Выключатели

Термометр определение. Термометр - прибор для измерения температуры воздуха

Термометр определение. Термометр - прибор для измерения температуры воздуха

Помнишь ли ты, маленький друг, свое состояние, когда приходилось болеть? Неприятная штука! Мама волнуется, укладывает тебя в постель и сразу начинает искать термометр, чтобы измерить температуру.

Что же это за прибор такой – ТЕРМОМЕТР?

Слово термометр пришло к нам из Греции. Состоит оно из двух греческих слов – «теплота» и «меряю». То есть, термометр – это прибор для того, чтобы мерять тепло. Иногда его еще называют градусником, от слова «градус». Ведь температура всегда измеряется в градусах.

Первый термометр изобрели очень давно, четыреста лет назад! Тебя тогда еще не было на свете, не было даже твоих родителей. Придумал его итальянский ученый Галилео Галилей для своих опытов по физике. И это была простая стеклянная трубочка без шкалы с цифрами. Было не очень удобно пользоваться таким прибором, потому что он не показывал точную температуру.

Какие бывают термометры

Термометры бывают разные. Но все они устроены одинаково: небольшая шкала с цифровыми делениями и тонюсенькая трубочка с ртутью или подкрашенным спиртом.

Внутри ртутного градусника, в тонкой трубочке находится специальный жидкий металл – ртуть. Когда прибор попадает тебе подмышку, ртуть быстро нагревается, начинает скользить вверх по трубочке и останавливается ровно на отметке, которая соответствует твоей температуре.

Температура тела здорового мальчика – тридцать шесть и шесть десятых градуса (36,6). Посмотри на шкалу термометра, если твоя температура выше или ниже этого показателя – ты действительно не здоров.

Внимание! Ртуть – очень ядовитый металл!

Поэтому обращайся с таким термометром очень аккуратно, чтобы не разбить:

  1. Держи ртутный термометр в специальном жестком чехле из пластмассы.
  2. Ни в коем случае не давай такой градусник младшим братьям и сестрам.
  3. Если термометр все же разбился, быстрее выйди из комнаты и сообщи родителям о беде. Они точно знают, что нужно сделать.
  • Электронный термометр – прибор самый современный, умный и самый точный.

Электронный термометр работает от маленькой батарейки и не содержит ртути. А поэтому – он самый безопасный. При необходимости папа может батарейку быстро заменить или сделать это в любой мастерской по ремонту часов.

Ты спросишь, зачем нужен электронный градусник, если уже есть ртутный? На самом деле, электронный термометр показывает более точную температуру. И к тому же делает это очень быстро, всего за 10 секунд! Ты даже не успеешь оглянуться, а твоя температура уже отразится на небольшом дисплее приборчика.

Кроме того, электронный термометр умеет запоминать результат последнего измерения температуры. Это очень удобно, если ты действительно заболел и приходится мерять температуру несколько раз в день.

И даже если мама отошла от тебя на минутку, электронный градусник подаст громкий сигнал, когда температура будет измерена.


Наверняка в твоем доме есть не один спиртовой градусник. Посмотри внимательно – один из них измеряет температуру воздуха в квартире, другой показывает, хорошо ли морозит холодильник, третий плавает вместе с тобой в воде, когда ты принимаешь ванну.

В настоящее время трудно найти человека, который не слышал о таких приспособлениях как термометр, лабораторные весы или песочные часы и не смог бы объяснять, для чего они предназначены.

Если раньше широко употребляемым было слово градусник, которое ассоциировалось только с ртутным термометром, то в настоящее время рынок лабораторного оборудования и измерительных приборов настолько расширился, что к слову термометр присоединяют еще одно слово, определяющее его тип или принцип действия: молочный, технический, керосиновый, для воды, оконный, газовый, оптический, инфракрасный, термополоски. Разнообразие данного изделия можно найти практически в любой аптеке, но разобраться в них и выбрать наиболее подходящий достаточно непросто, так как каждая модель наряду со своими преимуществами обладает и рядом недостатков.

Определение и применение

– это прибор для измерения температуры тела, воды, почвы, воздуха и др.. Принцип действия основан на свойстве жидкости расширятся под действием тепла. В связи с тем, что прибор измерения температуры неприхотлив в использовании, он часто применяется как в технической области и лабораторной практике, так и в быту. На сегодняшний день существует большое количество разновидностей такого измерительного оборудования, отличающиеся по способу действия, но главной их задачей является измерение температуры.

Возникновение термометра

Многие ученые трудились над изобретением термометра. Однако основы современного измерения температуры заложил в 1592 г. Галилео Галилей. Конструкция его прибора была очень проста. Термоскоп-термометр показывал только изменение степени нагретости тела. А отсутствие шкалы делало его несовершенным из-за невозможности определить точное температурное значение. В начале XVIII века немецкий ученый Фаренгейт впервые изобрел современный измерительный прибор – ртутный термометр со стандартной шкалой. Позже Цельсий установил константы точки тающего льда и кипящей воды.

Виды термометров

Современный рынок лабораторного оборудования и приборов настолько велик, что перечислить и разобраться в них не так уж просто. Однако такое разнообразие помогает найти наиболее подходящий вариант термометра:

Жидкостный – самый распространенный вид, основанный на тепловом расширении химических реактивов (ртути, керосина, этилового спирта, пентана, толуола и т. д.). По сравнению с другими термометрами, ртутный имеет больше преимуществ, благодаря достоинствам используемого химического вещества. Он точно определяет температуру тела, долговечен, легко стерилизуется и имеет невысокую стоимость. (наиболее частое название) обладает наибольшей точностью определения температуры, погрешность которого составляет около 0,1 °C. Однако хрупкое лабораторное стекло и ядовитая начинка представляют опасность для человека при его неосторожном использовании;

Механический – аналогичен жидкостному по принципу действия и применяется для автоматического регулирования температуры и электрической сигнализации;

Электронный или цифровой – сконструирован на основе встроенного датчика, где данные выводятся на дисплей. Кром того, в таких моделях могут быть предусмотрены такие функции, как хранение в памяти последних результатов, подсветка, звуковые сигналы, сменная шкала «Цельсий-Фарентейт». Однако такой прибор имеет ряд серьезных недостатков: невозможность стерилизовать, высокая степень погрешности и немалая стоимость;

Инфракрасный (пирометр) представляет собой достаточно новую разновидность данного прибора. Измерения осуществляются благодаря наличию чувствительного элемента, способного считать данные инфракрасного излучения тела, результаты которого выводятся на дисплей. Определение температуры такими градусниками происходит в течение 2-15 секунд. Отсутствие непосредственного контакта с человеком – наибольшее преимущество данного вида, так как это позволяет измерять температуру в нестабильных ситуациях (спящим больным, капризным детям и т.д.).

Где купить качественные измерительные приборы для различных предназначений?

Термометр, как один из наиболее часто используемых приборов, следует покупать в аптеке или специализированном магазине, в таком, как например: online магазин химических реактивов Москва розница и опт «Прайм Кемикалс Групп». Он специализируется на продаже химических реактивов, лабораторного оборудования и приборов , лабораторной посуды из стекла и других материалов. Весь товар сертифицирован и соответствует ГОСТ стандартам. На нашем сайте можно купить весы лабораторные, аналитические весы, весы электронные лабораторные, термометр и ареометр цена которых самая приемлемая на современном фармацевтическом рынке.

“Prime Chemicals Group” – надежное оснащение европейского качества!

Зависит от некоторых обстоятельств: как далеко от ближайшей звезды выкинуть? И что значит "покажет"? будем дожидаться, когда его показание не станет постоянным во времени? Если нет, то через какое время снимается показание, которое постоянно меняется во времени? Если совсем в межзвездном пространстве, он будет остывать с уменьшающейся скоростью остывания.

Помню, как еще на первом курсе на парах по физике решали простенькие задачи где выводили функцию (график) температуры от времени именно в таких условиях - в полном вакууме, нет других источников излучения. формулы тут писать не удобно, если описать - остывать будет не быстро (площадь поверхности мала), и эта скорость будет по мере остывания уменьшатся (энергия теплового излучения уменьшается при понижении температуры), но "абсолютный нуль" для нашего "сферического" градусника в вакууме будет асимптотой - тоесть его температура будет стремится к абсолютному нулю, но его никогда не достигнет.

В реальном космосе наверное будет медленно остывать (с уменьшающейся во времени скоростью) до тех пор, пока поглощенное космическое излучение (от далеких звезд и т.д) не уравновесит излучаемое тепловое. Предполагаю, это будет не очень далеко от абсолютного нуля.

UPD. Да,и еще 1 момент, о котором я сразу и забыл: на ртутном термометре то и шкала всего то до 33-35 градусов по Цельсию, и при остывании его нужно "струсить" потому что ртуть в нем спокойно может находится в растянутом состоянии, так что возможно, показания останутся теми же что и были до запуска а возможно и при затвердении ртути она вообще покинет трубку со шкалой и будет вся в колбе-наконечнике - ничего не покажет. В любом случае, такие "показания" не будут иметь ничего общего с температурой.

Постараюсь ответить, возможно чего-то я не учту. Итак, принцип работы ртутных термометров основан на расширении веществ при их нагреве. Внизу термометра всегда расположен резервуар с жидкостью, над ней узенькая трубочка, по которой жидкость при изменении объема будет подниматься (или опускаться). На сколько я понял, вопрос в том, что покажет термометр в условиях невесомости. Так вот, если его встряхнуть так, чтобы вся ртуть по инерции оказалась в резервуаре, то показывать он будет ровно столько градусов, сколько действительно есть. Но нужно помнить, что на большинстве ртутных градусников верхнее деление находится на отметке до 50 градусов Цельсия, а нижний предел у нас ограничен температурой плавления ртути (что-то вроде -38). Так же вопрос мог быть направлен на то, что градусник покажет в вакууме. Так вот он не взорвётся. В ртутных термометрах уже вакуум. Это сделано, чтобы прибор реагировал на изменение температуры именно в той точке, что соприкасается с колбочкой-резервуаром. По такому же принципу работают термосы и термокружки, в них двойные стенки, а между стенками вакуум, который тепло не проводит. И третий вариант вопроса: что покажет градусник в вакууме, который не проводит тепло. Тут нужно учесть, что колбочка градусника будет нагреваться от падающих лучей звёзд. Ну или не звезд. Все три вопроса можно комбинировать, но как ни крути в краткосрочной перспективе ртуть в градуснике просто перейдёт в твёрдое состояние, так как большая часть космического пространства имеет температуру куда ниже -38.

Он будет продолжать показывать температуру того места, откуда его "выкинули". В открытом космосе вакуум - очень хороший теплоизолятор. А если этот термометр будет плавать неподалеку от какой-нибудь звезды (например, на околоземной орбите), то даже начнет нагреваться. И, вероятно, в какой-то момент лопнет.

Скорее всего его разорвет на кусочки из-за кислорода, содержащегося в корпусе.

Но если представить, что у нас "неубиваемый" термометр, то все зависит от того, куда мы его выкинем - если бросим на солнечной стороне(скажем так, в пределах первых нескольких планет солнечной системы), то покажет весьма высокую температуру около 107 градусов по Цельсию(это температура "дневной" поверхности Луны) и чем ближе к Солнцу, тем выше. В противом случае, наш неубиваемый прибор покажет около минус 39 градусов(при наличии такой шкалы) - это температура кристализации ртути.

Сущетвует множество исследований различных космических явлений, влияющих на температуру в космосе. Если не вдаваться в подробности - температура меняется, но близка к абсолютному нулю(минус 273 градуса по Цельсию). Но вблизи Солнца температура конечно выше. Например на вышеуказанной Луне, "ночью" около минус 125 градусов.

но способ изготовления таких термометров принципиально исключает возможность наличия внутри ртутной трубки кислорода. А на внешнюю оболочку можно и забить. Кроме того, стоит вспомнить почему нам нужно ртутный термометр перед применением "стряхивать" - жидкая ртуть может быть в "растянутом" состоянии. Так что от простого охлаждения, если никто не "сбросит", "показания" не изменятся, но и температуру показывать не будут.

Ответить

Прокомментировать

θέρμη «тепло» + μετρέω «измеряю») - прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:
  • жидкостные;
  • механические;
  • электронные;
  • оптические;
  • газовые;
  • инфракрасные.

История изобретения

Изобретателем термометра принято считать Галилея : в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани , засвидетельствовали, что уже в 1597 году он сделал нечто вроде термобароскопа (термоскоп). Галилей изучал в это время работы Герона Александрийского , у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили бренди и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня.

Изобретение термометра также приписывают лорду Бэкону , Роберту Фладду , Санториусу , Скарпи, Корнелиусу Дреббелю , Порте и Саломону де Коссу , писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, но они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского Фердинанда II . Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точность. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

Механические термометры

Термометры этого типа действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлическая спираль или лента из биметалла .

Электронные термометры

Принцип работы электронных термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.

Электронные термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C - 100Ω) PT1000 (сопротивление при 0 °C - 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 - +850 °C.

R T = R 0 [ 1 + A T + B T 2 + C T 3 (T − 100) ] (− 200 ∘ C < T < 0 ∘ C) , {\displaystyle R_{T}=R_{0}\left\;(-200\;{}^{\circ }\mathrm {C} R T = R 0 [ 1 + A T + B T 2 ] (0 ∘ C ≤ T < 850 ∘ C) . {\displaystyle R_{T}=R_{0}\left\;(0\;{}^{\circ }\mathrm {C} \leq T<850\;{}^{\circ }\mathrm {C}).}

Отсюда, R T {\displaystyle R_{T}} сопротивление при T °C, R 0 {\displaystyle R_{0}} сопротивление при 0 °C, и константы (для платинового сопротивления) -

A = 3.9083 × 10 − 3 ∘ C − 1 {\displaystyle A=3.9083\times 10^{-3}\;{}^{\circ }\mathrm {C} ^{-1}} B = − 5.775 × 10 − 7 ∘ C − 2 {\displaystyle B=-5.775\times 10^{-7}\;{}^{\circ }\mathrm {C} ^{-2}} C = − 4.183 × 10 − 12 ∘ C − 4 . {\displaystyle C=-4.183\times 10^{-12}\;{}^{\circ }\mathrm {C} ^{-4}.}

Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости , спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.

Инфракрасные термометры

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В 2014 году Россия подписала к 2030 году Россия откажется от производства ртутных термометров.

Где вы измеряете температуру? Под мышкой? Напрасно - это не лучшее место. Помочь нам определиться, куда же все-таки сунуть градусник при первых симптомах гриппа и ОРЗ, смогли специалисты из университета Эребру (Швеция). В ходе исследования они измеряли у добровольцев температуру в подмышечной впадине, во рту, в ухе, влагалище и прямой кишке. И как вы думаете кто победил?

323 пациента университетской клиники мужественно переносили тяготы эксперимента. Как оказалось, не зря. Слово «засунуть» в итоге действительно оказалось самым подходящим. Ученые получили убедительные данные, что самый точный результат дает измерение температуры в прямой кишке.

Как считают ученые , показания ушной термометрии искажают волосы и ушная сера, правильно удержать градусник во рту достаточно сложно, а на результат подмышечной термометрии влияют дезодорант и одежда. А вот измерять градусы в прямой кишке пусть не слишком удобно, зато точно.

Верный результат дает и влагалищная термометрия, но назвать этот метод самым предпочтительным помешала статистика.


Нормальные показатели температуры

    02.08.2016 - 31.08.2020

    Осталось 405д.

    И так, вот нормальные показатели температуры при разных способах измерения:

    • - орально - 35,7-37,3;
    • - ректально - 36,2-37,7,
    • - аксиллярно (в подмышках) - 35,2-36,7.
    • - паховая складка 36,3°-36,9°С.
    • - влагалище - 36,7°-37,5°С

    Важно: Измерение температуры орально и ректально дает более точные результаты, чем температуры в подмышечной впадине.

    Самый привычный нам способ измерения - аксиллярно , кстати, оказался самым неточным. Нормальная температура подмышкой начинается не с 36,6° , а с 36,3° С. В норме разница между подмышками составляет от 0,1 до 0,3°С. Вот и получается, что погрешность в 0,5° для подмышечной термометрии - обычное дело. И если градусник несколько дней показывает 36,9°, а у вас на самом деле 37,4°, это уже может быть опасно.

    Основные правила измерения температуры


    Не готовы изменить привычкам, тогда вот вам 10 основных правил измерения температуры .

    1. 1. Температура в комнате должна быть 18-25 градусов. Если меньше, градусник нужно сначала примерно полминуты согреть в ладонях.
    2. 2. Протереть подмышечную впадину салфеткой или сухим полотенцем. Такие действия значительно снизят вероятность охлаждения измерителя вследствие испарения пота.
    3. 3. Не забыть встряхнуть ртутный термометр или включить электронный (Gamma, Omron, Microlife).
    4. 4. Металлический наконечник электронного градусника (или ртутный столбик обычного) должен попадать в самую глубокую точку впадины, плотно соприкасаясь с телом. Стоит отметить, что плотность примыкания должна сохраняться весь период измерения.
    5. 5. Температуру не измеряют сразу после прогулки, физических нагрузок, сытного обеда, горячего чая, теплой ванны и нервного перевозбуждения (например, если ребенок долго плакал). Нужно подождать 10-15 минут.
    6. 6. Во время измерения нельзя двигаться, разговаривать, кушать, пить.
    7. 7. Время измерения для ртутного термометра - 6-10 минут , электронного - 1-3 минуты . Помните: электронные термометры безопаснее ртутных.
    8. 8. Доставать градусник нужно плавно - из-за трения о кожу может добавиться несколько десятых градуса.
    9. 9. Во время болезни измерять температуру нужно утром (7-9 утра) и вечером (между 17 и 21). Важно делать это в одно и то же время, до приема жаропонижающих лекарств или через 30-40 минут после.
    10. 10. Если термометром пользуются все члены семьи, его нужно протирать дезинфицирующим раствором и насухо вытирать после каждого использования.

    Вопрос - Ответ

    На вопросы отвечает врач-терапевт высшей категории Сулиманова Елена Петровна

    Почему показания электронного термометра иногда отличаются от ртутного?

    Потому что мы неправильно пользуемся первым. После того как прибор запищит, его надо подержать еще около минуты - тогда результат будет корректным.

    Как правильно держать градусник под мышкой?

    Датчик термометра необходимо расположить точно посередине подмышечной впадины.

    Для получения точного результата, термодатчик электронного термометра должен как можно плотнее прилегать к коже под мышкой. Руку необходимо плотно прижимать к телу до окончания измерения.

    Под какой подмышкой правильно мерить температуру?

    Разницы нет, обычно это подмышка нерабочей руки, но повторюсь, разницы никакой нет. Есть небольшая разница когда меряете давление.

    Как измерить температуру без градусника?

    Губами, прикосновением губ ко лбу заболевшего. В случае если действительно присутствует жар, не почувствовать его в этой ситуации будет просто невозможно. Губы, в отличие от руки, при помощи которой также можно попытаться измерить температуру, более чувствительны.

    Еще одним способом определения жара без градусника является установление частоты пульса. Согласно исследованиям медиков, при увеличении температуры тела у людей на 1 градус , их пульс пропорционально способен участиться примерно на 10 ударов в минуту . Поэтому высокая частота пульса может являться прямым следствием жара у больного.