит от температуры, и с повышением ее скорость темновых процессов увеличивается. Длительность световых реакций ничтожна, поэтому скорость процесса фотосинтеза определяется главным образом продолжительностью темновых процессов.

Фотосинтез представляет собой биосинтез, состоящий в превращении световой энергии в органические соединения. Свет в виде фотонов захватывается цветным пигментом, связанным с неорганическим или органическим донором электронов, и позволяет использовать минеральный материал для синтеза (производства) органических соединений.

Иными словами, что такое фотосинтез – это процесс синтеза органического вещества (сахара) из солнечного света. Эта реакция происходит на уровне хлоропластов, которые являются специализированными клеточными органеллами, и позволяют потреблять углекислый газ и воду для получения диоксигена и органических молекул, таких как глюкоза.

Он происходит в две фазы:

Световая фаза (фотофосфорилирование) – представляет собой набор светозависимых фотохимических (т. е. светозахватывающих) реакций, в которых электроны транспортируются через обе фотосистемы (PSI и PSII) для получения АТФ (богатая энергией молекула) и NADPHH (восстанавливающий потенциал).

Таким образом, светлая фаза фотосинтеза позволяет непосредственно превращать световую энергию в химическую энергию. Именно через этот процесс наша планета теперь имеет атмосферу, богатую кислородом. В результате высшие растения сумели доминировать на поверхности Земли, обеспечивая пищу многим другим организмам, которые питаются или находят убежище через неё. Первоначальная атмосфера содержала такие газы, как аммоний, азот и углекислый газ, но очень мало кислорода. Растения нашли способ превратить этот CO настолько обильно в пищу, используя солнечный свет.

Темновая фаза – соответствует полностью ферментативному и не зависящему от света циклу Кальвина, в котором аденозинтрифосфат (АТФ) и НАДФН+Н+ (никотин амид адениндинуклеотид фосфат) используются для конверсии углекислого газа и воды в углеводы. Эта вторая фаза позволяет усвоить углекислый газ.

То есть в этой фазе фотосинтеза, примерно через пятнадцать секунд после поглощения CO происходит реакция синтеза и появляются первые продукты фотосинтеза - сахара: триосы, пентозы, гексозы, гептозы. Из определённых гексоз образуются сахароза и крахмал. Помимо углеводов, могут также развиваться липидами и белками путём связывания с молекулой азота.

Этот цикл существует в водорослях, умеренных растениях и всех деревьях; эти растения называются «растениями С3», наиболее важными промежуточными телами биохимического цикла, имеющими молекулу три атома углерода (С3).

В этой фазе хлорофилл после поглощения фотона имеет энергию 41 ккал на моль, некоторые из которых преобразуются в теплоту или флуоресценцию. Использование изотопных маркеров (18O) показало, что кислород, высвобождаемый во время этого процесса, происходит из разложенной воды, а не из поглощённого диоксида углерода.

Фотосинтез происходит главным образом в листьях растений и редко (когда-либо) в стеблях и т. д. Части типичного листа включают: верхний и нижний эпидермис ;

  • мезофилл;
  • сосудистый пучок (вены);
  • устьица.

Если клетки верхнего и нижнего эпидермиса не являются хлоропластами, фотосинтез не происходит. Фактически они служат прежде всего в качестве защиты для остальной части листа.

Устьица - это дыры, существующие главным образом в нижнем эпидермисе, и позволяют проводить обмен воздуха (CO и O2). Сосудистые пучки (или вены) в листе составляют часть транспортной системы растения, при необходимости перемещая воду и питательные вещества вокруг растения. Клетки мезофилла имеют хлоропласты, вот это и есть место фотосинтеза.

Механизм фотосинтеза очень сложный . Однако эти процессы в биологии имеют особое значение. При энергичном воздействии света хлоропласты (части растительной клетки, содержащие хлорофилл), вступая в реакцию фотосинтеза, объединяют углекислый газ (СО) с пресной водой с образованием сахаров C6H12O6.

Они в процессе реакции превращаются в крахмал C6H12O5, для квадратного дециметра поверхности листа, в среднем 0,2 г крахмала в день. Вся операция сопровождается сильным высвобождением кислорода .

Фактически процесс фотосинтеза состоит в основном из фотолиза молекулы воды.

Формула этого процесса:

6 Н 2 О + 6 СО 2 + свет = 6 O 2 + С 6 Н 12 О 6

Вода + углекислый газ + свет = кислород + глюкоза

  • Н 2 О = вода
  • СО 2 = диоксид углерода
  • O 2 = Кислород
  • С 6 Н 12 О 6 = глюкоза

В переводе этот процесс означает: растению для вступления в реакцию нужны шесть молекул воды + шесть молекул углекислого газа и света. Это приводит к образованию шести молекул кислорода и глюкозы в химическом процессе. Глюкоза - это глюкоза , которую растение использует в качестве исходного материала для синтеза жиров и белков. Шесть молекул кислорода являются всего лишь «необходимым злом» для растения, которое он доставляет в окружающую среду через закрывающие клетки.

Как уже было сказано, углеводы являются наиболее важным прямым органическим продуктом фотосинтеза в большинстве зелёных растений. В растениях образуется мало свободной глюкозы; вместо этого глюкозные единицы связаны с образованием крахмала или соединены с фруктозой, другим сахаром, с образованием сахарозы.

При фотосинтезе синтезируются не только углеводы , как это когда-то считалось, но также:

  • аминокислоты;
  • белки;
  • липиды (или жиры);
  • пигменты и другие органические компоненты зелёных тканей.

Минералы поставляют элементы (например, азот, N; фосфор, Р; серы, S), необходимых для образования этих соединений.

Химические связи разрушаются между кислородом (O) и углеродом (С), водородом (Н), азотом и серы, а новые соединения образуются в продуктах, которые включают газообразный кислород (O 2) и органические соединения. Для разрушения связей между кислородом и другими элементами (например, в воде, нитрате и сульфате) требуется больше энергии, чем высвобождается, когда в продуктах образуются новые связи. Это различие в энергии связи объясняет большую часть световой энергии, хранящейся в виде химической энергии в органических продуктах, образующихся при фотосинтезе. Дополнительная энергия хранится при создании сложных молекул из простых.

Факторы, влияющие на скорость фотосинтеза

Скорость фотосинтеза определяется в зависимости от скорости производства кислорода либо на единицу массы (или площади) зелёных растительных тканей, либо на единицу веса всего хлорофилла.

Количество света, подача углекислого газа, температура, водоснабжение и наличие полезных ископаемых являются наиболее важными факторами окружающей среды, которые влияют на скорость реакции фотосинтеза на наземных установках. Его скорость определяется также видами растений и его физиологическим состоянием, например, его здоровьем, зрелостью и цветением.

Фотосинтез происходит исключительно в хлоропластах (греческий хлор = зелёный, пластообразный) растения. Хлоропласты преимущественно обнаруживаются в палисадах, но также и в губчатой ​​ткани. На нижней стороне листа находятся блокирующие ячейки, которые координируют обмен газами. CO 2 течёт в межклеточные клетки снаружи.

Вода, необходимая для фотосинтеза , транспортирует растение изнутри через ксилему в клетки. Зелёный хлорофилл обеспечивает поглощение солнечного света. После того как углекислый газ и вода превращаются в кислород и глюкозу, закрывающие клетки открывают и выделяют кислород в окружающую среду. Глюкоза остаётся в клетке и превращается растением среди других в крахмал. Сила сравниваются с полисахаридом глюкозы и лишь слегка растворимой, так что даже в высоких потерях воды в прочности растительных остатков.

Важность фотосинтеза в биологии

Из света, полученного листом, отражается 20%, 10% передаются и 70% фактически поглощаются, из которых 20% рассеивается в тепле, 48% теряется при флуоресценции. Около 2% остаётся для фотосинтеза.

Благодаря этому процессу растения играют незаменимую роль на поверхности Земли; на самом деле зелёные растения с некоторыми группами бактерий являются единственными живыми существами, способными выработать органические вещества из минеральных элементов. По оценкам, каждый год 20 миллиардов тонн углерода фиксируются наземными растениями из углекислого газа в атмосфере и 15 миллиардов водорослями.

Зелёные растения являются основными первичными производителями, первое звено в пищевой цепи; не хлорофилловые растения и травоядные и плотоядные животные (включая людей) полностью зависят от реакции фотосинтеза.

Упрощённое определение фотосинтеза заключается в том, чтобы преобразовать световую энергию от солнца в химическую энергию. Этот фотонный биосинтез углевода производится из углекислого газа СО2 с помощью световой энергии.

То есть фотосинтез является результатом химической активности (синтеза) растений хлорофилла, которые продуцируют основные биохимические органические вещества из воды и минеральных солей благодаря способности хлоропластов захватывать часть энергии солнца.

Фотосинтез - сложный процесс, включающий целую систему химических реакций. Он растянут во времени и состоит из двух фаз. Первая фаза проходит только на свету и называется световой. Вторая, темновая, фаза не зависит от световой энергии и осуществляется как на свету, так и в темноте.

На свету

Световая фаза начинается с попадания квантов света на молекулы хлорофилла, которые находятся внутри тилакоидов - плоских мембранных цистерн дисковидной формы.

Рис. 1. Строение хлоропласта.

При этом молекулы хлорофилла переходят в возбуждённое состояние и теряют электроны. Вместо утраченных электронов они присоединяют электроны молекул Н₂О или ионов ОН¯.

Происходит инициированное хлорофиллом разложение воды (фотолиз) и выделение газообразного кислорода. Одна молекула кислорода образуется из двух молекул воды.

2Н₂О → 4Н⁺ + 4е¯ + О₂

ТОП-4 статьи которые читают вместе с этой

Свободные электроны и водород проходят через сложную цепь веществ-переносчиков и фиксируются в молекулах НАДФН₂.

Рис. 2. Схема световой фазы фотосинтеза.

За счёт энергии возбуждённых электронов также происходит синтез молекул АТФ из АДФ и фосфорной кислоты.

Если кислород считается побочным продуктом световой фазы, то АТФ может считаться основным, т. к. его энергия будет затрачена на образование органических веществ из СО₂ в темновой фазе.

Таким образом, энергия света становится энергией химических связей АТФ.

На свету и в темноте

Реакции темновой фазы протекают за пределами тилакоидов, в строме хлоропласта, являющейся по своим свойствам биоколлоидом.

Суть процессов этой фазы - в превращении атмосферного углекислого газа в различные органические вещества.

С₃ и С₄ растения

Существует два пути фотосинтеза, характерные для разных видов растений. Большинство видов относится к С₃ – растениям. Это значит, что у них на первом этапе темновой фазы образуются трёхатомные углеводороды:

СО₂ + рибулозодифосфат (РДФ) + Н₂О → 2 молекулы фосфоглицериновой кислоты (ФГК).

РДФ: 5 атомов С. ФГК: 3 атома С.

Органические вещества образуются не путём сложения молекул СО₂, а при присоединении СО₂ к уже имеющимся углеводам.

Таким образом, СО₂ как бы вовлекается во внутриклеточный обмен веществ растения.

У С₄ – растений происходит образование четырёхатомных кислот:

  • яблочной;
  • щавелеуксусной;
  • аспарагиновой.

С₄ – растения имеют тропическое происхождение и очень светолюбивы. Это сорго, просо, кукуруза, сахарный тростник и др.

Продукты первого этапа проходят цикл реакций, образуя множество веществ, используемых клеткой.

У всех растений темновая фаза заканчивается образованием глюкозы, фруктозы и других шестиатомных углеводов.

Доказано, что при фотосинтезе также синтезируются белки и другие продукты.

Рис. 3. Схема темновой фазы фотосинтеза.

Признаки фаз фотосинтеза, а также результаты процессов, идущих в обеих фазах, представим в таблице:

Что мы узнали?

Проведя сравнительную характеристику двух фаз фотосинтеза, мы определили, что световая фаза является подготовительной. В ходе световой фазы: образуется кислород, запасается энергия в виде АТФ, накапливается водород. Темновая фаза использует ресурсы, полученные в ходе световой фазы и заканчивается образованием разнообразных органических соединений.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 80.