Осветительные приборы

Что образуется во время световой фазы фотосинтеза. Фазы фотосинтеза

Что образуется во время световой фазы фотосинтеза. Фазы фотосинтеза

Фотосинтез - это процесс синтеза органических веществ из неорганических за счет энергии света . В подавляющем большинстве случаев фотосинтез осуществляют растения с помощью таких клеточных органелл как хлоропласты , содержащих зеленый пигмент хлорофилл .

Если бы растения не были способны к синтезу органики, то почти всем остальным организмам на Земле нечем было бы питаться, так как животные, грибы и многие бактерии не могут синтезировать органические вещества из неорганических. Они лишь поглощают готовые, расщепляют их на более простые, из которых снова собирают сложные, но уже характерные для своего тела.

Так обстоит дело, если говорить о фотосинтезе и его роли совсем кратко. Чтобы понять фотосинтез, нужно сказать больше: какие конкретно неорганические вещества используются, как происходит синтез?

Для фотосинтеза нужны два неорганических вещества - углекислый газ (CO 2) и вода (H 2 O). Первый поглощается из воздуха надземными частями растений в основном через устьица. Вода - из почвы, откуда доставляется в фотосинтезирующие клетки проводящей системой растений. Также для фотосинтеза нужна энергия фотонов (hν), но их нельзя отнести к веществу.

В общей сложности в результате фотосинтеза образуется органическое вещество и кислород (O 2). Обычно под органическим веществом чаще всего имеют в виду глюкозу (C 6 H 12 O 6).

Органические соединения большей частью состоят из атомов углерода, водорода и кислорода. Именно они содержатся в углекислом газе и воде. Однако при фотосинтезе происходит выделение кислорода. Его атомы берутся из воды.

Кратко и обобщенно уравнение реакции фотосинтеза принято записывать так:

6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2

Но это уравнение не отражает сути фотосинтеза, не делает его понятным. Посмотрите, хотя уравнение сбалансированно, в нем общее количество атомов в свободном кислороде 12. Но мы сказали, что они берутся из воды, а там их только 6.

На самом деле фотосинтез протекает в две фазы. Первая называется световой , вторая - темновой . Такие названия обусловлены тем, что свет нужен только для , независима от его наличия, но это не значит, что она идет в темноте. Световая фаза протекает на мембранах тилакоидов , темновая - в строме хлоропласта.

В световую фазу связывания CO 2 не происходит. Происходит лишь улавливание солнечной энергии хлорофилльными комплексами, запасание ее в , использование энергии на восстановление НАДФ до НАДФ*H 2 . Поток энергии от возбужденного светом хлорофилла обеспечивается электронами, передающимися по электрон-транспортной цепи ферментов, встроенных в мембраны тилакоидов.

Водород для НАДФ берется из воды, которая под действием солнечного света разлагается на атомы кислорода, протоны водорода и электроны. Этот процесс называется фотолизом . Кислород из воды для фотосинтеза не нужен. Атомы кислорода из двух молекул воды соединяются с образованием молекулярного кислорода. Уравнение реакции световой фазы фотосинтеза кратко выглядит так:

H 2 O + (АДФ+Ф) + НАДФ → АТФ + НАДФ*H 2 + ½O 2

Таким образом, выделение кислорода происходит в световую фазу фотосинтеза. Количество молекул АТФ, синтезированных из АДФ и фосфорной кислоты, приходящихся на фотолиз одной молекулы воды, может быть различным: одна или две.

Итак, из световой фазы в темновую поступают АТФ и НАДФ*H 2 . Здесь энергия первого и восстановительная сила второго тратятся на связывание углекислого газа. Этот этап фотосинтеза невозможно объяснить просто и кратко, потому что он протекает не так, что шесть молекул CO 2 объединяются с водородом, высвобождаемым из молекул НАДФ*H 2 , и образуется глюкоза:

6CO 2 + 6НАДФ*H 2 →С 6 H 12 O 6 + 6НАДФ
(реакция идет с затратой энергии АТФ, которая распадается на АДФ и фосфорную кислоту).

Приведенная реакция – лишь упрощение для облегчения понимания. На самом деле молекулы углекислого газа связываются по одной, присоединяются к уже готовому пятиуглеродному органическому веществу. Образуется неустойчивое шестиуглеродное органическое вещество, которое распадается на трехуглеродные молекулы углевода. Часть этих молекул используется на ресинтез исходного пятиуглеродного вещества для связывания CO 2 . Такой ресинтез обеспечивается циклом Кальвина . Меньшая часть молекул углевода, включающего три атома углерода, выходит из цикла. Уже из них и других веществ синтезируются все остальные органические вещества (углеводы, жиры, белки).

То есть на самом деле из темновой фазы фотосинтеза выходят трехуглеродные сахара, а не глюкоза.

Растения обладают уникальным свойством вырабатывать кислород. Из всего существующего на это способны еще несколько видов . Данный процесс в науке называется фотосинтезом.

Что необходимо для фотосинтеза

Кислород вырабатывается только если есть все элементы, необходимые для :
1. Растение, имеющее зеленые (имеющие хлорофиллы в листе).
2. Солнечная энергия.
3. Вода, содержащаяся в листовой пластине.
4. Углекислый газ.

Исследования фотосинтеза

Первым изучению растений посвятил свои исследования Ван Гельмонт. В ходе своей работы он доказал, что растения берут питание не только из почвы, но также питаются и углекислым газом. Спустя почти 3 века Фредерик Блэкман при помощи исследований доказал существование процесса фотосинтеза. Блэкман не только определил реакцию растений в ходе вырабатывания кислорода, но также и установил, что в темное время суток растения дышат кислородом, поглощая его. Определение этому процессу было дано только в 1877 году.

Как происходит выделение кислорода

Процесс фотосинтеза заключается в следующем:
На хлорофиллы попадает солнечный свет. Затем начинаются два процесса:
1. Процесс фотосистема II. При столкновении фотона с 250-400 молекулами фотосистемы II энергия начинает скачкообразно возрастать, затем эта энергия передается молекуле хлорофилла. Начинаются две реакции. Хлорофилл теряет 2 , а в этот же момент расщепляется молекула воды. 2 электрона атомов замещают потерянные электроны у хлорофилла. Затем молекулярные переносчики перекидывают «быстрый» электрон друг другу. Частично энергия затрачивается на образование молекул аденозинтрифосфата (АТФ).
2. Процесс фотосистема I. Молекула хлорофилла фотосистемы I поглощает энергию фотона и передает свой электрон другой молекуле. Потерянный электрон замещается электроном из фотосистемы II. Энергия из фотосистемы I и ионы водорода уходит на образование новой молекулы-переносчика.

В упрощенном и наглядном виде всю реакцию можно описать одной простой химической формулой:
СО2 + Н2О + свет → углевод + О2

В раскрытом виде формула выглядит так:
6CO2 + 6H2O = C6H12O6 + 6O2

Существует и темновая фаза фотосинтеза. Ее также называют метаболической. В ходе темновой стадии происходит восстановление углекислого газа до глюкозы.

Заключение

Все зеленые растения вырабатывают необходимый для жизни кислород. В зависимости от возраста растения, его физических данных, количество выделяемого кислорода может меняться. Процесс этот в 1877 году В. Пфеффером был назван фотосинтезом.

ФОТОСИНТЕЗ – это

фотосинтез – это углеводы .

Общая характеристика

I Световая фаза

1. Фотофизический этап

2. Фотохимический этап

II Темновая фаза

3.

ЗНАЧЕНИЕ

4. Озоновый экран.

Пигменты фотосинтезирующих растений, их физиологическая роль.

· Хлорофилл – это зелёный пигмент, обуславливающий окраску зелёного цвета растению, при его участии обусловлен процесс фотосинтеза. По химическому строению это Mg-комплекс различных тетрапирролов. Хлорофиллы имеют порфириновое строение, структурно близки к гему.

В пиррольных группировках хлорофилла имеются системы, чередующихся двойных и простых связей. Это и есть хромофорная группа хлорофилла, обуславливающиеся поглощение определённых лучей солнечного спектра и его окраску. D порфировые ядра составляют 10 нм, а длина фитольного остатка 2 нм.

Молекулы хлорофилла полярно, её порфириновое ядро обладает гидрофильными свойствами, а фитольный конец гидрофобными. Это свойство молекулы хлорофилла обуславливают определённое расположение её в мембранах хлоропласта.

Порфириновая часть молекулы связана с белком, а фитольная часть погружена в липидный слой.

Хлорофилл живой интактной клетки обладает способностью к обратимому фотоокислению и фотовосстановлению. Способность к окислительно-восстановительным реакциям связано с наличием в молекуле хлорофилла сопряжённых двойных связей с подвижными п-элктронами и атомами N с неопределёнными электронами.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) избирательно поглощать энергию света,

2) запасать ее в виде энергии электронного возбуждения,

3) фотохимически преобразовывать энергию возбужденного состояния в химическую энергию первичных фотовосстановленных и фотоокисленных соединений.

· Каротиноиды- это жирорастворимые пигменты желтого, оранжевого, красного цвета - присутствуют в хлоропластах всех растений. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротиноиды имеют максимальное поглощение в фиолетово-синей и синей частях спектра света. Они не способны к флуоресценции в отличие от хлорофилла.

К каротиноидам относятся 3 группы соединения:

Оранжевые, или красные каротины;

Жёлтые ксантофиллы;

Каротиноидные кислоты.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) Поглощение света в качестве дополнительных пигментов;

2) Защита молекул хлорофилла от необратимого фотоокисления;

3) Тушение активных радикалов;

4) Участвуют в фототропизме, т.к. способствуют направлению роста побега.

· Фикобилины – это красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Фикобилины состоят из 4-х последовательных пиррольных колец. Фикобилины являются хромофорными группами глобулиновых белков, который называется фикобилинпротеинами. Он делятся на:

- фикоэритрины – белки красного цвета;

- фикоцианин – синеголубые белки;

- алофикоцианин – синие белки.

Все они обладают флуоресценирущей способностью. Фикобилины имею максимальное поглощение в оранжевых, жёлтых и зелёных частях спектра света и позволяют водорослям полнее использовать свет, проникающий в воду.

На глубине 30 м полностью исчезают красные лучи

На глубине 180 м – жёлтые

На глубине 320 м – зелёные

На глубине более 500 м не проникают синие и фиолетовые лучи.

Фикобилины – это дополнительные пигменты примерно 90% энергии света, поглощающего фикобилинами передаётся на хлорофилл.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) Максимумы поглощения света у фикобилинов находятся между двумя максимумами поглощения у хлорофилла: в оранжевой, желтой и зеленой частях спектр.

2) Фикобилины выполняют у водорослей функции светособирающего комплекса.

3) У растений имеется фикобилин-фитохрм, он не участвет в фотосинтезе, но является фоторецептором красного света и выполняет регуляторную функцию в клетках растений.

Сущность фотофизического этапа. Фотохимический этап. Циклический и нециклический транспорт электронов.

Сущность фотофизического этапа

Фотофизический этап наиболее важный, т.к. осуществляет переход и преобразование энергии одной системы в другую (в живую из неживой).

Фотохимический этап

Фото-химически реакции фотосинтеза – это реакции в которых энергия света преобразуется в энергию химических связей в первую очередь в энергию фосфорных связей АТФ . Именно АТФ обеспечивает течение всех процессов, одновременно под действием света происходит разложение воды, образуется восстановленный НАДФ и выделяется О2 .

Энергия поглощенных квантов света стекается от сотен молекул пигментов свето-собирающего комплекса к одной молекула-хлорофилла-ловушке отдавая электрон акцептору – окисляется. Электрон поступает в электронно-транспортную цепь, предполагается, что свето-собирающий комплекс состоит из 3-х частей:

· главного антенного компонента

· двух фото фиксирующих систем.

Комплекс антенного хлорофилла погружен в толщу мембраны тилакоидов хлоропластов совокупность антенных молекул пигментов и реакционного центра составляет фотосистему в процессе фотосинтеза принимает участие 2 фотосистемы:

· установленно, что фотосистема 1 включает светофокусирующие пигменты и реакционный центр 1 ,

· фотосистема 2 включает светофокусирующие пигменты и реакционный центр 2 .

Хлорофилл-ловушка фотосистемы 1 поглощает свет с длинной волны700нм . Во второй системе 680нм . Свет поглащается рздельно этими двумя фотосистемами и нормальное осуществление фотосинтеза требует их одновременного участия. Перенос по цепи переносчиков включает ряд окислительно-восстновительных реакций при которых происходит перенос либо атома водорода, либо электронов.

Различают два типа потока электронов:

· циклический

· нециклический.

При циклическом потоке электроны от молекулы хлорофилла передаются к акцептору от молекулы хлорофилла и возвращаются к ней обратно , при нециклическом потоке происходит фотоокисление воды и передача электрона от воды к НАДФ , выделяемая в ходе окислительно-восстановительных реакций энергия частично используется на синтез АТФ.

Фотосистема I

Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.

В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П700). После возбуждения квантом света он восстанавливает первичный акцептор - хлорофилл a, тот - вторичный (витамин K 1 или филлохинон), после чего электрон передаётся на ферредоксин, который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.

Белок пластоцианин, восстановленный в b 6 f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П700.

Фотосистема II

Фотосистема - совокупность ССК, фотохимического реакционного центра и переносчиков электрона. Светособирающий комплекс II содержит 200 молекул хлорофилла a, 100 молекул хлорофилла b, 50 молекул каротиноидов и 2 молекулы феофитина. Реакционный центр фотосистемы II представляет собой пигмент-белковый комплекс, расположенный в тилакоидных мембранах и окружённый ССК. В нём находится димер хлорофилла a с максимумом поглощения при 680 нм (П680). На него в конечном счёте передаётся энергия кванта света из ССК, в результате чего один из электронов переходит на более высокое энергетическое состояние, связь его с ядром ослабляется и возбуждённая молекула П680 становится сильным восстановителем (E0=-0,7 В).

П680 восстанавливает феофитин, в дальнейшем электрон переносится на хиноны, входящие в состав ФС II и далее на пластохиноны, транспортируемые в восстановленной форме к b6f комплексу. Одна молекула пластохинона переносит 2 электрона и 2 протона, которые берутся из стромы.

Заполнение электронной вакансии в молекуле П680 происходит за счёт воды. В состав ФС II входит водоокисляющий комплекс, содержащий в активном центре ионы марганца в количестве 4 штук. Для образования одной молекулы кислорода требуется две молекулы воды, дающие 4 электрона. Поэтому процесс проводится в 4 такта и для его полного осуществления требуется 4 кванта света. Комплекс находится со стороны внутритилакоидного пространства и полученные 4 протона выбрасываются в него.

Таким образом, суммарный результат работы ФС II - это окисление 2 молекул воды с помощью 4 квантов света с образованием 4 протонов во внутритилакоидном пространстве и 2 восстановленных пластохинонов в мембране.

Фотосинтетическое фосфорилирование. Механизм сопряжения электронного транспорта с формированием трансмембранного градиента электрохимического потенциала. Структурно-функциональная организация и механизм работы АТФ-синтетазного комплекса.

Фотосинтетическое фосфорилирование - синтез АТФ из АДФ и неорганического фосфора в хлоропластах, сопряженный с транспортом электронов, индуцируемым светом.

Соответственно двум типам потока электронов различают циклическое и нециклическое фотофосфорилирование.

Перенос электронов по цепи циклического потока сопряжен с синтезом двух макроэргичесих связей АТФ. Вся энергия света, поглощенная пигментом реакционного центра фотосистемы I, расходуется только на синтез АТФ. При циклическом Ф. ф. не образуются восстановительные эквиваленты для углеродного цикла и не выделяется O2. Циклическое Ф. ф. описывается уравнением:

Нециклическое Ф. ф. сопряжено с потоком электронов от воды через переносчики фотосистем I и II НАДФ +. Энергия света в этом процессе запасается в макроэргических связях АТФ, восстановленной форме НАДФН2 и молекулярном кислороде. Суммарное уравнение нециклического Ф. ф. следующее:

Механизм сопряжения электронного транспорта с формированием трансмембранного градиента электрохимического потенциала

Хемиосмотическая теория. Переносчики электронов локализованы в мембранах асимметрично. При этом последовательно чередуются переносчики электронов (цитохромы) с переносчиками электрона и протона (пластохиноны). Молекула пластохинона сначала принимает два электрона: ПХ + 2е - -> ПХ -2 .

Пластохинон - производное хинона, в полностью окисленном состоянии содержит два атома кислорода, соединенных с углеродным кольцом двойными связями. В полностью восстановленном состоянии атомы кислорода в бензольном кольце соединяются с протонами: с образованием электрически нейтральной формы: ПХ -2 + 2Н + -> ПХН 2 . Протоны выделяются в пространство внутри тилакоида. Таким образом, при переносе пары электронов от Хл 680 на Хл 700 во внутреннем пространстве тилакоидов накапливаются протоны. В результате активного переноса протонов из стромы во внутритилакоидное пространство на мембране создается электрохимический потенциал водорода (ΔμН +), имеющий две составляющие: химическую ΔμН (концентрационную), возникающую в результате неравномерного распределения ионов Н + по разным сторонам мембраны, и электрическую, обусловленную противоположным зарядом разных сторон мембраны (благодаря накоплению протонов с внутренней стороны мембраны).

__________________________________________________________________________

Структурно-функциональная организация и механизм работы АТФ-синтетазного комплекса

Структурно-функциональная организация. Сопряжение диффузии протонов через мембрану осуществляется макромолекулярным ферментным комплексом, называемым АТФ-синтазой или сопрягающим фактором . Этот комплекс по форме напоминает гриб и состоит из двух частей - факторов сопряжения: круглой шляпки F 1 , выступающей с наружной стороны мембраны (в ней располагается каталитический центр фермента), и ножки погруженной в мембрану. Мембранная часть состоит из полипептидных субъединиц и формирует в мембране протонный канал, по которому ионы водорода попадают к фактору сопряжения F 1 . Белок F 1 представляет белковый комплекс, который состоит из мембраны, при этом он сохраняет способность катализировать гидролиз АТФ. Изолированный F 1 не способен синтезировать АТФ. Способность синтезировать АТФ - это свойство единого комплекса F 0 -F 1 , встроенного в мембрану. Связано это с тем, что работа АТФ-синтазы при синтезе АТФ сопряжена с переносом через нее протонов. Направленный транспорт протонов возможен только в том случае, если АТФ-синтаза встроена в мембрану.

Механизм работы. Существуют две гипотезы относительно механизма фосфорилирования (прямой механизм и косвенный). Согласно первой гипотезе фосфатная группа и АДФ связываются с ферментом в активном участке комплекса F1. Два протона перемещаются через канал по градиенту концентрации и соединяются с кислородом фосфата, образуя воду. Согласно второй гипотезе, (косвенный механизм), АДФ и неорганический фосфор соединяются в активном центре фермента спонтанно. Однако образовавшаяся АТФ прочно связана с ферментом, и для ее освобождения требуется энергия. Энергия доставляется протонами, которые, связываясь с ферментом, изменяют его конформацию, после чего АТФ высвобождается.

С4 путь фотосинтеза

С 4 -путь фотосинтеза или цикл Хетча-Слэка

Австралийскими учеными М. Хетчем и К. Слэком был описан С 4 -путь фотосинтеза, характерный для тропических и субтропических растений однодольных и двудольных 16 семейств (сахарный тростник, кукуруза и др.). Большинство самых злостных сорняков – С4 растения, а большинство сельскохозяйственных культур относятся к С3-растениям. Листья этих растений содержат хлоропласты двух типов: обычные в клетках мезофилла и крупные хлоропласты, не имеющие гран и фотосистемы II, в клетках обкладки, окружающих проводящие пучки.

В цитоплазме клеток мезофилла фосфоэнолпируваткарбоксилаза присоединяет СО 2 к фосфоэнолпировиноградной кислоте, образуя щавелевоуксусную кислоту. Она транспортируется в хлоропласты, где восстанавливается до яблочной кислоты при участии НАДФН (фермент НАДФ+-зависимая малатдегидрогеназа). В присутствии ионов аммония щавелевоуксусная кислота превращается в аспарагиновую кислоту (фермент - аспартатаминотрансфераза). Яблочная и (или) аспарагиновая кислоты переходят в хлоропласты клеток обкладки, декарбоксилируются до пировиноградной кислоты и СО 2 . СО 2 включается в цикл Кальвина, а пировиноградная кислота переносится в клетки мезофилла, где превращается в фосфоэнолпировиноградную кислоту.

В зависимости от того, какая кислота – малат или аспартат – транспортируется в клетки обкладки, растения делят на два типа: малатный и аспартатный. В клетках обкладки эти С4-кислоты декарбоксилируются, что происходит у разных растений происходит с участием различных ферментов: НАДФ+-зависимой малатдегидрогеназы декарбоксилирующей (НАДФ+-МДГ), НАД+-зависимой малатдегидрогеназы декарбоксилирующей (малик-энзим, НАД+-МДГ) и ФЭП-карбоксикиназы (ФЕП-КК). Поэтому растения делят еще на три подтипа: НАДФ+-МДГ-растения, НАД+-МДГ-растения ФЕП-КК-растения.

Такой механизм позволяет растениям фотосинтезировать при закрытых из-за высокой температуры устьицах. Кроме того, продукты цикла Кальвина образуются в хлоропластах клеток обкладки, окружающих проводящие пучки. Это способствует быстрому оттоку фотоассимилятов и тем самым повышает интенсивность фотосинтеза.

Фотосинтез по типу толстянковых (суккулентов)-САМ путь.

В сухих местах существуют растения-суккуленты, у которых устьица открыты ночью и закрыты днем для уменьшения транспирации. В настоящее время этот тип фотосинтеза обнаружен у представителей 25 семейств.

У суккулентов (кактусов и растений сем. толстянковых (Crassulaceae ) процессы фотосинтеза разделены не в пространстве, как у других С 4 -растений, а во времени. Этот тип фотосинтеза получил название CAM (crassulation acid metabolism)-путь. Устьица днем обычно закрыты, что предотвращает потерю воды в ходе транспирации, и открыты ночью. В темноте СО 2 поступает в листья, где фосфоэнолпируваткарбоксилаза присоединяет его к фосфоэнолпировиноградной кислоте, образуя щавелевоуксусную кислоту. Она восстанавливается НАДФН-зависимой малатдегидрогеназой до яблочной кислоты, которая накапливается в вакуолях. Днем яблочная кислота переходит из вакуоли в цитоплазму, где декарбоксилируется с образованием СО 2 и пировиноградной кислоты. СО 2 диффундирует в хлоропласты и включается в цикл Кальвина.

Итак, темновая фаза фотосинтеза разделена во времени: СО 2 поглощение ночью, а восстанавливается днем, из ЩУК образуется малат, карбоксилирование в тканях происходит дважды: ночью карбоксилируется ФЕП, днем РуБФ.

В САМ-растения делят на два типа: НАДФ-МДГ-растения, ФЕП-КК-растения.

Как С4, САМ-тип является дополнительным, поставляющим СО 2 в С3-цикл у растений, приспособившихся к жизни в условиях повышенных температур или недостатка влаги. У некоторых растений этот цикл функционирует всегда, у других – только в неблагоприятных условиях.

Фотодыхание.

Фотодыхание – это активируемый светом процесс выделения СО 2 и поглощения О 2 .(НИ К ФОТОСИНТЕЗУ,НИ К ДЫХАНИЮ НЕ ОТНОСИТСЯ). Так как первичным продуктом фотодыхания является гликолевая кислота, оно еще называется гликолатным путем. Фотодыхание усиливается при низком содержании СО 2 и высокой концентрации О 2 в воздухе. В этих условиях рибулозобисфаткарбоксилаза хлоропластов катализирует не карбоксилирование рибулозо-1,5-дифосфата, а его расщепление на 3-фосфоглицериновую и 2-фосфогликолевую кислоты. Последняя дефосфорилируется с образованием гликолевой кислоты.

Гликолевая кислота из хлоропласта переходит в пероксисому, где окисляется гликолатоксидазой до глиоксиловой кислоты. Образующаяся при этом перекись водорода разлагается каталазой, присутствующей в пероксисоме. Глиоксиловая кислота аминируется, превращаясь в глицин. Глицин транспортируется в митохондрию, где из двух молекул глицина синтезируется серин и освобождается СО 2 .

Серин может поступать в пероксисому и под действием аминотрансферазы передает аминогруппу на пировиноградную кислоту с образованием аланина, а сам превращается в гидроксипировиноградную кислоту. Последняя при участии НАДФН восстанавливается в глицериновую кислоту. Она переходит в хлоропласты, где включается в цикл Кальвина и образуется 3 ФГА.

Дыхание растений

Живая клетка представляет собой открытую энергетическую систему, она живёт и сохраняет свою индивидуальность за счет постоянного притока энергии. Как только этот приток прекращается, наступает дезорганизация и смерть организма. Энергия солнечного света, запасенная при фотосинтезе в органическом веществе, вновь высвобождается и используется на самые различные процессы жизнедеятельности.

В природе существуют два основных процесса, в ходе которых энергия солнечного света, запасенная в органическом веществе, высвобождается,- это дыхание и брожение. Дыхание - это аэробный окислительный распад органических соединений на простые неорганические, сопровождаемый выделением энергии. Брожение - анаэробный процесс распада органических соединений на более простые, сопровождаемый выделением энергии. В случае дыхания акцептором электрона служит кислород, в случае брожения - органические соединения.

Суммарное уравнение процесса дыхания:

С6Н1206 + 602 -> 6С02 + 6Н20 + 2824 кДж.

Пути дыхательного обмена

Существуют две основные системы и два основных пути превращения дыхательного субстрата, или окисления углеводов:

1) гликолиз + цикл Кребса (гликолитический); Данный путь дыхательного обмена является наиболее распространенным и, в свою очередь, состоит из двух фаз. Первая фаза - анаэробная (гликолиз), вторая фаза - аэробная. Эти фазы локализованы в различных компартментах клетки. Анаэробная фаза гликолиз - в цитоплазме, аэробная фаза - в митохондриях. Обычно химизм дыхания начинают рассматривать с глюкозы. Вместе с тем в растительных клетках глюкозы мало, поскольку конечными продуктами фотосинтеза являются сахароза как основная транспортная форма сахара в растении или запасные углеводы (крахмал и др.). Поэтому, чтобы стать субстратом дыхания сахароза и крахмал должны гидролизоваться с образованием глюкозы.

2) пентозофосфатный (апотомический). Относительная роль этих путей дыхания может меняться в зависимости от типа растений, возраста, фазы развития, а также в зависимости от факторов среды. Процесс дыхания растений осуществляется во всех внешних условиях, при которых возможна жизнь. Растительный организм не имеет приспособлений к регуляции температуры, поэтому процесс дыхания осуществляется при температуре от -50 до +50°С. Нет приспособлений у растений и к поддержанию равномерного распределения кислорода по всем тканям. Именно необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разнообразных путей дыхательного обмена и к еще большему разнообразию ферментных систем, осуществляющих отдельные этапы дыхания. При этом важно отметить взаимосвязь всех процессов обмена в организме. Изменение пути дыхательного обмена приводит к глубоким изменениям во всем метаболизме растений.

Энергитическая

11 АТФ образуется в результате работы ЦК и дыхательной и 1 АТФ в результате субстратного фосфорилирования. В ходе этой реакции образуется одна молекула ГТФ (реакция перефосфорилирования приводит к образованию АТФ).

1 оборот ЦК в аэробных условиях приводит к образованию 12 АТФ

Интегративная

На уровне ЦК объединяются пути катаболизма белков жиров и углеводов. цикл Кребса является центральным метаболическим путем, объединяющим процессы распада и синтеза важнейших компонентов клетки.

Амфиболическая

Метаболиты ЦК являются ключевыми на их уровне могут идти переключение с одного вида обмена на другой.

13.ЭТЦ: Компоненты локализация. Механизм окислительного фосфорилирования. Хемиосмотическая теория Митчела.

Электрон-транспортная цепь - это цепь редокс-агентов, определенным образом расположенных в мембране хлоропластов, осуществляющих фотоиндуцируемый транспорт электронов от воды к НАДФ + . Движу­щей силой транспорта электронов по ЭТЦ фотосинтеза являются окислитель­но-восстановительные реакции в реакционных центрах (РЦ) двух фотосистем (ФС). Первичное разделение зарядов в РЦ ФС1 приводит к образованию сильного восстановителя А0, окислительно-восстановительный потенциал кото­рого обеспечивает восстановление НАДФ + через цепь промежуточных пере­носчиков. В РЦ ФС2 фотохимические реакции ведут к образованию сильного окислителя П680, который вызывает ряд окислительно-восстановительных ре­акций, приводящих к окислению воды и выделению кислорода. Восстановле­ние П700, образованного в РЦ ФС1, происходит за счет электронов, мобили­зованных из воды фотосистемой II, при участии промежуточных переносчи­ков электронов (пластохинонов, редокс-кофакторов цитохромного комплекса и пластоцианина). В отличие от первичных фотоиндуцированных реакций раз­деления зарядов в реакционных центрах, идущих против термодинамического градиента, перенос электрона на других участках ЭТЦ идет по градиенту окис­лительно-восстановительного потенциала и сопровождается высвобождением энергии, которая используется на синтез АТФ.

компоненты ЭТЦ митохондрий расположены в следующем порядке:

Пара электронов от НАДH или сукцината передается по ЭТЦ до кислорода, который, восстанавливаясь и присоединяя два протона, образует воду.

Определение и общая характеристика фотосинтеза, значение фотосинтеза

ФОТОСИНТЕЗ – это процесс образования органических веществ из CO2 и H2O на свету, при участии фотосинтетических пигментов.

С биохимической точки зрения, фотосинтез – это окислительно-восстановительный процесс превращения устойчивых молекул неорганических веществ СО2 и Н2О в молекулы органических веществ – углеводы .

Общая характеристика

6CO 2 + 6H 2 O → C 6 H 12 O 6 + O 2

Процесс фотосинтеза состоит из двух фаз и нескольких этапов, которые идут последовательно.

I Световая фаза

1. Фотофизический этап – происходит во внутренней мембране хлоропластов и связан с поглощением солнечной энергии пигментными системами.

2. Фотохимический этап – проходит во внутренней мембране хлоропластов и связан с преобразованием солнечной энергии в химическую энергию АТФ и НАДФН2 и фотолизом воды.

II Темновая фаза

3. Биохимический этап или цикл Кальвина – проходит в строме хлоропластов. На этом этапе углекислый газ восстанавливается до углеводов.

ЗНАЧЕНИЕ

1. Обеспечение постоянства СО2 в воздухе. Связывание СО 2 в ходе фотосинтеза в значительной мере компенсирует его выделение в результате других процессов (дыхание, брожение, деятельность вулканов, производственная деятельность человечества).

2. Препятствует развитию парникового эффекта. Часть солнечного света отражается от поверхности Земли в виде тепловых инфракрасных лучей. СО 2 поглощает инфракрасное излучение и тем самым сохраняет тепло на Земле. Повышение содержания СО 2 в атмосфере может способствовать увеличению температуры, то есть создавать парниковый эффект. Однако высокое содержание СО 2 в воздухе активирует фотосинтез и, следовательно, концентрация СО 2 в воздухе опять уменьшится.

3. Накопление кислорода в атмосфере. Первоначально в атмосфере Земли кислорода было очень мало. Сейчас его содержание составляет 21 % по объему воздуха. В основном, этот кислород является продуктом фотосинтеза.

4. Озоновый экран. Озон (О 3) образуется в результате фотодиссоциации молекул кислорода под действием солнечной радиации на высоте около 25 км. Защищает всё живое на Земле от губительных лучей.


























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Задачи: Сформировать знания о реакциях пластического и энергетического обменов и их взаимосвязи; вспомнить особенности строения хлоропластов. Дать характеристику световой и темновой фазы фотосинтеза. Показать значение фотосинтеза как процесса, обеспечивающего синтез органических веществ, поглощение углекислого газа и выделение кислорода в атмосферу.

Тип урока: лекция.

Оборудование:

  1. Средства наглядности: таблицы по общей биологии;
  2. ТСО: компьютер; мультимедиапроектор.

План лекции:

  1. История изучения процесса.
  2. Эксперименты по фотосинтезу.
  3. Фотосинтез, как анаболический процесс.
  4. Хлорофилл и его свойства.
  5. Фотосистемы.
  6. Световая фаза фотосинтеза.
  7. Темновая фаза фотосинтеза.
  8. Лимитирующие факторы фотосинтеза.

Ход лекции

История изучения фотосинтеза

1630 год начало изучения фотосинтеза. Ван Гельмонт доказал, что растения образуют органические вещества, а не получают их из почвы. Взвешивая горшок с землей и ивой, и отдельно само дерево, он показал, что через 5 лет масса дерева увеличилась на 74 кг, тогда как почва потеряла только 57 г. Он решил, что пищу дерево получает из воды. В настоящее время мы знаем, что используется углекислый газ.

В 1804 году Соссюр установил, что в процессе фотосинтеза велико значение воды.

В 1887 году открыты хемосинтезирующие бактерии.

В 1905 году Блэкман установил, что фотосинтез состоит из двух фаз: быстрой – световой и ряда последовательных медленных реакций темновой фазы.

Эксперименты по фотосинтезу

1 опыт доказывает значение солнечного света (рис. 1.) 2 опыт доказывает значение углекислого газа для фотосинтеза (рис. 2.)

3 опыт доказывает значение фотосинтеза (рис.3.)

Фотосинтез, как анаболический процесс

  1. Ежегодно в результате фотосинтеза образуется 150 млрд. тонн органического вещества и 200 млрд. тонн свободного кислорода.
  2. Круговорот кислорода, углерода и других элементов, вовлекаемых в фотосинтез. Поддерживает современный состав атмосферы, необходимый для существования современных форм жизни.
  3. Фотосинтез препятствует увеличению концентрации углекислого газа, предотвращая перегрев Земли вследствие парникового эффекта.
  4. Фотосинтез – основа всех цепей питания на Земле.
  5. Запасенная в продуктах энергия – основной источник энергии для человечества.

Сущность фотосинтеза заключается в превращении световой энергии солнечного луча в химическую энергию в виде АТФ и НАДФ·Н 2 .

Суммарное уравнение фотосинтеза:

6СО 2 + 6Н 2 О С 6 Н 12 О 6 + 6О 2

Существует два главных типа фотосинтеза:

Хлорофилл и его свойства

Виды хлорофилла

Хлорофилл имеет модификации а, в, с, d. Отличаются они структурным строением и спектром поглощения света. Например: хлорофилл в содержит на один атом кислорода больше и на два атома водорода меньше, чем хлорофилл а.

Все растения и оксифотобактерии имеют как основной пигмент желто-зеленый хлорофилл а, а как дополнительный хлорофилл в.

Другие пигменты растений

Некоторые другие пигменты способны поглощать солнечную энергию и передавать ее в хлорофилл, вовлекая ее тем самым в фотосинтез.

У большинства растений есть темно оранжевый пигмент – каротин , который в животном организме превращается в витамин А и желтый пигмент – ксантофилл .

Фикоцианин и фикоэритрин – содержат красные и сине-зеленые водоросли. У красных водорослей эти пигменты принимают более активное участие в процессе фотосинтеза, чем хлорофилл.

Хлорофилл минимально поглощает свет в сине-зеленой части спектра. Хлорофилл а, в- в фиолетовой области спектра, где длина волны 440 нм. Уникальная функция хлорофилла состоит в том, что он интенсивно поглощает солнечную энергию и передает ее другим молекулам.

Пигменты поглощают определенную длину волны, не поглощенные участки солнечного спектра отражаются, что обеспечивает окраску пигмента. Зеленый свет не поглощается, поэтому хлорофилл зеленый.

Пигменты – это химические соединения, которые поглощают видимый свет, что приводит электроны в возбужденное состояние. Чем меньше длина волны, тем больше энергия света и больше его способность переводить электроны в возбужденное состояние. Это состояние неустойчиво и вскоре вся молекула возвращается в свое обычное низкоэнергетическое состояние теряя при этом энергию возбуждения. Эта энергия может быть использована на флуоресценцию.

Фотосистемы

Пигменты растений участвующие в фотосинтезе «упакованы» в тилакоиды хлоропластов в виде функциональных фотосинтетических единиц – фотосинтетических систем: фотосистемы I и фотосистемы II.

Каждая система состоит из набора вспомогательных пигментов (от 250 до 400 молекул), передающих энергию на одну молекулу главного пигмента и она называется реакционным центром . В нем энергия Солнца используется для фотохимических реакций.

Световая фаза идет обязательно с участием света, темновая фаза и на свету и в темноте. Световой процесс происходит в тилакоидах хлоропластов, темновой – в строме, т.е. эти процессы пространственно разобщены.

Световая фаза фотосинтеза

В 1958 году Арнон и его сотрудники изучили световую фазу фотосинтеза. Они установили, что источником энергии при фотосинтезе является свет, а так как на свету в хлорофилле происходит синтез из АДФ+Ф.к. → АТФ, то этот процесс называется фосфорилированием. Оно сопряжено с переносом электронов в мембранах.

Роль световых реакций: 1. Синтез АТФ – фосфорилирование. 2. Синтез НАДФ.Н 2 .

Путь переноса электронов называется Z-схемой.

Z-схема. Нециклическое и циклическое фотофосфорилирование (рис. 6.)



В ходе циклического транспорта электронов не происходит образования НАДФ.Н 2 и фоторазложения Н 2 О, следовательно и выделение О 2 . Этот путь используется тогда, когда в клетке избыток НАДФ.Н 2 , но требуется дополнительная АТФ.

Все эти процессы относятся к световой фазе фотосинтеза. В дальнейшем энергия АТФ и НАДФ.Н 2 используется для синтеза глюкозы. Для этого процесса свет не нужен. Это реакции темновой фазы фотосинтеза.

Темновая фаза фотосинтеза или цикл Кальвина

Синтез глюкозы происходит в ходе циклического процесса, который получил название по имени ученого Мельвина Кальвина, открывшего его, и награжденного Нобелевской премией.


Рис. 8. Цикл Кальвина

Каждая реакция цикла Кальвина осуществляется своим ферментом. Для образования глюкозы используются: СО 2 , протоны и электроны от НАДФ.Н 2 , энергия АТФ и НАДФ.Н 2 . Происходит процесс в строме хлоропласта. Исходным и конечным соединением цикла Кальвина, к которому с помощью фермента рибулозодифосфаткарбоксилазы присоединяется СО2, является пятиуглеродный сахар – рибулозобифосфат , содержащий две фосфатные группы. В результате образуется шестиуглеродное соединение, сразу же распадающееся на две трехуглеродные молекулы фосфоглицериновой кислоты , которые затем восстанавливаются до фосфоглицеринового альдегида . При этом, часть образовавшегося фосфоглицеринового альдегида используется для регенерации рибулозобифосфата, и, таким образом, цикл возобновляется снова (5С 3 → 3С 5), а часть используется для синтеза глюкозы и других органических соединений (2С 3 → С 6 → С 6 Н 12 О 6).

Для образования одной молекулы глюкозы необходимо 6 оборотов цикла и требуется 12НАДФ.Н 2 и 18 АТФ. Из суммарного уравнения реакции получается:

6СО 2 + 6Н 2 О → С 6 Н 12 О 6 + 6О 2

Из приведенного уравнения видно, что атомы С и О вошли в глюкозу из СО 2 , а атомы водорода из Н 2 О. Глюкоза в дальнейшем может быть использована как на синтез сложных углеводов (целлюлозы, крахмала), так и на образование белков и липидов.

(С 4 – фотосинтез. В 1965 году было доказано, что у сахарного тростника – первыми продуктами фотосинтеза, являются кислоты, содержащие четыре атома углерода (яблочная, щавелевоуксусная, аспарагиновая). К С 4 растениям принадлежат кукуруза, сорго, просо).

Лимитирующие факторы фотосинтеза

Скорость фотосинтеза – наиболее важный фактор влияющий на урожайность с/х культур. Так, для темновых фаз фотосинтеза нужны НАДФ.Н 2 и АТФ, и поэтому скорость темновых реакций зависит от световых реакций. При слабой освещенности скорость образования органических веществ будет мала. Поэтому свет – лимитирующий фактор.

Из всех факторов одновременно влияющих на процесс фотосинтеза лимитирующим будет тот, который ближе к минимальному уровню. Это установил Блэкман в 1905 году . Разные факторы могут быть лимитными, но один из них главный.


Космическая роль растений (описана К. А. Тимирязевым ) заключается в том, что растения – единственные организмы, усваивающие солнечную энергию и аккумулирующие ее в виде потенциальной химической энергии органических соединений . Выделяющийся О 2 поддерживает жизнедеятельность всех аэробных организмов. Из кислорода образуется озон, который защищает все живое от ультрафиолетовых лучей. Растения использовали из атмосферы громадное количество СО 2 , избыток которого создавал «парниковый эффект», и температура планеты понизилась до нынешних значений.

Фотосинтез представляет собой биосинтез, состоящий в превращении световой энергии в органические соединения. Свет в виде фотонов захватывается цветным пигментом, связанным с неорганическим или органическим донором электронов, и позволяет использовать минеральный материал для синтеза (производства) органических соединений.

Иными словами, что такое фотосинтез – это процесс синтеза органического вещества (сахара) из солнечного света. Эта реакция происходит на уровне хлоропластов, которые являются специализированными клеточными органеллами, и позволяют потреблять углекислый газ и воду для получения диоксигена и органических молекул, таких как глюкоза.

Он происходит в две фазы:

Световая фаза (фотофосфорилирование) – представляет собой набор светозависимых фотохимических (т. е. светозахватывающих) реакций, в которых электроны транспортируются через обе фотосистемы (PSI и PSII) для получения АТФ (богатая энергией молекула) и NADPHH (восстанавливающий потенциал).

Таким образом, светлая фаза фотосинтеза позволяет непосредственно превращать световую энергию в химическую энергию. Именно через этот процесс наша планета теперь имеет атмосферу, богатую кислородом. В результате высшие растения сумели доминировать на поверхности Земли, обеспечивая пищу многим другим организмам, которые питаются или находят убежище через неё. Первоначальная атмосфера содержала такие газы, как аммоний, азот и углекислый газ, но очень мало кислорода. Растения нашли способ превратить этот CO настолько обильно в пищу, используя солнечный свет.

Темновая фаза – соответствует полностью ферментативному и не зависящему от света циклу Кальвина, в котором аденозинтрифосфат (АТФ) и НАДФН+Н+ (никотин амид адениндинуклеотид фосфат) используются для конверсии углекислого газа и воды в углеводы. Эта вторая фаза позволяет усвоить углекислый газ.

То есть в этой фазе фотосинтеза, примерно через пятнадцать секунд после поглощения CO происходит реакция синтеза и появляются первые продукты фотосинтеза - сахара: триосы, пентозы, гексозы, гептозы. Из определённых гексоз образуются сахароза и крахмал. Помимо углеводов, могут также развиваться липидами и белками путём связывания с молекулой азота.

Этот цикл существует в водорослях, умеренных растениях и всех деревьях; эти растения называются «растениями С3», наиболее важными промежуточными телами биохимического цикла, имеющими молекулу три атома углерода (С3).

В этой фазе хлорофилл после поглощения фотона имеет энергию 41 ккал на моль, некоторые из которых преобразуются в теплоту или флуоресценцию. Использование изотопных маркеров (18O) показало, что кислород, высвобождаемый во время этого процесса, происходит из разложенной воды, а не из поглощённого диоксида углерода.

Фотосинтез происходит главным образом в листьях растений и редко (когда-либо) в стеблях и т. д. Части типичного листа включают: верхний и нижний эпидермис ;

  • мезофилл;
  • сосудистый пучок (вены);
  • устьица.

Если клетки верхнего и нижнего эпидермиса не являются хлоропластами, фотосинтез не происходит. Фактически они служат прежде всего в качестве защиты для остальной части листа.

Устьица - это дыры, существующие главным образом в нижнем эпидермисе, и позволяют проводить обмен воздуха (CO и O2). Сосудистые пучки (или вены) в листе составляют часть транспортной системы растения, при необходимости перемещая воду и питательные вещества вокруг растения. Клетки мезофилла имеют хлоропласты, вот это и есть место фотосинтеза.

Механизм фотосинтеза очень сложный . Однако эти процессы в биологии имеют особое значение. При энергичном воздействии света хлоропласты (части растительной клетки, содержащие хлорофилл), вступая в реакцию фотосинтеза, объединяют углекислый газ (СО) с пресной водой с образованием сахаров C6H12O6.

Они в процессе реакции превращаются в крахмал C6H12O5, для квадратного дециметра поверхности листа, в среднем 0,2 г крахмала в день. Вся операция сопровождается сильным высвобождением кислорода .

Фактически процесс фотосинтеза состоит в основном из фотолиза молекулы воды.

Формула этого процесса:

6 Н 2 О + 6 СО 2 + свет = 6 O 2 + С 6 Н 12 О 6

Вода + углекислый газ + свет = кислород + глюкоза

  • Н 2 О = вода
  • СО 2 = диоксид углерода
  • O 2 = Кислород
  • С 6 Н 12 О 6 = глюкоза

В переводе этот процесс означает: растению для вступления в реакцию нужны шесть молекул воды + шесть молекул углекислого газа и света. Это приводит к образованию шести молекул кислорода и глюкозы в химическом процессе. Глюкоза - это глюкоза , которую растение использует в качестве исходного материала для синтеза жиров и белков. Шесть молекул кислорода являются всего лишь «необходимым злом» для растения, которое он доставляет в окружающую среду через закрывающие клетки.

Как уже было сказано, углеводы являются наиболее важным прямым органическим продуктом фотосинтеза в большинстве зелёных растений. В растениях образуется мало свободной глюкозы; вместо этого глюкозные единицы связаны с образованием крахмала или соединены с фруктозой, другим сахаром, с образованием сахарозы.

При фотосинтезе синтезируются не только углеводы , как это когда-то считалось, но также:

  • аминокислоты;
  • белки;
  • липиды (или жиры);
  • пигменты и другие органические компоненты зелёных тканей.

Минералы поставляют элементы (например, азот, N; фосфор, Р; серы, S), необходимых для образования этих соединений.

Химические связи разрушаются между кислородом (O) и углеродом (С), водородом (Н), азотом и серы, а новые соединения образуются в продуктах, которые включают газообразный кислород (O 2) и органические соединения. Для разрушения связей между кислородом и другими элементами (например, в воде, нитрате и сульфате) требуется больше энергии, чем высвобождается, когда в продуктах образуются новые связи. Это различие в энергии связи объясняет большую часть световой энергии, хранящейся в виде химической энергии в органических продуктах, образующихся при фотосинтезе. Дополнительная энергия хранится при создании сложных молекул из простых.

Факторы, влияющие на скорость фотосинтеза

Скорость фотосинтеза определяется в зависимости от скорости производства кислорода либо на единицу массы (или площади) зелёных растительных тканей, либо на единицу веса всего хлорофилла.

Количество света, подача углекислого газа, температура, водоснабжение и наличие полезных ископаемых являются наиболее важными факторами окружающей среды, которые влияют на скорость реакции фотосинтеза на наземных установках. Его скорость определяется также видами растений и его физиологическим состоянием, например, его здоровьем, зрелостью и цветением.

Фотосинтез происходит исключительно в хлоропластах (греческий хлор = зелёный, пластообразный) растения. Хлоропласты преимущественно обнаруживаются в палисадах, но также и в губчатой ​​ткани. На нижней стороне листа находятся блокирующие ячейки, которые координируют обмен газами. CO 2 течёт в межклеточные клетки снаружи.

Вода, необходимая для фотосинтеза , транспортирует растение изнутри через ксилему в клетки. Зелёный хлорофилл обеспечивает поглощение солнечного света. После того как углекислый газ и вода превращаются в кислород и глюкозу, закрывающие клетки открывают и выделяют кислород в окружающую среду. Глюкоза остаётся в клетке и превращается растением среди других в крахмал. Сила сравниваются с полисахаридом глюкозы и лишь слегка растворимой, так что даже в высоких потерях воды в прочности растительных остатков.

Важность фотосинтеза в биологии

Из света, полученного листом, отражается 20%, 10% передаются и 70% фактически поглощаются, из которых 20% рассеивается в тепле, 48% теряется при флуоресценции. Около 2% остаётся для фотосинтеза.

Благодаря этому процессу растения играют незаменимую роль на поверхности Земли; на самом деле зелёные растения с некоторыми группами бактерий являются единственными живыми существами, способными выработать органические вещества из минеральных элементов. По оценкам, каждый год 20 миллиардов тонн углерода фиксируются наземными растениями из углекислого газа в атмосфере и 15 миллиардов водорослями.

Зелёные растения являются основными первичными производителями, первое звено в пищевой цепи; не хлорофилловые растения и травоядные и плотоядные животные (включая людей) полностью зависят от реакции фотосинтеза.

Упрощённое определение фотосинтеза заключается в том, чтобы преобразовать световую энергию от солнца в химическую энергию. Этот фотонный биосинтез углевода производится из углекислого газа СО2 с помощью световой энергии.

То есть фотосинтез является результатом химической активности (синтеза) растений хлорофилла, которые продуцируют основные биохимические органические вещества из воды и минеральных солей благодаря способности хлоропластов захватывать часть энергии солнца.