Осветительные приборы

Предотвращения удара. Гидравлические удары и меры их предотвращения

Предотвращения удара. Гидравлические удары и меры их предотвращения

«Балтийская государственная академия рыбопромыслового флота»

По дисциплине: "Гидравлика"

Тема: "Влияние гидравлического удара на надежность работы СЭУ и способы его предотвращения

Калининград


Введение. 3

1 Гидравлический удар и его механизм. 4

2 Причины возникновения гидравлического удара и методы его предотвращения 8

Заключение. 11

Список использованной литературы.. 12

Введение

Достаточно большое количество аварий на предприятиях происходит вследствие гидравлического удара. Это физическое явление наносит огромный ущерб как деталям машин и техническим устройствам, так и целым системам.

Практически определить причиной аварии гидравлический удар на 100% невозможно, но предупредить его реально. Для этого в данной работе рассмотрим сначала механизм возникновения гидравлического удара, а затем и методы его предотвращения.


Гидравлический удар – резкое изменение давления, распространяющееся с большой скоростью по трубопроводу.

Гидравлический удар характерен колебаниями давления с высокой амплитудой, в десятки, а иногда и в сотни раз превышающей нормальное рабочее давление. Гидравлический удар может г розить разрушением трубопровода, агрегатов, элементов СЭУ.

Вызывающие гидравлический удар силы инерции и соответствующие им локальные ускорения настолько велики, что развивающееся под их действием давление оказывает заметное влияние на изменение плотности и сжимаемость жидкости. Примером гидравлического удара может быть движение жидкости в простом трубопроводе (рис. 1).

Рисунок 1. Движение жидкости в простом трубопроводе

При рабочем положении I задвижка полностью открыта и жидкость под действием напора Н движется по трубопроводу со скоростью υ, обеспечивая в сечении I–I у задвижки рабочее давление Р раб. Будем упрощенно считать, что время закрытия задвижки (t з = 0), после чего она занимает положение II.

При закрытии задвижки ближайший к ней слой жидкости (слева по рисунку), натолкнувшись на преграду, остановится, его скорость упадет до нуля.

За время Δt процесс остановки жидкости распространится вверх по трубопроводу на длину Δs.

На левой границе отсека 1–2 (в сечении 2–2) сохранятся нормальные рабочие условия: скорость υ и давление Р 2 = Р раб. В сечении 1–1 скорость равна нулю υ = 0, а давление за счет действия сил инерции повысится на значение ударного давления Р уд и будет равно Р 1 = Р раб + Р уд.

Обычно давление Р уд достигает десятков мегапаскалей. Повышенное давление вызовет деформацию жидкости в отсеке 1–2 и стенок трубы: жидкость окажется сжатой (сечение 2–2 переместится в положение 2"-2"); диаметр трубопровода увеличится (на рис. 1 показано штриховой линией).

В большинстве случаев стенки трубопроводов настолько жестки, а сжимаемость жидкости настолько мала, что в решении ряда задач можно не учитывать изменений площади живого сечения ω и длины отсека Δs.

Отношение c = Δs/Δt показывает скорость распространения процесса вдоль трубопровода и называется скоростью ударной волны. Она равна скорости распространения звука в данной среде.

Точное исследование задачи о гидравлическом ударе было впервые выполнено Н.Е. Жуковским (в 1898 г.). В качестве исходного он принял положение, что при гидравлическом ударе вся кинетическая энергия остановившейся жидкости идет на работу по ее сжатию и на работу по растяжению стенок трубы.

Ударное давление можно определить по формуле Жуковского.

При мгновенном закрытии затвора повышение давления в трубопроводе определяется по формуле Жуковского:

ΔР уд = ρсυ, (1)


где ρ – плотность жидкости, кг/м 3 ;

υ – средняя скорость движения в трубопроводе до закрытия затвора, м/с;

с – скорость распространения ударной волны, определяемая по формуле

(2)

где K – модуль упругости жидкости;

E – модуль упругости материала стенок трубопровода;

D – внутренний диаметр, мм;

е – толщина стенок трубопровода, мм.

Для воды в нормальных условиях:

ρ = 102 кг*с 2 /м 4 = 1 000 кг/м 3 ;

K = 2,07 · 108 кг/м 2 = 2,03 · 106 кН/м 2 .

Поэтому скорость распространения ударной волны в воде будет:

м/с (3)

Значения величин K/Е и Е для различных жидкостей и материалов приводятся в справочной литературе.

Скорость ударной волны увеличивается с уменьшением демпфирующего эффекта от сжатия самой жидкости и с увеличением жесткости стенок трубы, т.е. чем меньше сжимаемость жидкости, тем больше скорость с.

В общем случае фигурирующую в выражении ударного давления скорость υ следует понимать как ее изменение при резком торможении или ускорении жидкости. При этом необязательно, чтобы скорость падала до нуля.

Гидравлический удар, но меньшей силы, наблюдается и при резком торможении потока до какой-либо конечной скорости. Волна, движущаяся против течения и сопровождающаяся повышением давления вдоль трубопровода, называется прямой.

В резервуаре у входа в трубу давление практически постоянно Р = γН, а в начале трубопровода при подходе прямой волны – значительно выше за счет ударного давления. Имеющееся в рассматриваемый момент состояние покоя неустойчиво. Ближайший к выходу отсек жидкости от перепада давлений в трубопроводе (высокого) и в резервуаре (низкого) будет вытолкнут обратно в напорный бак.

Сжатая в трубопроводе давлением Р уд жидкость сможет начать расширение под действием сил упругости – возникнет обратная волна понижения давления.

Теоретически понижение имеет то же значение, но с обратным знаком – Р уд (рис. 2а). Время прохождения и прямой, и обратной волнами расстояния l будет равно l/с.

Следовательно, продолжительность повышения давления у задвижки, называемая фазой гидравлического удара, равна τ 0 = 2 l/с.

Рисунок 2.


У задвижки волна снова отражается, начинается очередное повышение давления. В реальных условиях описанный процесс осложняется потерями энергии на трение, на деформацию жидкости и стенок трубы. Давление достигает максимума на первом пике, как показывает запись на индикаторе давления (рис. 2б), а сам процесс гидравлического удара постепенно затухает во времени.

Если вернуться к схеме на рис. 1 и рассмотреть участок трубопровода ниже задвижки, то единственным отличием будет то, что здесь внезапное перекрытие трубопровода вначале вызовет отрицательную волну понижения давления. Такой процесс характерен для напорной линии насосных установок при резкой остановке насоса.

2. Причины возникновения гидравлического удара и методы его предотвращения

В судовых энергетических установках (СЭУ) явление гидравлического удара может встречаться в основных элементах СЭУ: в системе охлаждения, в топливно-масляной системе, ЦПГ.

В парогенераторе в избежание гидравлических ударов в паровых подогревателях, установленных в резервуарах, перед пуском в них пара они должны освобождаться от воды (конденсата). Пуск пара должен производиться путем постепенного и плавного открытия задвижек. В зимнее время до начала интенсивного подогрева подогреватели следует предварительно прогреть, пропуская через них небольшие порции пара.

Во избежание гидравлических ударов все участки паропроводов, которые могут быть отключены запорными органами, снабжаются дренажными устройствами для удаления конденсата.

Во избежание гидравлических ударов сток конденсата обеспечивается прокладкой паропровода с уклоном в сторону движения пара. В местах возможного скопления конденсата устанавливают автоматически действующие водоотделители.

В системе охлаждения гидравлические удары могут быть вызваны поступлением в цилиндр компрессора жидкого хладагента, паров повышенного влагосодержания (при их сжатии в цилиндрах влажный пар превращается в жидкость или смеси масла с хладагентом). Чаще всего это происходит из-за несовершенства охлаждающих систем, а также из-за нарушения режимов эксплуатации.

Чтобы исключить подобные явления, необходимо осуществлять плавный переход от одного давления к другому, а потребителей холода подключать постепенно или останавливать компрессоры при включении или выключении потребителей холода. Гидравлические удары могут возникать в компрессоре при поступлении в него жидкости через нагнетательный трубопровод. Это может произойти при конденсации пара в нагнетательном трубопроводе во время стоянки компрессора – при охлаждении его наружным воздухом, температура которого ниже температуры конденсации (если нагнетательный трубопровод имеет уклон в сторону компрессора).

Чтобы предотвратить эти явления, необходимо нагнетательный трубопровод устанавливать с наклоном в сторону от компрессора к конденсатору. Если конденсатор расположен выше компрессора, то надо устанавливать дополнительный сборник жидкого аммиака, в сторону которого должен быть уклон нагнетательного трубопровода от компрессора. Из этого сборника жидкий аммиак следует своевременно удалять.

В топливной системе для предохранения топливных, масляных и гидравлических систем от гидравлического удара применяются перепускные клапаны, демпферы, дроссели и гидравлические аккумуляторы

В форсунках и главном двигателе мгновенное перекрытие подачи топлива в форсунках дизельного двигателя приводит к появлению колебаний давления в жидкости. Вторичные повышения давления настолько велики, что происходит вторичный впрыск лишних порций топлива в цилиндры двигателя. Циклические повышения давления особенно заметны в протяженных трубопроводах и в двигателе, при большой протяженности трубопроводов высокого давления, приходится устанавливать специальные насосные форсунки взамен одного насоса высокого давления.

Тепловой удар - это быстро развивающееся патологическое состояние организма, при котором необходима срочная медицинская помощь. Другие проявления перегревания организма не так серьезны, при их развитии не требуется немедленное лечение. К ним относятся тепловые судороги и тепловое перегревание. Необходимо хорошо знать основные проявления гипертермии и иметь навыки предотвратить удар.

Симптомы теплового удара

Удар, вызванный общим перегреванием организма, относится к наиболее опасным для жизни состояниям. Если не произвести немедленное лечение, человек может погибнуть. По сравнению с тепловым переутомлением, конкретные причины возникновения теплового удара неизвестны. Происходит удар внезапно и без предупреждения.

Он развивается в результате неспособности организма обеспечить охлаждение тела. Постепенно начинают происходить сбои в нормальном функционировании организма: прекращается потоотделение из-за низкого содержания жидкости в клетках; нарушается терморегуляция, резко повышается температура тела. При критическом значении температуры мозг и другие органы перестают нормально функционировать и наступает летальный исход.

К симптомам теплового удара относятся:

  • высокая (выше 40, 5°C) температура тела,
  • отсутствие пота,
  • сухая и горячая кожа,
  • учащенное сердцебиение,
  • потеря сознания.

Спортсмены испытывают особую разновидность теплового удара, выражающуюся в непрекращающемся потоотделении при высокой (40, 5°C) температуре тела и изменении сознания - потере ориентации, нарушении координации движений, спутанности сознания. Если в таком состоянии не оказать своевременную медицинскую помощь, это может привести к коллапсу и даже коме. Когда замечен любой из перечисленных выше симптомов, необходимо немедленно обратиться за помощью к врачу, и как можно быстрее снизить температуру тела.

Другие проявления гипертермии

Тепловые судороги

Тепловые судороги, как одно из проявлений гипертермии, возникают обычно после интенсивных физических нагрузок в жаркое время - занятий спортом, хозяйственных работ и обильного потения. Очень сильная боль, судороги живота и ног, обильный пот, общая слабость, тошнота, головокружение - вот некоторые симптомы тепловых судорог.

Причиной возникновения этого вида гипертермии может также быть и дефицит натрия в организме. В этом случае необходимо как можно быстрее пополнить запас натрия, и в дальнейшем для профилактики увеличить суточную норму потребления натрия. Необходимый натрий содержится в простой поваренной соли.

Тепловое переутомление

Тепловое переутомление развивается от долговременного воздействия на организм высоких температур. Его, как правило, очень трудно отличить от теплового удара. При тепловом переутомлении в достаточной степени не восполняется потеря жидкости от интенсивного потоотделения. В результате снижается объем циркулирующей крови и жизненно важные органы начинают испытывать недостаток кровоснабжения.

Характерные для теплового переутомления симптомы: слабый пульс, головная боль, тошнота, нарушение координации движений, потеря ориентации, бледная и вспотевшая кожа. Лечение теплового переутомления заключается в обеспечении полного покоя и весьма срочного охлаждения тела.

Некоторые советы для профилактики гипертермии

  • Необходимо дать организму привыкнуть к жаре - для этого перед тренировками обязательно надо выделить неделю времени на акклиматизацию.
  • Жажда - симптом обезвоживания организма. Для предотвращения этого необходимо употреблять больше жидкости, даже если не хочется пить.
  • Если нет такой необходимости, лучше перенести тренировки ближе к утру или вечеру. В это время не так жарко, как днем.
  • Одежда должна быть свободного покроя, легкая и светлых тонов, желательно из неудерживающего пот материала - льна, хлопка. Очень хорошо в жару пользоваться одеждой Cool-Max из сеточного материала.
  • Для предотвращения солнечного ожога желательно пользоваться солнцезащитными средствами.
  • Головной убор должен обеспечивать вентиляцию и защиту головы от жары.
  • При занятиях спортом с интервалом в 15 минут необходимо пить больше жидкости, к примеру, спортивные коктейли или просто воду.
  • Если стали наблюдаться упадок сил или общая слабость, необходимо срочно прекратить тренировку, принять меры по охлаждению тела и отдохнуть.
  • Напитки, содержащие спирт либо кофеин, способствуют ускорению дегидратации. Поэтому нежелательно их употреблять до и после проведения тренировки.

Нельзя забывать о том, что лечить гипертермию гораздо сложнее, чем предотвратить.

При работе с открытым пламенем горючего газа работник подвергается риску пострадать из-за воспламенения горелки или других элементов оборудования. Обратный удар при резке металла сопровождается резким хлопком, дымом из мундштука и прекращением (продолжением) горения. Чтобы избежать этого явления, необходимо проверить оборудование и при необходимости уменьшить величину отверстия подачи газа в горелке или снизить объем кислорода в смеси.

Что такое — обратный удар

Обратным ударом называется процесс горения газа по направлению, противоположному перемещению струи. Скорость сгорания выше скорости истечения, огонь перемещается в мундштук, рукава или баллон.

Важно знать, как происходит обратный удар при резке металла. Всегда слышен хлопок, потом:

  • пламя горелки гаснет, появляется черный дым из мундштука;
  • пламя горит, слышно еще несколько хлопков;
  • горелка гаснет, дым отсутствует.

Наиболее опасен последний вариант, так как может случиться взрыв.

После первого хлопка нужно перекрыть подачу кислорода и газа. Обязательна проверка давления в баллонах. После того, как горелка охладилась, ее необходимо почистить. Если хлопков несколько, следует осмотреть шланги, проверить герметичность соединений. После окончания всех манипуляций можно повторно зажечь горелку.

Причины возникновения

Причин возникновения обратного удара при резке металла несколько:

  • ошибки при регулировке объемов подачи газа и кислорода;
  • неправильный подбор пропорций смеси;
  • перегрев мундштука, провоцирующий воспламенение газа;
  • накопление в мундштуке сора, повышающего давление потока;
  • нечаянное прикосновение к мундштуку, перекрывающее отверстие;
  • переохлаждение редуктора;
  • засорение инжектора;
  • пустой баллон кислорода.

Это значит, что основная причина обратного удара – увеличение давления кислорода до уровня, превышающего пропускную способность горелки, или снижение из-за утечки или пустого кислородного баллона.

Причины аварий проще предотвратить, чем последствия. Поэтому работая с газом, необходимо:

  • затянуть соединения и проверить герметичность обмыливанием;
  • в процессе эксплуатации соблюдать правила, установленные Гостехнадзором;
  • перемещать баллоны на специальных тележках;
  • предотвратить удары баллонов друг о друга;
  • закрепить баллоны и отделить барьером, предотвращающим удары и попадание искр;
  • закрытые рабочие помещения оснастить качественной вентиляцией;
  • не хранить емкости с газом вместе с емкостями с кислородом;
  • запасные баллоны хранить в отдельном помещении;
  • не допускать попадания на баллоны жиров и масел;
  • не греть металл газом без примеси кислорода.

Важно так же каждые 5 лет проводить освидетельствование баллонов.

Последствия обратного удар

Обратный удар при резке металла пропановым резаком может разорвать шланг, редуктор, баллон, выводя оборудование из строя. Но самые страшные последствия: ожоги, травмы, человеческие жертвы.

Чтобы обезопасить работников, необходимо на горелку или редуктор установить клапан. Существуют 2 вида этих устройств: для горючих газов и кислорода. Принцип работы простой. Пламя, проникшее в рукав или горелку, гасится специальным веществом. Потоки кислорода и газа перекрывает запорная пружина.

Чтобы не страдать от обратного удара, необходимо соблюдать технику безопасности и принять дополнительные меры, позволяющие обезопасить работников. Покупка и монтаж клапанов экономически выгоднее, чем восстановление испорченного или взорвавшегося оборудования. А травмы или потерю жизни никакими деньгами не возместить.

Резкое увеличение давления, сопровождающее гидравлический удар - явление крайне негативное, т.к. гидравлический удар может разрушить трубопровод или какие-либо элементы гидравлических машин, испытывающие эффекты гидравлического удара. По этой причине разрабатываются методы предотвращения гидравлических ударов или уменьшения их негативного влияния. Поскольку мощность гидравлического удара напрямую зависит от массы движущийся жидкости, то для предотвращения гидравлического удара следует максимально уменьшить массу жидкости, которая будет участвовать в гидравлическом ударе. Для этого необходимо запорную арматуру монтировать в непосредственной близости к резервуару. В качестве меры уменьшения негативных последствий гидравлического удара используют замену прямого гидравлического удара на непрямой. Для этого достаточно запорную арматуру на напорных трубопроводах сделать медленно закрывающейся, что позволит уменьшить силу удара. Для борьбы с гидравлическим ударом применимы только те случаи увеличения времени закрытия, которые приводят к неполному удару, т.е. у которых t 3 > ф 0 . Снижение ударного давления путем создания условий неполного удара широко используется регламентированием времени закрытия задвижек, пуска мощных насосов и т.д.

Если по условиям эксплуатации или иным причинам снизить ударное давление за счет неполного удара нельзя, то приходится применять дорогие и мощные демпфирующие устройства и иные методы.

Другой мерой борьбы с явлением гидравлического удара является установка на напорных линиях, работающих в условиях циклической нагрузки, специальных компенсаторов с воздушной подушкой, которая принимает на себя удар.

Исходя из формулы Жуковского (определяющей увеличение давления при гидроударе) и величин, от которых зависит скорость распространения ударной волны, для ослабления силы этого явления или его полного предотвращения можно уменьшить скорость движения жидкости в трубопроводе, увеличив его диаметр.

Борьба с гидравлическим ударом:

1. уменьшение фазы удара

где L - длина трубопровода, c - скорость ударной волны.

2. увеличение времени остановки жидкости;

3. уравнительные баки;

4. гидроаккумуляторы, гасящие ударную волну;

1 - штуцер; 2 - стальной оцинкованный фланец; 3 - стальной сосуд с контрфланцем; 4 - сменная мембрана из бутилкаучука; 5 - воздушный клапан; 6 - площадка для крепления насоса для горизонтальной компановки; 7 - ножки.

Работает гидроаккумулятор следующим образом. В мембрану подсоединенного к водопроводу гидроаккумулятора под давлением подается вода от насоса. Объем воздушной подушки при этом уменьшается в зависимости от величины давления в мембране. По достижению установленного на предприятии - изготовителе порога срабатывания по разности давлений автоматика отключает электропитание насоса. При заборе воды баланс разности давлений вновь нарушается, и автоматика включает насос. Эффективность работы гидроаккумулятора напрямую зависит от величины разности давлений мембраны и воздушной подушки и в первую очередь зависит от качества мембраны и объема гидроаккумулятора. Выставленный ранее порог срабатывания автоматики - характеристика строго регламентированная и может корректироваться в небольшом диапазоне. В противном случае возможен разрыв мембраны. По мере эксплуатации гидроаккумулятора, воздух, растворенный в воде, со временем накапливается в мембране. Это приводит к инерционности срабатывания автоматики и в целом тоже отражается на эффективности работы гидроаккумулятора. Избежать этого позволяют профилактические работы с интервалом от 1 до 3 месяцев.

5. предохранительные клапаны.

Гаситель колебаний давления.

Для гашения колебаний давления внутри трубы используют сложные устройства, содержащие поршни, пружины, гибкие оболочки и прочие подвижные элементы. Такие устройства быстро изнашиваются и требуют частой замены. Для гашения гидроударов предлагается использовать гаситель колебаний давления предельно простой конструкции. Гаситель колебаний давления располагается внутри трубопровода 2, по которому перекачивается жидкость. Гаситель представляет собой металлическую ленту 1, по длине которой вырублены окна 3. Образующиеся при этом козырьки 4 отогнуты поочередно в противоположные стороны. Угол между козырьком 4 и плоскостью ленты 1 составляет 35-45° для воды или 25-30° для нефти. Ширина ленты 1 выбирается таким образом, чтобы она свободно входила во внутрь трубопровода 2. Длина ленты 1 равна длине защищаемого участка трубы 2. Один конец ленты с помощью сварки закрепляется внутри трубы, а второй конец ленты поворачивается вокруг продольной оси на 3-5 оборотов и также закрепляется сваркой.

Труба 2 с размещенной внутри нее лентой 1 и является гасителем гидроударов. Гаситель колебаний давления работает следующим образом. Поток жидкости при движении вдоль плоскости ленты 1 входит в окно 3 и отклоняется от плоскости козырьком 4. Поток приобретает колебательное (синусоидальное) движение с определенной частотой. Так как окон на ленте много, то частота колебания потока будет всегда превышать собственную частоту колебаний потока жидкости, определяемой неровностями местности. Таким образом, сглаживаются наиболее резкие колебания давления и дробятся наиболее крупные пузыри газа. Дополнительному гашению колебаний давлений способствует поворот ленты вокруг продольной оси с шагом 1,5-2 м (5-7 м для труб большого диаметра), в результате чего поток приобретает дополнительно вращательное движение, которое также гасит часть энергии гидроудара. Так происходит гашение энергии гидроударов за счет преобразования энергии ускоренного поступательного движения потока жидкости в колебательное и вращательное движения. Суть предложения заключается в том, что внутренний просвет трубопровода в месте установки гасителя изменяется незначительно (определяется сечением ленты), поэтому сопротивление гасителя потоку жидкости при ламинарном и неразрывном течении мало. При течении по трубе жидкости в турбулентном режиме и с включениями газовых пробок сопротивление резко возрастает из-за изменения направлений потока. Происходит выравнивание скоростей газового и жидкостного потоков при прохождении разнонаправленных козырьков, что приводит к гашению гидроударов. Оптимальное место установки гасителя в низинах, после пологих и, особенно крутых склонов, где поток жидкости разгоняется и приобретает дополнительную энергию, вызывающую впоследствии разрушительный гидроудар из-за схлопывания пузырей (разрывов потока) в жидкости.

Также применяют устройства плавного пуска, которые в целом снижают опасность возникновения гидравлического удара, но не предотвращают её полностью.

Методы предотвращения негативных явлений гидравлического удара и его использование

Резкое увеличение давления, сопровождающее гидравлический удар - явление крайне негативное, т.к. гидравлический удар может разрушить трубопровод или какие-либо элементы гидравлических машин, испытывающие эффекты гидравлического удара. По этой причине разрабатываются методы предотвращения гидравлических ударов или уменьшить его негативное влияние. Поскольку мощность гидравлического удара напрямую зависит от массы движущийся жидкости, то для предотвращения гидравлического удара следует максимально уменьшить массу жидкости, которая будет участвовать в гидравлическом ударе. Для этого необходимо запорную арматуру монтировать в непосредственной близости к резервуару. В качестве меры уменьшения негативных последствий гидравлического удара используют замену прямого гидравлического удара на непрямой. Для этого достаточно запорную арматуру на напорных трубопроводах сделать медленно закрывающейся, что позволит уменьшить силу удара. Другой мерой борьбы с явлением гидравлического удара является установка на напорных линиях, работающих в условиях циклической нагрузки специальных компенсаторов с воздушной подушкой, которая принимает на себя удар.

Общие сведения о противоударных устройствах

Для предупреждения гидравлических ударов и защиты от них разработаны надёжные противоударные приспособления, а для водоводов большого диаметра - комплекс противоударных мероприятий. Этот комплекс включает также воздушные клапаны для впуска воздуха или воды в местах возможных разрывов сплошности потока, обратные клапаны на наклонных участках для расчленения потока и устройства для пропуска воды через насос в обратном направлении после его выключения.

На водоводах коммунального хозяйства и крупных промышленных и сельскохозяйственных объектах применяются гасители гидравлических ударов системы УкрВОДГЕО, воздушно-гидравлические колпаки и другие приборы.

Наряду с эффективными противоударными мероприятиями в технической литературе до сих пор встречаютя рекомендации по использованию в качестве противоударных приборов пружинных и рычажно-грузовых клапанов. Эти клапаны хорошо работают на паровых котлах, где давление поднимается медленно, но на водоводах они работают неудовлетворительно. Это объясняется высокой инерционностью рычажно-грузовых клапанов и необходимостью точного расчёта на заданное давление пружинных клапанов. При изменении давления последние или протекают, или не гасят гидравлические удары.

Анализ различных противоударных устройств и мероприятий с точки зрения применимости их для напорных водоводов небольших и средних систем водоснабжения показал, что наиболее целесообразны воздушно-гидравлические колпаки с устройствами для сохранения в них воздуха, а также противоударные клапаны-гасители систем ЛИИЖТа (Ленинградский институт инженеров железнодорожного транспорта), разрывные мембраны.

Воздушно-гидравлические колпаки

Воздушно-гидравлические колпаки - старейшее средство для предохранения от гидравлических ударов. Колпаки успешно гасят гидравлические удары, возникающие от любых причин, и не допускают вакуума в месте образования возмущения потока.

Колпаки или котлы состоят из стальных цилиндрических сосудов, заполненных в верхней части воздухом (примерно на высоты при статическом давлении). Колпаки устанавливаются вертикально на патрубок трубопровода. При гидравлическом ударе и повышении давления в линии часть воды поступает из трубопровода в колпак и сжимает находящийся там воздух, при этом сила удара ослабевает за счёт амортизирующих свойств воздуха. При понижении давления в трубопроводе воздух расширяется и часть воды из колпака вытекает в трубопровод, заполняя возможные разрывы сплошности и тем самым снижая величину последующего повышения давления. Таким образом, воздух в колпаке служит упругим элементом, компенсирующим изменение объёма жидкости в трубопроводе при гидравлическом ударе.