Электрощиток

Назначение и устройство надземного мазутного резервуара. Типы и технологические схемы мазутного хозяйства

Назначение и устройство надземного мазутного резервуара. Типы и технологические схемы мазутного хозяйства

Тепловой расчет паропровода

Для уменьшения потерь теплоты в окружающую среду и обеспечения безопасности труда персонала все трубопроводы, имеющие температуру теплоносителя выше 50 ?С внутри помещений и выше 60 ?С вне помещений, должны иметь тепловую изоляцию. Температура поверхности изоляции должна быть не выше 45 ?С внутри помещений и не более 60 ?С на открытом воздухе.

Потерю теплоты, Вт/м, через изоляцию на 1 метр длины трубопровода определяют по формуле:

где - температура среды в трубопроводе, ?С;

Температура окружающего воздуха, ?С;

Суммарное термическое сопротивление, м??С/Вт.

где,- термическое сопротивление внутренней и наружной поверхностей изолированного трубопровода, м??С/Вт;

Термическое сопротивление стенки трубы и слоя изоляции, м??С/Вт;

где - внутренний диаметр трубы, м;

Коэффициент теплоотдачи от теплоносителя к стенке трубы, Вт/м 2 ??С.

где - наружный диаметр трубы, м;

Коэффициент теплоотдачи от стенки трубы к изоляции, Вт/м 2 ??С.

где - теплопроводность стенки трубы, Вт/м??С;

где - теплопроводность тепловой изоляции, Вт/м??С;

Диаметр тепловой изоляции, м.

Величина, связана уравнением теплоотдачи с заданной температурой наружной поверхности изоляции:

где - температура наружной поверхности изоляции.

Необходимое значение диаметра тепловой изоляции определяется из совместного решения уравнений (18) и (24).

Тепловой расчет наружного участка паропровода

коэффициент теплоотдачи от пара к стенке - 10 000 Вт/м 2 ??С;

температура пара - 280 ?С;

средняя температура наружного воздуха зимнего периода - -8 ?С

температура поверхности изоляции - 30 0 ?С.

м. Тогда толщина изоляции 77 мм.

Для эффективной работы тепловой изоляции необходимо, чтобы соблюдалось условие:

Условие (26) соблюдается.

Тогда термическое сопротивление паропровода согласно формуле (25) будет равно:

Определяем падение температуры пара по длине наружного участка.

Расход пара кг/сек.

Длина паропровода м.

Теплоемкость пара кДж/кг??С.

Тепловой расчет внутреннего участка паропровода

Принимаем следующие исходные данные:

внутренний диаметр трубы - 351 мм;

наружный диаметр трубы - 377 мм;

коэффициент теплоотдачи от пара к стенке - 10000 Вт/м 2 ??С;

коэффициент теплоотдачи от наружной поверхности изоляции к окружающему воздуху - 20 Вт/м 2 ??С;

теплопроводность стенки стальной трубы - 58 Вт/м??С.

в качестве изоляционного материала выбираем минеральную вату с коэффициентом теплопроводности - 0,08 Вт/м 2 ??С

температура пара - 280 ?С;

средняя температура воздуха в помещении котельной - 30 ?С;

температура поверхности изоляции - 45 ?С.

Определяем необходимую толщину тепловой изоляции.

По формулам (19)-(23) определяем термическое сопротивление изолированного трубопровода:

Суммарное термическое сопротивление трубопровода:

Для нахождения диаметра тепловой изоляции решаем совместно уравнения (18) и (24):

м. Тогда толщина изоляции 153 мм.

Термическое сопротивление паропровода согласно формуле (25) будет равно:

Определяем падение температуры пара по длине внутреннего участка.

Коэффициент местных потерь теплоты.

Расход пара кг/сек.

Длина паропровода м.

Теплоемкость пара кДж/кг??С.

Температура в конце участка будет равна:

Падение температуры незначительное?С.

Таким образом, гарантируется температура перегретого пара у потребителя - 279 ?С.

Потери энергии при движении жидкости по трубам определяются ре­жимом движения и характером внутренней поверхности труб. Свойства жидкости или газа учитываются в расчете с помощью их параметров: плотности р и кинематической вязкости v. Сами же формулы, использу­емые для определения гидравлических потерь, как для жидкости, так и для пара являются одинаковыми.

Отличительная особенность гидравлического расчета паропровода заключается в необходимости учета при определении гидравлических потерь изменения плотности пара. При расчете газопроводов плотность газа определяют в зависимости от давления по уравнению состояния, написанному для идеальных газов, и лишь при высоких давлениях (больше примерно 1,5 МПа) вводят в уравнение поправочный коэффи­циент, учитывающий отклонение поведения реальных газов от поведе­ния идеальных газов.

При использовании законов идеальных газов для расчета трубопро­водов, по которым движется насыщенный пар, получаются значительные ошибки. Законы идеальных газов можно использовать лишь для сильно перегретого пара. При расчете паропроводов плотность пара определя­ют в зависимости от давления по таблицам. Так как давление пара в свою очередь зависит от гидравлических потерь, расчет паропроводов ведут методом последовательных приближений. Сначала задаются по­терями давления на участке, по среднему давлению определяют плот­ность пара и далее рассчитывают действительные потери давления. Ес­ли ошибка оказывается недопустимой, производят пересчет.

При расчете паровых сетей заданными являются расходы пара, его начальное давление и необходимое давление перед установками, ис­пользующими пар. Методику расчета паропроводов рассмотрим на при­мере.

ТАБЛИЦА 7.6. РАСЧЕТ ЭКВИВАЛЕНТНЫХ ДЛИН (Аэ=0,0005 м)

№ участка на рис. 7.4

Местные сопротивления

Коэффициент мест­ного сопротивления С

Эквивалентная дли­на 1э, м

Задвижка

Задвижка

Сальниковые компенсаторы (4 шт.)

Тройник при разделении по­токов (проход)

Задвижка

Сальниковые компенсаторы (3 шт.)

Тройник при разделении по­токов (проход)

Задвижка

Сальниковые компенсаторы (3 шт.)

Сальниковые компенсаторы (2 шт.)

0,5 0,3-2=0,бі

Тройник при разделении по­токов (ответвление) Задвижка

Сальниковые компенсаторы (2 шт)

Тройник при разделении по­токов (ответвление) Задвижка

Сальниковые компенсаторы (1 шт)

6,61 кг/м3.

(3 шт.)................................... *........................................................ 2,8-3 = 8,4

Тройник при разделении потока (проход) . . ._________________ 1__________

Значение эквивалентной длины при 2£ = 1 при k3 = 0,0002 м для трубы диамет­ром 325X8 мм по табл. 7.2 /э=17,6 м, следовательно, суммарная эквивалентная дли­на для участка 1-2: /э = 9,9-17,6= 174 м.

Приведенная длина участка 1-2: /пр і-2=500+174=674 м.

Источником тепла называется комплекс оборудования и устройств, с помощью которых осуществляется преобразование природных и искусственных видов энергии в тепловую энергию с требуемыми для потребителей параметрами. Потенциальные запасы основных природных видов …

В результате гидравлического расчета тепловой сети определяют диаметры всех участков теплопроводов, оборудования и запорно-регули - рующей арматуры, а также потери давления теплоносителя на всех эле­ментах сети. По полученным значениям потерь …

В системах теплоснабжения внутренняя коррозия трубопроводов и оборудования приводит к сокращению срока их службы, авариям и зашламлению воды продуктами коррозии, поэтому необходимо пре­дусматривать меры борьбы с ней. Сложнее обстоит дело …


Паропровод - трубопровод для транспортировки пара.

Паропроводы монтируется на объектах:
1. предприятиях, использующих пар для технологического пароснабжения (паро-конденсатные системы на заводах железобетонных изделий, паро-конденсатные системы на рыбо-перерабатывающих предприятиях, паро-конденсатные системы на молочных заводах, паро-конденсатные системы на мясоперерабатывающих заводах, паро-конденсатные системы на заводах фармацевтической промышленности, паро-конденсатные системы на заводах по производству косметики, паро-конденсатные системы на фабриках прачечных)
2. в системах парового отопления заводов и промышленных предприятий. Применялось в прошлом но сих пор на многих предприятиях используется. Как правило заводские котельные строились по типовым чертежам с применением котлов ДКВР для технологического пароснабжения и отопления. В настоящее время даже на тех предприятиях и заводах где потребность в технологическом паре стала отсутствовать, отопление так и осуществляется паром. В ряде случаев неэффективно без возврата конденста.
3. на тепловых электростанциях для подачи пара на турбины пара для выработки электроэнергии.

Паропроводы служат для передачи пара от котельной (паровых котлов и парогенераторов) к потребителям пара.

Основными элементами паропровода являются:
1.стальные трубы
2. соединительные элементы (отводы, отводы, фланцы, компенсаторы теплового удлинения)
3.запорная и запорно-регулирующая арматура (задвижки, вентили, клапаны)
4. арматура для удаления конденсата из паропроводов - конденсатоотводчики, сепараторы,
5.Устройства для снижения давления пара до необходимого значения - регуляторы давления
6. Механические фильтры-грязевики со сменными фильтрующими элементами для очистки пара перед редукционными клапанами.
7.элементы крепления - скользящие опоры и неподвижные опоры, подвески и крепления,
8. тепловая изоляция паропроводов – используется температуростойкая базальтовая минеральная вата Роквул или Парок, также применяется асбестовый пухшнур.
9.контрольно-измерительные приборы (КИП) – манометры и термометры.

Требования к проектированию, конструкции, материалам, изготовлению, монтажу, ремонту и эксплуатации паропроводов регламентированы нормативными документами.
-На трубопроводы, транспортирующие водяной пар с рабочим давлением более 0,07 МПа (0,7 кгс/см2), распространяется действие «Правил устройства и безопасной эксплуатации трубопроводов пара и горячей воды» (ПБ 10-573-03).
-Расчет на прочность таких паропроводов производится в соответствии с «Нормами расчета на прочность стационарных котлов и трубопроводов пара и горячей воды» (РД 10-249-98).

Трассировка паропроводов производится с учётом технической возможности прокладки по наиболее короткому пути прокладки для минимизации потерь тепла и энергии из-за длины прокладки и аэродинамического сопротивления парового тракта.
Соединение элементов паропроводов производится сварочными соединениями. Установка фланцев при монтаже паропроводов допускаются только для соединения паропроводов с арматурой.

Опоры и подвески паропроводов могут быть подвижными и неподвижными. Между соседними неподвижными опорами на прямом участке устанавливают лирообразные или П-образные компенсаторы], которые снижают последствия деформации паропровода под воздействием нагрева (1 м паропровода удлиняется в среднем на 1,2 мм при нагреве на 100°).
Паропроводы монтируются с уклоном и в нижних точках устанавливают конденсато-отводчики, для отвода конденсата, образующегося в трубах. Горизонтальные участки паропровода должны иметь уклон не менее 0,004 На входе паропроводов в цеха, на выходе паропроводов из котельных, перед паро-потребляющим оборудованием устанавливают сепараторы пара в комплекте с конденсато-отводчиками.
Все элементы паропроводов должны быть покрыты теплоизолированы. Тепловая изоляция защищает персонал от ожогов. Тепловая изоляция предотвращает избыточное появление конденсата.
Паропроводы являются опасным производственным объектом и должны быть зарегистрированы в специализированных регистрирующих и надзорных органах (в России - территориальном управлении Ростехнадзора). Разрешение на эксплуатацию вновь смонтированных паропроводов выдается после их регистрации и технического освидетельствования.

Толщина стенки паропровода по условию прочностии должна быть не менее где
P - расчетное давление пара,
D - наружный диаметр паропровода,
φ - расчетный коэффициент прочности с учётом сварных швов и ослабления сечения,
σ - допускаемое напряжение в металле паропровода при расчетной температуре пара.

Диаметр паропровода, как правило, определяют исходя из максимальных часовых расходов пара и допускаемых потерь давления и температур методом скоростей или методом падения давления. Метод скоростей.
Задавшись скоростью протекания пара в трубопроводе, определяют его внутренний диаметр из уравнения массового расхода, например, по выражению:
D= 1000 √ , мм
Где G-массовый расход пара, т/час;
W-скорость пара, м/с;
ρ- плотность пара, кг/м3.

Выбор скорости пара в паропроводах имеет важное значение.
Согласно СНиП 2-35-76 скорости пара рекомендуются не более:
-для насыщенного пара 30 м/с (при диаметре труб до 200 мм) и 60 м/с (при диаметре труб свыше 200 мм),
-для перегретого пара 40 м/с (при диаметре труб до 200 мм) и 70 м/с (при диаметре труб свыше 200 мм).

Заводы по производству парового оборудования рекомендуют при выборе диаметра паропровода скорость пара принимать в пределах 15-40 м/с. Поставщики паро-водяных теплообменников со смешением рекомендуют принимать максимальную скорость пара 50 м/с.
Существует так же метод падения давления, основанный на расчете потерь давления, вызванный гидравлическими сопротивлениями паропровода. Для оптимизации выбора диаметра паропровода целесообразно также выполнить оценку падения температуры пара в паропроводе с учетом применяемой теплоизоляции. В этом случае появляется возможность выбора оптимального диаметра по отношению падения давления пара к уменьшению его температуры на единице длины паропровода (существует мнение, что оптимально если dP/dT=0,8…1,2).
Правильный выбор парового котла и давления пара которое он обеспечивает, выбор конфигурации и диметров паропроводов, парового оборудования по классу и по производителям, это составляющие хорошей работы паро-конденсатной системы в дальнейшем.

р п – давление пара в котле, МПа;

h – вертикальное расстояние между уровнями конденсата – верхним в котле и нижним в баке, м (с запасом 1 м).

9.4. Гидравлический расчет паропроводов низкого давления

При движении пара по участку паропровода его количество уменьшается вследствие попутной конденсации, снижается также его плотность из-за потери давления. Снижение плотности сопровождается увеличением, несмотря на частичную конденсацию, объема пара к концу участка, что приводит к возрастанию скорости его движения.

В системе низкого давления при давлении пара от 0,005 до 0,02 МПа эти сложные процессы вызывают практически незначительные изменения параметров пара. Поэтому принимают, что расход пара постоянен на каждом участке, а плотность пара постоянна на всех участках системы. При этих двух условиях гидравлический расчет паропроводов проводят по уже известному способу расчета по удельной линейной потере давления, исходя из тепловых нагрузок участков.

Расчет начинают с ветви паропровода, ведущего к наиболее неблагоприятно расположенному отопительному прибору, каковым является прибор, наиболее удаленный от котла.

Для гидравлического расчета паропроводов низкого давления используют

таблицы (табл. II.4 и II.5 Справочника проектировщика ), составленные при удельном весе 0,634 кг/м3 , соответствующей среднему избыточному давлению пара 0,01 МПа, и эквивалентной шероховатости трубk э = 0,0002 м (0,2 мм).

В системах низкого и повышенного давления установлена во избежание шума предельная скорость пара: 30 м/с при движении пара и попутного конденсата в трубе в одном и том же направлении и 20 м/с при встречном их движении.

Для ориентации при подборе диаметра паропроводов вычисляют, как и при расчете систем водяного отопления, среднее значение возможной удельной линейной потери давления R ср , Па/м, по формуле:

Rср = 0,65(рп – рпр ) /∑ lпар ,

где р п – начальное избыточное давление пара, Па;

∑ l пар – общая длина участков паропровода до наиболее удаленного отопительного прибора, м;

р пр – необходимое давление перед вентилем концевого прибора, Па.

Для преодоления сопротивлений, не учтенных при расчете или введенных в систему в процессе ее монтажа, оставляют запас давления до 10% расчетной разности давления, т.е. сумма линейных и местных потерь давления по основному расчетному направлению должна составлять около 0,9(р п – р пр ) .

После расчета ветви паропровода до наиболее неблагоприятно расположенного прибора переходят к расчету ветвей паропровода до других отопительных приборов. Этот расчет сводится к увязке потерь давления на парал-

лельно соединенных участках основной (уже рассчитанной) и второстепенной (подлежащей расчету) ветвях. При увязке потерь давления на параллельно соединенных участках паропроводов допустима невязка до 15%. В случае невозможности увязки потерь давления применяют дросселирующую диафрагму (шайбу). Диаметр отверстия дросселирующей диафрагмы d д , мм, определяют по формуле:

dд = 0,92(Qуч 2 / рд )0,25 ,

где Q

р д – излишек давления, подлежащий дросселированию, Па.

9.5. Гидравлический расчет паропроводов высокого давления

Расчет паропроводов систем повышенного и высокого давления проводят с учетом изменения объема пара при изменении его давления и уменьшения расхода пара вследствие попутной конденсации. В случае, когда известно начальное давление пара р п и задано конечное давление перед отопительными приборамир пр , расчет паропроводов выполняют до расчета конденсатопроводов.

Гидравлический расчет выполняют по способу приведенных длин, который применяется, когда линейные потери давления являются основными (80% и более), а потери давления в местных сопротивлениях сравнительно малы.

При расчете линейных потерь давления в паропроводах используют вспомогательную таблицу, составленную для труб с эквивалентной шероховатостью внутренней поверхности k э = 0,2 мм, по которым перемещается пар, имеющий условно постоянную плотность 1 кг/м3 (избыточное давление такого пара 0,076 МПа, температура 116,2о С, кинематическая вязкость 21 10-6 м2 /с). В таблицу внесены расходG , кг/ч, и скорость движенияw , м/с, пара. Для подбора диаметра труб по таблице вычисляют среднее условное значение удельной линейной потери давления по формуле:

где ρ ср – средняя плотность пара, кг/м3 , при среднем его давлении в системе

0,5(рп + рпр ).

По вспомогательной таблице получают в зависимости от среднего расчетного расхода пара условные значения удельной линейной потери давления R усл и скорости движения параw усл . Переход от условных значений к действительным, соответствующим параметрам пара на каждом участке, делают по формулам:

где ρ ср.уч – действительное среднее значение плотности пара на участке, кг/м3 , определяемое по его среднему давлению на том же участке.

Действительная скорость пара не должна превышать 80 м/с (30 м/с в системе повышенного давления) при движении пара и попутного конденсата в одном и том же направлении и 60 м/с (20 м/с в системе повышенного давления) при встречном их движении.

Таким образом, гидравлический расчет проводится с усреднением значе-

ний плотности пара на каждом участке, а не в целом для системы, как это делается при гидравлических расчетах систем водяного отопления и парового отопления низкого давления.

Потери давления в местных сопротивлениях, составляющие всего не более 20% общих потерь, определяют через эквивалентные им потери давления по длине труб. Эквивалентную местным сопротивлениям дополнительную длину трубы находят по формуле:

Значения d в /λ приведены в таблице II.7 Справочника проектировщика . Видно, что эти значения должны возрастать с увеличением диаметра труб. Действительно, если, например, для трубыD у = 15 ммd в /λ = 0,33 м, то для трубыD у = 50 мм оно составляют 1,85 м. Эти цифры показывают длину трубы, при которой потеря давления на трение равна потере в местном сопротивлении с коэффициентомξ = 1,0.

Общие потери давления р уч на каждом участке паропровода с учетом эк-

где l прив =l + l экв – расчетная приведенная длина участка, м, включающая фактическую и эквивалентную местным сопротивлениям длины участка.

Для преодоления сопротивлений, не учтенных при расчете по основным направлениям, оставляют запас не менее 10% расчетного перепада давления. При увязке потерь давления в параллельно соединенных участках допустима, как и при расчете паропроводов низкого давления, невязка до 15%.

В системах высокого давления в большинстве случаев гидравлический расчет паропроводов выполняют после расчета конденсатопроводов, в результате которого определяется давление перед отопительными приборами р пр (с проверкой его допустимости по температуреt п ). Далее, если известно начальное давление парар п в распределительном коллекторе, расчет паропроводов делают как указано выше. Если же давлениер п не задано, то его находят, проводя расчет по предельно допустимой скорости движения пара.

9.6. Система пароводяного отопления

Пароводяную систему отопления применяют при централизованном теплоснабжении промышленного предприятия паром и необходимости устройства в одном из зданий водяного отопления.

Систему пароводяного отопления применяют также в верхней части высотных зданий, куда без больших затруднений может быть подан первичный теплоноситель – пар. При вертикальном подъеме пара – теплоносителя с малой плотностью – обеспечивают лишь отведение попутно образующегося конденсата. Конденсат удаляется через конденсатоотводчики в конденсатопровод, по которому стекает конденсат из вышерасположенного теплообменника. Так устроено, в частности, отопление верхней (четвертой) зоны центральной части главного корпуса Московского государственного университета.

Подобная система пароводяного отопления называется централизованной. В централизованной системе вода может нагреваться в емкостном или скоростном теплообменнике.

В емкостном теплообменнике вода заполняет цилиндрический корпус, а пар поступает в двухходовой змеевик, находящийся в нижней части корпуса. Пар подается в верхний патрубок змеевика, в змеевике превращается в конденсат, который удаляется через нижний патрубок змеевика, не смешиваясь с водой, циркулирующей в системе отопления. Нагреваемая вода попадает в теплообменник снизу, нагретая более легкая вода через верхний патрубок попадает в систему отопления.

Емкостные теплообменники отличаются незначительным сопротвилением (ξ = 2,0) движению через них воды, поэтому могут применяться в системе отопления с естественной циркуляцией воды. Система может быть выполнена по любой известной схеме с верхней разводкой подающей магистрали.

Существенным недостатком емкостных теплообменников является их громоздкость, связанная с тем, что коэффициент теплопередачи змеевиков не превышает при стальных трубах 700 Вт/(м2 К), при латунных или медных трубах - 840 Вт/(м2 К). Благодаря большому объему находящейся в теплообменниках воды пар в них может подаваться с большими или меньшими перерывами в зависимости от температуры наружного воздуха.

Существенно меньшие размеры имеют скоростные теплообменники, в которых нагреваемая вода движется последовательно через два пучка стальных или латунных трубок с большой скоростью (от 0,5 до 2,5 м/с). Теплоноситель пар подается сверху в межтрубное пространство цилиндрического корпуса, конденсат отводится снизу. Площадь нагревательной поверхности трубок скоростных теплообменников значительно меньше площади змеевика емкостных теплообменников в связи с повышением (примерно в три раза) коэффициента теплопередачи. Вследствие большого гидравлического сопротивления скоростные теплообменники могут применяться только в системе отопления с насосной циркуляцией воды. Для регулирования температуры воды, поступающей в систему отопления, вокруг теплообменников устраивают обводную линию с регулирующим клапаном.

В системе пароводяного отопления для обеспечения бесперебойной работы устанавливают два теплообменника, каждый из которых рассчитывается на половину тепловой мощности системы.

В децентрализованной системе пароводяного отопления вода нагревается паром непосредственно в отопительных приборах.

В одной из конструкций децентрализованной системы применяются стандартные чугунные радиаторы, в нижнюю часть которых закладываются перфорированные трубы (рис. 9.4, а ) с заглушенным концом. С одной стороны в эти трубы подается пар, который через ряд мелких отверстий выходит в радиатор. Образующийся конденсат заполняет радиаторы, и во время работы системы отопления радиаторы всегда залиты конденсатом до уровня верхней сливной подводки.

а) 1

слив конденсат а

Рис. 9.4. Отопительные приборы децентрализованной пароводяной системы отопления: а – стандартный чугунный радиатор;б – стальной безнапорный радиатор;1 – паровой стояк;2 – паровой вентиль;3 – чугунный радиатор;4 – конденсатный стояк;5 – вентиль (нормально закрыт);6 – перфорированная труба;7 – стальной радиатор;8 - водоналивной патрубок;9 – водонагревательная труба

Необходимая температура воды в радиаторах поддерживается путем впуска в них большего или меньшего количества пара через подводку, начинающуюся от парового стояка несколько выше верха приборов. Излишек конденсата сливается в конденсатный бак.

Выпуск воды из радиаторов в случае необходимости осуществляется через нормально закрытый вентиль на нижней конденсатной подводке в конденсатный стояк.

В другой конструкции децентрализованной системы (рис. 9.4, б ) пар из парового стояка подается в водонагревательную трубу (без отверстий), помещенную также в нижней части приборов. Стальные безнапорные приборы – радиаторы заполняются водой через специальный патрубок в их верхней части.

Вода в радиаторах нагревается при теплопередаче через стенки трубы в процессе конденсации пара. Конденсат удаляется через конденсатную подводку в стояк.

Достоинствами децентрализованной системы пароводяного отопления являются меньший расход металла по сравнению с обычными системами водяного отопления и пониженная температура поверхности радиаторов (в системе парового отопления даже низкого давления она составляет 100о С и выше).

Недостатки этой системы существенны. К ним относятся сложное регулирование, шум и вероятность гидравлических ударов в отопительных приборах. В связи с этим децентрализованная система пароводяного отопления широкого распространения не получила.

Мазутное хозяйство отопительных котельных

Схема мазутного хозяйства. Мазут может быть основным топливом, резервным (например, в зимнее время), аварийным, растопочным, когда основным является сжигаемое в пылевидном состоянии твердое топливо.

Мазут к потребителю доставляется железнодорожным транспортом, нефтеналивными судами, по трубопроводам (если нефтеперерабатывающие заводы находятся на небольших расстояниях). Мазутное хозяйство при доставке мазута железнодорожным транспортом состоит из следующих сооружений и устройств: слив-пой эстакады с промежуточной емкостью; мазутохранилища; мазутонасосной станции; системы мазутопроводов между емкостями мазута, мазутонасосной и котельными установками, устройствами для подогрева мазута; установок для приема, хранения и ввода в мазут жидких присадок.

Схема мазутного хозяйства с наземным мазутохранилищем приведена на рис. 1.4. Из железнодорожных цистерн 1, располагающихся при сливе на эстакаде 2, мазут по переносному слив-пому лотку 3 поступает в сливной желоб 4 и затем по отводящей трубе 5 - в приемную емкость 6. Из нее мазут по мазутопроводам подается в фильтр 10 грубой очистки и насосами 9 через фильтры 8 гонкой очистки закачивается в емкость мазутохранилища 7. Из емкости мазутохранилища через фильтры 11 тонкой очистки и подогреватели 13 насосами 12 мазут подается в горелки 14 котельных агрегатов. Часть разогретого мазута направляется по линии /5 рециркуляции в мазутохранилище для разогрева находящегося там мазута. Рециркуляция мазута предназначена для предупреждения застывания мазута в трубопроводах при уменьшении или прекращении его потребления.

Рис. 1.4. Схема мазутного хозяйства с наземным мазутохранилищем:

1-железнодорожная цистерна; 2-эстакада; 3-переносный сливной лоток; 4-сливной желоб; 5-отводящая труба; 6-приемная емкость; 7-мазутохранилище; 8, 11-фильтры тонкой очистки; 9, 12-насосы; 10-фильтр грубой очистки; 13-подогреватель; 14-горелки котлов; 15-линия рециркуляции.

При сливе из железнодорожной цистерны мазут самотеком движется по открытым лоткам (желобам) в приемные баки. По дну лотков проложены паропроводы. Слив мазута из цистерн происходит через нижний сливной прибор в межрельсовые желоба. Мазут из приемных резервуаров перекачивается погружными нефтяными насосами в основные резервуары для хранения. Подогрев л мазута в приемных и основных резервуарах до 70 °С проводится обычно трубчатыми подогревателями поверхностного типа, обогреваемыми паром. В водогрейных котельных пар отсутствует, поэтому подогрев мазута осуществляется горячей водой с температурой до 150 °С.

Для уменьшения опасности донных отложений и загрязнения поверхностей нагрева при длительном хранении к мазуту добавляют жидкие присадки типа ВНИИНП-102 и ВНИИНП-103.

Мазут для отопительного котла может быть основным топливом, резервным (например, в зимние месяцы), аварийным, позволяющим в случае необходимости быстро перевести котельную с одного вида топлива на другой. Котельная представляет промышленное здание, в котором имеются: устройства для хранения некоторого запаса топлива, механизмы для его подготовки к сжиганию и подачи в топку; оборудование для хранения, водоочистки, подогрева и перекачки воды для питания котельного агрегата, теплообменников, деаэраторов, баков, питательных, сетевых и других насосов; различные вспомогательные устройства и машины, предназначенные для обеспечения длительной и надежной работы котельных агрегатов, в том числе и приборов, позволяющих контролировать ход процессов в котельном агрегате. Около здания котельной обычно располагаются: устройства для приемки, разгрузки и подачи жидкого топлива по емкостям, аппаратам для подогрева, фильтрации и транспорта в котельную; трубопроводы, подводящие газ к котельной, и газорегуляторные пункты (ГРП) для приема, очистки и снижения давления газа перед котлами; склады для хранения материалов и запасных частей, необходимых при эксплуатации и ремонтах оборудования котельной; устройства для приемки и преобразования электрической энергии, потребляемой котельной установкой.

На территории котельной регламентировано устройство проездов и площадок разного назначения, зеленой зоны для защиты окружающего пространства. Снабжение котельной топливом может осуществляться различными путями: по железной дороге, автотранспортом и по трубопроводам.

При использовании жидкого топлива, подаваемого в железнодорожных или автомобильных цистернах, на территории котельной предусмотрены устройства для разгрузки топлива, его слива и хранения. Жидкое топливо из хранилищ перекачивается насосами, подогревается для снижения вязкости и фильтруется для освобождения от частиц, засоряющих форсунки. Из мазутохранилища (28), обогреваемого паром, через фильтры (29) тонкой очистки насосами (30) мазут подается в горелку (24) и после смешивания с воздухом сгорает.