Электрооборудование

Температура возгорания вагонки. О температуре горения и теплотворности дров

Температура возгорания вагонки. О температуре горения и теплотворности дров

Принципиально горение ТГМ аналогичногорению газов и жидкостей и представляет собой гомогенный, диффузионный процесс превращения горючих веществ в продукты горения с выделением тепла и света. В основе горения лежит окислительно-восстановительная реакция.

В горении жидкостей и ТГМ есть дополнительное сходство: необходимость подготовки вещества к горению (испарение, плавление, разложение) и выделение горючих паров; воспламенение происходит при достижении концентрации горючих паров и газов НКПРП.

Возникновение горения ТГМ рассмотрим на примере древесины, являющейся одним из наиболее широко приме­няемых твердых горючих строительных материалов. Можно выделить следующие стадии воспламенения и горения дре­весины:

1) нагрев влажного вещества (температура древесины – до 50 0 С);

2) сушка древесины (удаление физически связанной во­ды) – температура до 120-150 0 С. Первые две стадии являются наиболее длительными и занимают порядка 55 % от общей продолжительности воспламенения. Необходимо добавить, что на этих стадиях ещё не происходит разрушения вещества;

3) удаление внутрикапиллярной и химически связанной воды – температура 150-180 0 С. На этой же стадии происходит разложение наименее стойких компонен­тов древесины (луминовых кислот). Выделяются в ос­новном негорючие газы и пары – СО 2 и Н 2 О, но име­ется сравнительно небольшое количество горючих га­зов и паров, например монооксида углерода СО.

Для того чтобы обосновать его появление, напомним, что различают две стадии горения углерода. На первой стадии углерод окисляется до монооксида углерода: С + 0,5О 2 = СО. Поэтому в продуктах горения всегда присутствует токсичный и пожаровзрывоопасный газ – СО (угарный газ). В связи с тем, что в продуктах разложения имеется некоторое количество горючих газов и паров, на этой стадии имеется возможность самовозгорания древесины.

4) Нагрев сухого материала и термическое разложение (пиролиз) древесины:

· начало пиролиза (температура 180-250 0 С). Древесина при этой температуре превращается преимуществен­но в уголь(60-70 %). Паров и газов выделяется, в це­лом, немного, большинство из них негорючие – диок­сид углерода СО 2 , пары воды Н 2 О, а также незначи­тельное количество оксида углерода СО, метана СН 4 и др. С ростом температуры количество горючих га­зов и паров увеличивается. К концу этой стадии ГПВС готова к воспламенению от источника зажигания. Так, температура воспламене­ния сосновой древесины 255 0 С, дубовой – 238 0 С. Отметим, что с измельчением вещества температура его воспламенения уменьшается (например, темпера­тура воспламенения сосновых опилок – 196 0 С) при отсутствии ИЗ воспламенение па­ров не произойдет, и лишь при дальнейшем нагрева­нии, при более высоких температурах (370-400 0 С), произойдет их самовоспламенение;


· интенсивное разложение древесины (температура 280-400 0 С). На этой стадии целлюлоза превращается в основном в газообразные горючие продукты и выделяется основное количество горючих газов – порядка 40 % от их общего количества. Поми­мо перечисленных газов, выделяются водород Н 2 , этилен С 2 Н 4 . Кроме них можно отметить пары спиртов, альдегидов, эфиров, кетонов и т. д. В це­лом, насчитывается более 350 наименований про­дуктов термического разложения и горения древеси­ны.

Подчеркнём тот факт, что при разложении древесины возможны два пути: а) при температурах 180-250 0 С она превращается, в основном, в уголь; б) при температурах 280-400 0 С выделяются преимущественно летучие продукты. Это имеет большое зна­чение при огнезащитедревесины. Знание факторов, влияющих на скорость горения, позволяет ею управлять.

5) Прекращение выхода летучих соединений и начало горения уг­леродистого остатка – древесного угля (температура 500-600 0 С). Углеродистый остаток образуется на пре­дыдущих стадиях, однако его горению препятствует то, что кислород воздуха не проникает к нему, поскольку сгорает в зоне пламенных реакций. При температуре выше 500 0 С выход «летучих» прак­тически прекращается и кислород получает доступ к по­верхности углеродистого остатка (угля). С этого момента происходит одновременное гетерогенное горение (тление) угля и гомогенное горение продуктов разложения, продол­жающих выходить через трещины из нижележащих слоев древесины. Толщина угля колеблется в пределах 2,5 см. Ко­гда все слои древесины превращаются в уголь, выход газооб­разных продуктов разложения прекращается, а продолжает­ся только горение угля.

Аналогично древесине протекает термическое разложение каменного угля, торфа и ряда других материалов. Однако в каждом случае имеют место свои особенности. Так, у торфа общее количество летучих веществ меньше и выход их начинается при более низких температурах, чем у древесины (см. рис. 5.6). Каменный уголь состоит из более термостойких компонентов, чем древесина, поэтому его разложение протекает при более высоких температурах и менее интенсивно.

Рис. 5.6. Зависимость отно­сительного выхода летучих продуктов пиролиза твердых веществ от температуры 1 – древесина; 2 – торф; 3 – каменный уголь

Известно, что древесина как строительный материал обладает многочисленными достоинствами. Однако она яв­ляется горючей легковоспламеняемой. Чтобы снизить го­рючесть древесины используют многочисленные методы (средства) огнезащиты.

ТЕМПЕРАТУРА САМОВОСПЛАМЕНЕНИЯ ДРЕВЕСИНЫ

Низшая температура, до которой нужно нагреть древесину, чтобы она загорелась, называется температурой самовоспламенения. Температура самовоспламенения древесины 250-300°. Это объясняется тем, что при нагревании из древесины выделяются легковоспламеняющиеся горючие газы (летучие продукты), а также большое количество кислорода.
В результате окислительного процесса летучих веществ с кислородом воздуха наступает самовоспламенение древесины при температурах сравнительно низких, чем у других твердых веществ (уГОЛЬ, KOKC И Др.). Температуря ГЯМПВПгппямрнрния древесины зависит также от степени ее измельчения. Чем больше измельчена древесина, тем ниже ее температура самовоспламенения. Так, например, температура самовоспламенения древесной стружки значительно ниже, чем древесных брусков. Объясняется что тем, что поверхность 1 кг стружки больше, чем I кг брусков. А с большей древесной поверхности, выделяется при нагревании больше летучих веществ, способных к окислению и самовоспламенению.

САМОВОЗГОРАНИЕ ДРЕВЕСИНЫ

При нагревании до 130-150° древесина начинает самонагреваться Если создать условия, необходимые для накопления тепла, то древесина самовозгорается. При температурах производственных помещений древесина не представляет опасности самовозгорания. Эта опасность появляется только при нагревании ее до температуры выше 130°. Самовозгорание древесины в открытых деревянных конструкциях или штабелях не происходит из-за отсутствия соответствующих условий для накопления тепла. Обычно самовозгорание древесины происходит в скрытых деревянных конструкциях или в скопившихся древесных отходах, долгое время подвергавшихся нагреву.
Нагрев древесины до 110° безопасен и вполне допустим в процессе сушки или обработки ее. При этой температуре происходит высушивание древесины и частичное выделение летучих веществ. Разложение древесины не происходит, и химический состав ее остается без изменения. При температуре 150° наблюдается разложение нестойких соединений древесины. Цвет ее становится желтым. При температуре 230° разложение ее усиливается, и начинают протекать процессы с выделением газообразных продуктов. Причем большой процент занимают Н20 и С02. Древесина приобретает коричневый цвет с поверхностным обугливанием. В результате этого процесса химический состав древесины изменяется, т. е. происходит увеличение процента углерода и уменьшение водорода и кислорода. Уменьшается объемный вес древесины, но ее объем остается постоянным. Пористость древесины увеличивается, следовательно, увеличивается и ее поверхность соприкосновения с воздухом. При температуре 230-270° в древесине происходит образование пирофорного угля, который способен энергично поглощать (адсорбировать) кислород. Последний, окисляя уголь, поднимает температуру настолько, что уголь воспламеняется, и дерево начинает гореть. Самовозгорание древесины может происходить при более низких температурах и по другой причине.
Процесс разложения древесины является экзотермическим и при определенных условиях может служить причиной ее самовозгорания. Но для этого необходимо, чтобы количество тепла, выделяющегося за счет реакции разложения древесины, превысило бы теплоотдачу в окружающую среду. Такие условия могут создаться, когда древесные отходы в сушилке скапливаются на калорифере или балка уложена в кладку кирпичной стены рядом с источником тепла. Иной процесс протекает в опилках или других древесных отходах, сложенных в кучу. В практике имели место случаи разогревания древесных опилок и их самовозгорание. Некоторые авторы (проф. Б. Г. Тидеман и инж. П. Г. Демидов) считают, что основной причиной самовозгорания опилок являются биологические процессы. Во влажных опилках зарождаются микроорганизмы, которые при концентрации теплоты быстро размножаются. Микроорганизмы разлагают клетчатку. Происходит брожение образовавшихся продуктов. Весь этот процесс сопровождается выделением тепла, которое нагревает опилки до 60-70°. При этом образуется уголь, способный поглощать пары и газы. Поглощение паров и газов углем вызывает окислительный процесс, который ведет к дальнейшему нагреву массы. За счет тепла адсорбции температура повышается и достигает 100-130°. Затем образуется пористый уголь, который также поглощает пары и газы и повышает температуру опилок. При достижении температуры 200° начинается разлагаться клетчатка. входящая в состав опилок. Разлагаясь, клетчатка образует уголь, способный интенсивно окисляться. За счет окисления угля температура поднимается до 250-300°, и опилки самовозгораются.

ГОРЕНИЕ ДРЕВЕСИНЫ

В процессе горения древесины наблюдаются следующие явления. При поднесении пламени древесина воспринимает теплоту и нагревается, а при температуре 110° происходит высушивание ее и незначительное выделение летучих веществ. Около 130° начинается разложение древесины. Интенсивное разложение ее с изменением цвета происходит при температуре более 150°. При 200° и более начинает разлагаться главная составная часть древесины- клетчатка. Образующиеся при этом газы являются горючими, так как они содержат большое количество окиси углерода, углеводороды, водород и пары органических веществ. Если нагрев производится пламенем, то получающиеся газообразные продукты разложения воспламеняются при соприкосновении с ним, и с этого момента начинается процесс горения древесины. Таким образом, при нагревании древесины пламенем горение начинается с воспламенения газообразных продуктов разложения.
Температуры воспламенения наиболее распространенных пород древесины даны в табл. 2


Горение древесины состоит из двух стадий: пламенное горение газообразных продуктов разложения и беспламенное горение угля. Решающей в развитии пожара является стадия пламенного горения древесины. Она занимает более короткий промежуток времени и связана с выделением большого количества тепла. Температура продуктов горения при ней более высокая, чем в стадии горения угля. Уголь, образующийся на поверхности древесины в период.пламенного горения, не горит, хотя и находится в накаленном состоянии, так как его горению в этот период препятствует горение газообразных продуктов разложения, в результате чего кислород не имеет доступа к поверхности угля. Последний горит тогда, когда завершается пламенное горение при значительном выделении газообразных продуктов.
Небольшой период времени оба вида горения древесины протекают одновременно. Затем выделение газообразных продуктов прекращается, и горит только уголь. Скорость выгорания древесины зависит от объемного веса, влажности, температуры среды, количества кислорода и отношения поверхности древесины к ее объему. Более плотная древесина (дуб) горит медленнее, чем менее плотная (осина). Объясняется это тем, что более плотная древесина имеет большую теплопроводность и, следовательно, больше теплопотерь от нагреваемого слоя древесины. При горении влажной древесины значительное количество тепла расходуется на испарение влаги, поэтому на разложение древесины идет меньше тепла. Таким образом, скорость выгорания влажной древесины меньше, чем сухой.
Скорость горения древесины значительно изменяется от величины отношения поверхности к объему. Чем больше это отношение, тем больше скорость горения. Например, древесный брус сечением 10 см2, длиной 5 м имеет поверхность (без учета торцовых поверхностей) 0,1X5X4 = 2 м2, а объем 0,1X0,1X5 = 0,05 мг. На 1 м3 древесины приходится поверхность горения, равная 2:0,05 = 40 м2. Если этот брус распилить на 4 части сечением
5x5 см, то их общий объем останется прежним, а поверхность будет 0,05x5x4 = 4 м2. Теперь поверхность горения 1 м3 древесины будет 4: 0,05 = 80 м2, т. е. она возросла в 2 раза, следовательно, и скорость сгорания четырех брусков сечением 5x5 см будет больше, чем одного бруска сечением 10X10 см.
По данным ЦНИИПО*, скорость выгорания древесины равна 45-50 кг на 1 м2 в час. Такая скорость в сушильной камере может наблюдаться при полном горении, т. е. при открытых дверных проемах и открытых каналах вентиляционной системы.
При относительной герметичности камеры (плотно закрытые ворота, перекрытые каналы вентиляционной сети) горение будет затухать, а скорость выгорания древесины резко снижаться. Температура, получаемая при проведении процесса горения в адиабатических условиях, т. е. при полном отсутствии потерь тепла, называется теоретической температурой горения, до которой нагреваются продукты горения, когда все тепло, выделившееся при горении, идет на их нагревание. Действительно же достигаемые при горении древесины температуры всегда ниже теоретических, так как часть выделяемого тепла теряется в окружающую среду. Разница между действительной и теоретической температурами горения зависит от скорости сгорания и условий теплоотдачи.
В табл. 3 приведены теоретическая и практическая температуры горения различных пород древесины.



Температура горения не зависит от количества древесины, так как количество тепла, приходящееся на единицу объема продуктов горения, остается постоянным. Температура горения древесины в сушилках зависит от полноты сгорания (полное, неполное горение), величины избытка воздуха, от скорости горения, температуры древесины и воздуха. Величина температуры горения сильно влияет на развитие пожара в сушилках. Чем она выше, тем больше тепла излучается в окружающую среду и, следовательно, быстрее идет подготовка древесины к горению.

Процесс горения древесины относится к изометрическим процессам, и во время него выделяется большое количество тепла. Однако, первым делом для воспламенения древесина должна быть разогрета до соответствующих градусов.

От теплопроводности дров зависит их КПД, об этом знает каждый, у кого есть частный дом, с печью или камином. Однако, качество горения дров характеризуется еще одним показателем, таким как температура горения дров, а увеличение градусов, поможет скорее нагреть систему, а воду в трубах или кладку из кирпича сохранит как можно дольше горячей.

Факторы, способствующие горению дров:

  • сорт используемой древесины;
  • то насколько влажный материал;
  • объем воздуха, заходящего в топку.

От перечисленных показателей коренным образом будет зависеть температура пламени и сжигание древесины. К примеру, для тополя характерно яркое высокое пламя, однако, его максимальная температура горения составляет 500 градусов, а этого вовсе не достаточно.

Что же касается таких пород, как ясень, граб или бук, они, хотя и поддерживают активное горение, однако выделяют в процессе температуру более 1000 градусов, чего вполне достаточно для отопления.

Как правильно выбирать

Сразу следует сказать о том, что, хотя для бука или ясеня характерна высокая температура горения дров, однако использовать их для топки печи или бани довольно дорого и нерентабельно.

Поэтому принято использовать березовые дрова, которые горят при 800 -820 градусах. Также, для этих целей подойдет дуб и лиственница, горящие при 840-900 градусах.

Хвойная порода деревьев - сосна, наиболее подойдёт для костра. Однако, никто не запрещает её использование в качестве отопления для печи. При температуре горения 610-630 градусов пойдет вполовину больше дров, чем дуба или березы.

Особенности хвойных:

  • низкая температура горения;
  • задымленность и образование сажи.

Поскольку в них содержится большое количество смол. Последние оседают на стенках дымохода, со временем засоряют его и требуют очистки. Поэтому, использование хвойных пород древесины для данных целей не очень желательно и рекомендуется только в крайних случаях.

Помимо этого, следует обращать внимание на влажность дров, поскольку ее процент оказывает непосредственное влияние на процесс горения. Соответственно влажный материал будет плохо гореть и создавать большое количество дыма.

Процесс разогревания

Разогреванием называется нагрев отрезка поверхности древесины от отдельного теплового источника до температуры достаточной для воспламенения. 120-150°С хватит для того, чтобы древесина очень медленно начала обугливаться.

Позже процесс продолжается с появлением угля. При температуре 250-350°С древесина под воздействием высоких градусов активно начинает разлагаться на составляющие.

Далее возникает ее тление, однако пламени пока нет, и начинает появляться белый или бурый дым. При дальнейшем нагреве процент пиролизных газов увеличивается и возникает вспышка, после чего дрова загораются.

Воспламеняемость

На воспламеняемость древесной породы большое влияние оказывает ее объемный вес и процент влаги, содержащийся в породе.

Немаловажную роль для появления огня играют мощность источника нагрева, сечение древесины, скорость воздушного потока и плотность материала. Скорейшее появление пламени способна вызвать легкая древесина, обладающая высокой пористостью.

Что же касается мокрой древесины, то она медленнее загорается, поскольку до появления открытого огня она должна высохнуть.

Совет специалиста: для хранения дров следует выбирать сухие места, вдали от влаги. В противном случае, в печи они будут долго сохнуть.

Также горение будет зависеть формы поленьев, поскольку круглые формы дерева будут не так хорошо гореть, чем поленья прямоугольной формы, имеющие малое сечение, острые ребра и развитую боковую поверхность. Не струганная древесная порода березовых поленьев скорее воспламенится, чем гладкая порода.

Очень важное условие сгорания любого сорта древесины - это нормальный приток кислорода. По некоторым параметрам горение древесины даже превосходит .

Горение

Понаблюдав за работой печей, можно задаться вопросом о том, почему на цвет пламени не оказывает большого влияния подаваемый воздух.

Ведь химическое воздействие кислорода должно придавать частичкам сажи более яркий цвет, вплоть до белого цвета. Однако, это явление вполне объяснимо, поскольку размер частицы влияет на ее температуру, и чем она меньше, тем температура ниже.

Поэтому горящие мелкие частицы древесины обладают точно такой же температурой, как и газ, окружающий их.

Также, следует заметить, что теплоотдача у каждой породы древесины разная, и для того чтобы ее узнать более детально существует специальная таблица, в которой приведены показатели теплопроводности по каждой породе древесины.

Чем лучше топить печь: дровами или брикетами, смотрите в следующем видео:

Воспламенение древесины возможно лишь при нагреве её внешних слоев до температур активного пиролиза (см. рис. 95), в том числе и при лучистом нагреве (см. рис. 164), когда горючая смесь продуктов пиролиза (летучих) и воздуха становится способной загореться от внешнего источника воспламенения (огня, искры, горелки и т. п.). Если внешнего источника воспламенения нет, то воспламенение становится возможным в режиме самовоспламенения, когда какой-то участок древесины, перегреваясь, не просто выделяет летучие, а обугливается. При этом активный древесный уголь может начать взаимодействовать с воздухом (тлеть) с самозагоранием и в конце концов за счёт своей высокой температуры воспламеняет горючую смесь над поверхностью древесины. Таким образом самовоспламенение древесины происходит за счёт тления возникающего древесного угля. А тлеющий древесный уголь, как все знают, возникает в первую очередь на ворсинках древесины в виде угольков (рис. 95). Поэтому защита древесины от самовозгорания (например, на полке бани, где нет источников воспламенения, но есть высокие температуры) прежде всего должна подразумевать защиту от воспламенения ворсинок древесины.

Древесина всегда имеет ворсинки: структурные неровности и неровности обработки. Структурные неровности - следствие капиллярно-пористого строения древесины. При срезе часть волокон отдирается, а часть перерезается прямо по клеткам. Поэтому на поверхности древесины всегда имеются возвышения, канавки, углубления и идущие вглубь каналы, когда видимые глазом, а когда нет. Но всегда видна структура древесины, всегда видно, что разные участки по-разному впитывают краски и воду. Неровности обработки - результат некачественной механической обработки древесины (распиливания, обстругивания, шлифования и т. п.). Все эти неровности в быту называются заусеницами. По ГОСТ 7016-82 все неровности чётко классифицированы (риски, кинематическая волнистость, неровности разрушения, неровности упругого восстановления по годичным слоям, неровности прессования и т. п.) и называются шероховатостью древесины. Шероховатость измеряется по ГОСТ 15612-85 с учётом наличия отдельных оторванных волокон (ворсистости) и пучков волокон (мшистости) по размеру высот неровностей над поверхностью.

Для снижения шероховатости древесину обстругивают, шлифуют, а затем обжигают кратковременным, но мощным действием газовой горелки. Заусеницы сгорают, не воспламеняя древесину, поскольку она не успевает прогреться до температур активного пиролиза. Возможные, образовавшиеся при обжиге сажистые налёты, удаляют протиркой жёстким войлоком. Заусеницы на поверхности древесины, конечно, остаются, но очень мелкие.

Чтобы сделать древесину ещё более инертной к огневому воздействию, её пропитывают водными солями с последующим высушиванием. Ясно, что если все поры в древесине (и в ворсинках тоже) забиты негорючей солью, то древесина становится более теплоёмкой (труднее прогревается) и более теплопроводной (лучше отводится тепло от начинающего воспламеняться уголька). Соли в поверхностный слой надо ввести много, не менее 20 кг на 1 м² древесины. Усиление эффекта будет достигнуто при выборе в качестве солей кристаллогидратов (бура, углекислый натрий - хозяйственная (кристаллическая) сода, медный или железный купоросы ит. п.), которые при нагревании разлагаются с выделением воды, испаряющейся и тем самым охлаждающей готовую вспыхнуть древесину. Лучше, если соль будет разлагаться с поглощением теплоты и выделением газов, отдувающих воздух от древесины или обрывающих цепи химических реакций воспламенения продуктов пиролиза. Ещё лучше, если разлагающаяся соль к тому же будет давать легкоплавкие окислы и закрывать расплавом все поры древесины. Так что пропиточных составов и принципов их работы может быть очень много.

Если работа ответственная, делается под заказ, то пропиточный состав следует выбирать промышленный (пусть даже изготовленный из отходов производства), но аттестованный по ГОСТ 16363-76 (см. раздел 5.7.16), предоставив заказчику формальный сертификат. Беда, правда, в том, что сертификатам в нашей стране сейчас верить опасно, и полагаться можно только на авторитет фирмы (если продукция не поддельная). Поэтому для собственных нужд можно закупить на химбазе сами соли, лучше всего фосфорнокислого аммония и/или сернокислого аммония. Огнезащитное количество этих солей составит 20-80 кг на 1 м³ древесины (СНиП I-А. 12-55). Эти соли можно растворять в растворе жидкого стекла (натриевого или калиевого), а также с антисептическими солями типа фтористого натрия, хлористого цинка, медного купороса и т. п.

Пропитав водным раствором солей и высушив древесину можно покрыть огнезащитной краской, которая не должна глубоко впитываться в древесину, а создавать на поверхности желательно негорючую плёнку, закрывающую неровности древесины. К таким краскам относятся силикатные, масляные с обязательным добавлением эффективных антипиренов, хлорвиниловые, кремнийорганические и др. Количество краски должно составлять не менее 0,5-0,8 кг на 1 м² поверхности древесины. Из подручных средств в качестве краски можно использовать раствор жидкого стекла («конторского» клея для бумаги) с добавлением мелкого наполнителя (литопона, мела, окиси титана) так, чтобы порошок забивал поры и оставался на поверхности в виде слоя склеенных силикатом (или иным лаком) частиц.

Поверх краски (или вместо неё) можно нанести огнезащитное покрытие (обмазку) типа штукатурки, но содержащее специфические компоненты: волокнистые наполнители, газообразующие вещества, водовыделяющие кристаллогидраты, легкоплавкие окислы. К наиболее дешёвым образцам относится широкоизвестная суперфосфатная обмазка СФО (дисперсия суперфосфата в воде), известково-глиносолевая обмазка ИГСО (смесь известкового теста - гашёной извести с глиной и поваренной солью). Более продвинутыми являются вспучивающиеся покрытия, например, ВПД по дереву (аналог ВПМ-2 по металлу). В качестве обмазки можно использовать обычные известково-алебастровые, известково-цементные и цементно-песчаные штукатурки, которые должны плотно прилегать к поверхности древесины так, чтобы все неровности поверхности древесины были замазаны и имели надёжный тепловой контакт с штукатуркой. Такие обмазки и штукатурки предупреждают возгорание древесины по крайней мере от пламени короткого замыкания проводов силового питания оборудования за время срабатывания автоматических выключателей или 3-х минутного воздействия пламени паяльной лампы, хотя вспучивающиеся обмазки могут обеспечить огнестойкость даже на уровне EI45 и могут выдержать действие электрической и газовой сварки.

В рядовых банях надёжная огнезащита древесины в области печного узла встречается редко. Чаще всего деревянная стена обивается листом металла по асбесту. Огнестойкость такой защиты невелика из-за высокой теплопроводности асбеста. Повысить эффективность такой стандартной защиты можно укладкой первого слоя асбеста в мокром виде на силикатноглиняном растворе, плотно прилегающем ко всем неровностям поверхности древесины.

Все эти методы защиты могут затруднить самовоспламенение древесины, но при длительном воздействии огня древесина всё равно может вспыхнуть, поскольку пиролиз древесины предотвратить невозможно никакими способами. Затруднить сгорание древесины может ограничение доступа воздуха к поверхности древесины (с появлением дымления), ограничение передачи тепла из зоны пламени к древесине, а также пропитка древесины очень большим количеством солей и антипиренов (до 200 кг на 1 м³ древесины). Причём задача как раз и состоит в том, чтобы дым (появление которого предотвратить невозможно) не перерождался в пламя.

В Российской Федерации ежедневно происходит в среднем около 700 только зарегистрированных пожаров, на которых погибает 40-50 человек... И, к сожалению, наблюдается тенденция к росту количества пожаров. Подвержены горению сооружения и конструкции из дерева.

А между тем древесина - бесподобное творение природы, оптимальнейший строительный материал, экологически здоровый, возобновляемый, теплый, технологичный, с достаточно высокой механической прочностью. Такие органические недостатки древесины, как горючесть и подверженность биоразрушению, в настоящее время легко преодолеваются с помощью доступных антипиренов, антисептиков, других средств защиты. Поэтому во всем мире, в том числе и в России, в настоящее время значительно возрастают объемы строительства зданий различного назначения из древесины. Особенно много из древесины сооружается мансард, коттеджей, загородных дач, бань, других объектов малоэтажного и малометражного строительства, наиболее опасных в пожарном отношении.

Большая часть древесины поступает к застройщику в натуральном виде - без огнезащитной и биозащитной обработки, так что проводить огне- и биозащиту приходится самим строителям. В предлагаемой вниманию читателей статье рассмотрены основные распространенные способы огнезащиты.

СВОЙСТВА ДРЕВЕСИНЫ С ТОЧКИ ЗРЕНИЯ ВОЗДЕЙСТВИЯ ОГНЯ

Древесина в воздушно-сухом состоянии относится к сгораемым материалам - она воспламеняется и распространяет огонь. Однако из-за того, что при горении на поверхности древесины образуется уголь, горящий медленнее и с теплопроводностью в 4 раза ниже, чем у самой древесины, скорость потери рабочего сечения деревянной конструкции (ДК) не превышает 0,8 мм в минуту. Поэтому ДК противостоят обрушению при пожаре в течение более продолжительного времени, чем стальные, которые могут не выдержать нагрузок из-за снижения прочности при нагревании. Наряду с этим огнестойкость стальных конструкций падает и из-за того, что при нагревании они сильно удлиняются. Так, если нагреть стальную балку длиной 15 м до 500°С, то она удлиняется на 90 мм, что приводит к возникновению разрушающих напряжений в конструкциях здания. Древесина при нагревании деформируется в 3-4 раза меньше.

Воспламенение древесины от открытого огня может происходить при температуре около 210°С и сопровождается повышением температуры.

При отсутствии открытого источника теплоты (пламени, искр) воспламенение может произойти при быстром (1-2 минуты) нагревании древесины до температуры свыше 330°С. При длительном воздействии теплоты температура воспламенения древесины снижается до 150-170°С. Это обстоятельство необходимо учитывать при размещении деревянных конструкций вблизи нагревающихся предметов (отопительных приборов, дымоходов). В этих случаях требуется обеспечить такие условия контакта древесины с ними, чтобы установившаяся температура ее не превышала 150°С.

Основным условием для продолжения и развития самостоятельного горения зажженного деревянного изделия является превышение количества теплоты, аккумулированной поверхностными слоями его, над количеством теплоты, отдаваемой в пространство. Другими словами, для поддержания и распространения горения необходимо, чтобы температура соседних участков конструкций поддерживалась выше точки воспламенения древесины.

Чем глаже (без трещин) ворса поверхность деревянных изделий, тем выше у них теплоотражающая способность, тем труднее они загораются. Острые углы, выступы, трещины снижают эту способность.

МЕХАНИЗМ ГОРЕНИЯ ДРЕВЕСИНЫ: ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРЕДОТВРАЩЕНИЯ ГОРЮЧЕСТИ

Древесина, как известно, построена волокнами целлюлозы, склеенными лигнином. Эти вещества при воздействии высокой температуры, возникающей, например, в пламени спички, подвергаются пиролизу (термическому разложению) с образованием газообразных, легко загорающихся органических веществ, причем их сгорание идет с выделением теплоты. Эта теплота может поддерживать и даже повышать тот уровень температуры, при котором огонь распространяется на соседние участки деревянного изделия.

На первой стадии горения наряду с газообразными веществами образуется и твердый углеродистый остаток (уголь), который тоже сгорает, но без пламени.

Скорость сгорания газовой фазы на несколько порядков выше, чем угля.

Основываясь на этом представлении о механизме горения, можно предложить четыре группы теоретически оправданных способов снижения горючести древесины.

Первая группа: пропитывание изделий из древесины такими веществами, которые снижали бы скорость термического разложения древесины или сдвигали направление реакций пиролиза в сторону образования меньших количеств горючих газов. Такие материалы назовем огнезащитными пропитками. Их еще называют огнезащитными составами.

Вторая группа: создание на поверхности изделий из древесины покрытия из таких материалов, которые мешали бы загоранию древесины, ее пиролизу. Назовем эти покрытия огнезащитными обмазками.

Третья группа: разбавление горючих газов негорючими газообразными веществами, например водяными парами, углекислым газом, азотом.

Четвертая группа: создание на поверхности изделий из древесины теплоотражающих покрытий.

Ранее автором статьи был сделан обзор по огнезащитным краскам, покрытия (ПК) из которых способны вспучиваться (терморасширяться, вспениваться) и образовывать слой негорючей пены с малой теплопроводностью, которая и должна спасти строительные конструкции, изделия других назначений от опасного нагрева, после которого начинается обрушение (стальные, железобетонные конструкции) или горение древесины. В обзоре была также изложена информация по вспучивающимся краскам, предназначаемым для защиты от пожара всех элементов здания - стальных, железобетонных, деревянных конструкций, электрических кабелей, воздуховодов и систем отопления, кровель, стеклянных ограждений.

В настоящем обзоре речь пойдет об огнезащите лишь ДК, причем не только огнезащитными красками, но и всеми предлагаемыми ныне видами средств. Однако описание тех вспучивающихся красок, которые вошли в предыдущий обзор, данная статья повторять не будет, хотя, подчеркнем, знать о них следовало бы.

ПРОПИТКИ

Антипиренами называют вещества, которые могут проникать внутрь древесины и делать ее негорючей. Название этих веществ происходит от имени древнегреческого бога Пироса - повелителя огня. Повышение огнестойкости путем пропитывания называют антипирированием.

Этот способ повышения огнестойкости применяют преимущественно на заводах, где производят заготовки из древесины - бруски, брус, доски.

В качестве антипиренов используют преимущественно водные растворы солей фосфорной или борной кислот или их смесей. Для увеличения глубины проникновения к растворам добавляют поверхностно-активные вещества. Пропитывание и обработку производят кистью, пневмораспылением или погружением в ванну.

Перед тем, как рассмотреть некоторые примеры пропиток и других огнезащитных средств, отметим, что объем и однородность приводимой информации для каждой из них различны. И это не небрежность автора, а следствие того, что фирмы-изготовители не всё рассказывают о своей продукции.

Пропитка противопожарная для дерева «ГАИМС-ОГНЕБТОР 20», ТУ 2182-004-42942526-98, предназначена для придания древесине 2-ой группы огнезащитной эффективности (ГОЭ). Необходимый расход - 400 г/кв. м.

Огнезащитный состав «Старый вяз» предназначен для придания древесине 1-ой или 2-ой ГОЭ в зависимости от способа обработки и расхода. Бесцветный, прозрачный, не меняет фактуру древесины. Необходимый расход - не менее 100 г/кв. м.

Огнезащитный состав «МС» предназначен для придания древесине 2-ой ГОЭ. Бесцветный, прозрачный, не меняет фактуру древесины и проявляет и биозащитные свойства.

Препарат огнебиозащитный для древесины «СЕНЕЖ-ОБ» , ТУ 5362-021-02495282-98, предназначен для придания древесине 2-ой ГОЭ и представляет собой водный раствор 25 %-ной концентрации.

Огнезащитный состав «Вупротек-2» предназначен для придания древесине 1-ой ГОЭ. Производится он в виде жидкости и порошка. Для достижения заявляемого эффекта расход порошка должен быть не менее 200 г/кв. м, жидкости - 600 г/кв. м. Порошок перед употреблением разводят водой в соотношении 1:2.

Огнезащитная несолевая пропитка с антисептическим эффектом для древесины (биопирен) «Пирилакс-3000», ТУ 2499-027-24505934, обеспечивает 1-ую и 2-ую ГОЭ (по НПБ 251-98), защищает древесину от возгорания, останавливает распространение пламени в действующем пожаре. Для придания древесине 1-ой ГОЭ необходимый расход состава - 280 г/кв. м. Для получения слабогорючей, не распространяющей пламя, трудновоспламеняемой древесины с умеренной дымообразующей способностью (показатели огнезащиты П, РП1, В1, Д2 по НПБ 244) расход состава - 400 г/кв. м. Обработка производится при температуре - 25°С h 50°С. Агрегатное состояние - прозрачная жидкость желтого цвета.

ОГНЕЗАЩИТНЫЕ ОБМАЗКИ

По большому счету, это наиболее эффективные в настоящее время, как и в далеком прошлом, средства защиты от пожара. Они представляют собой композиции на основе минеральных вяжущих (цементов различных видов, гипса строительного, жидкого стекла, фосфатных связующих, наполненных асбестом, вспученным вермикулитом, перлитовым песком, рядом других легких и огнеупорных материалов). Обмазки наносят на конструкции слоем, толщина которого может достигать нескольких сантиметров - это предопределяется желаемым интервалом времени огнезащитной эффективности. На сегодняшний день в деревянном домостроении эти обмазки применяются редко, однако некоторые из них все же отметим.

Отбросив критерий «возраста», на первое место поставим обмазку суперфосфатную, с помощью которой во время Великой Отечественной войны в Ленинграде были спасены от немецких зажигательных бомб многие здания, ведь их кровельные конструкции были деревянными. Представляет она собой смесь суперфосфата с водой в соотношении 70:30. Наносят обмазку кистью два раза с промежуточной сушкой не менее 24 час. Расход обмазки - от 1,5 кг/кв. м.

Опишем, так же нарушив критерий «возраста», и обмазку известково-глино-соле-вую, потому что она достаточно эффективна и может быть приготовлена на месте из самого доступного и дешевого сырья. Это смесь известкового теста с глиной и поваренной солью в соотношении 75:15:10. Приготавливают ее на месте использования следующим образом. Известь-пушонку, просеянную через сито с размером ячейки не более 1 мм, смешивают с водой в соотношении 1:1, получая тесто. Поваренную соль растворяют в воде, добавляя к 1 кг соли 3 кг воды, и на этом растворе замешивают глину, соблюдая то соотношение, которое приведено выше. Полученное глиняное тесто смешивают с ранее приготовленным известковым тестом, опять-таки выдерживая указанное соотношение.

Обмазку наносят кистью или шпателем в два слоя с промежуточной сушкой после первого слоя не менее 10 час. При температуре около 20°С обмазка высыхает за 12 час. Расход обмазки на оба слоя - около 1,5 кг/кв. м.

Весьма перспективными являются обмазки, наполнителем в которых является вспученный вермикулит - разновидность слюды, запасами которой Россия не обделена. Этот наполнитель легкий, устойчив к нагреванию вплоть до 800°С. Поэтому в настоящее время объемы применения таких обмазок растут довольно быстрыми темпами. Попутно отметим, что на вспученном вермикулите ныне изготавливают плиты вермикулито-силикатные «Минпласт-А», ТУ 5.967-11866-2004, толщиной 20 мм, плотностью 700 и 800 кг/куб. м, которые предназначены в том числе и для защиты от возгорания древесины. Такой плитой, разрезанной на доски соответствующих размеров, можно обкладывать плоские участки деревянных конструкций. Крепление может быть клеевым или механическим.

Огнезащитное покрытие «Вермивол-М» на основе вспученного вермикулита. Предел огнестойкости - до 3 час, срок службы - не менее 15 лет.

Огнезащитное покрытие ОПВ-2, ТУ 5767-005-00281980-2003, тоже на основе вспученного вермикулита. Предел огнестойкости при защите стальных конструкций - 0,75 - 2,5 час. при толщине 15 - 30 мм. Покрытие может эксплуатироваться лишь в условиях, исключающих воздействие атмосферных осадков. Композицию для покрытия готовят на месте применения, смешивая порошок, поставляемый заводом-изготовителем, с обычной водой. Смешивание рекомендовано производить в механических смесителях типа СО-23Б, СО-46Б. Наносить композицию желательно пневмораспылителем послойно, достигая за три прохода толщины 30 мм. Каждому слою необходимо дать высохнуть в течение 12 час. в естественных условиях. Расход при толщине слоя 30 мм - 12 кг/кв. м, предел огнестойкости - до 2,5 час.

Пиросейф фламмопласт КС-1. Из этой обмазки формируют покрытия толщиной 12 мм. Для защиты от влаги и придания цвета используют защитный лак «ПИРОСЕЙФ» СП-2. Срок противопожарной эффективности покрытия - не менее 30 лет. Эковата - один из самых необычных материалов для огнезащитных покрытий, производство которого в настоящее время в нашей стране развивается довольно быстро. Эковата - это макулатура, распушенная на волокна, к которой добавлены бура, борная кислота и натриевая соль карбоксиметил-целлюлозы. Покрытия из нее обеспечивают не только защиту от огня, но и от биоповреждений. Наряду с этим эковата повышает теплозащитные свойства, поглощает звуки. Особенно эффективно использование эковаты именно в коттеджном строительстве - для утепления чердаков, междуэтажных перекрытий, стен, водопроводных труб, герметизации щелей. Наносят ее напылением с помощью специальных выдувных установок или вручную - штукатурными инструментами. Объемная масса покрытий из эковаты - 30 - 70 кг/куб. м.

ОКРАШИВАНИЕ ОГНЕЗАЩИТНЫМИ ЛАКОКРАСОЧНЫМИ МАТЕРИАЛАМИ (ЛКМ)

Покрытия, образующиеся при высыхании этих материалов, обладают огнестойкостью более высокой, чем древесина, и таким образом предохраняют ее от возго¬рания. Огнезащитные ЛКМ бывают трех видов: лаки, эмали и краски.

Лаки - это растворы полимеров, в данном случае негорючих, например хлорсульфополиэтилена. После улетучивания растворителя они образуют прозрачное покрытие, не скрывающее текстуру древесины.

Эмали - это лаки, к которым добавлены пигменты и наполнители. Они образуют цветные непрозрачные покрытия.

Если ЛКМ «построен» на основе водной дисперсии полимеров, то его называют водно-дисперсионной краской или просто краской.

Ниже приведены примеры некоторых огнезащитных лаков, эмалей и красок.

Огнезащитный лак «Вупротек-1» предназначен для придания древесине 2-ой ГОЭ. Для достижения этого эффекта расход лака должен быть не менее 150 г/кв. м. Представляет он собою двухупаковочную систему, состоящую из водного раствора антипиренов (упаковка А) и пленкообразующей композиции (упаковки Б). Содержимое упаковок смешивают перед употреблением. Этот лак полностью сохраняет фактуру древесины, а по желанию заказчика возможно его тонирование.

Огнезащитный лак «Щит-1» предназначен для придания древесине 1-ой ГОЭ. Бесцветный, прозрачный, он не меняет фактуру древесины и проявляет и биозащитные свойства. Расчетный срок действия огнезащиты - до 10 лет.

Огнезащитный лак «Терма», ТУ 2313-008-47935838-2003, предназначен для огнезащиты деревянных изделий, эксплуатируемых как внутри, так и снаружи помещения. Он обеспечивает 1-ую ГОЭ. Расчетный срок службы покрытия из него - до 15 лет.

Этот лак представляет собой суспензию от светло-серого до светло-коричневого цвета (автор статьи позволяет себе заметить, что лак не может быть суспензией, лак - истинный раствор, не содержащий твердых частиц, так что вместо термина «лак» надо было бы для этого средства использовать термин «краска»), он производится в трех разновидностях: А, Б и В. Лак А и В образует блестящее покрытие, а Б - матовое. Поставляется он в трех упаковках: грунтовка, основа лака, отвердитель.

На поверхность сначала наносят первый слой грунтовки, высушивают, после чего наносят второй слой грунтовки. Расход грунтовки на оба слоя должен составлять около 500 г/кв. м. После этого наносят один слой лака, причем лак разновидности В перед употреблением смешивают с 15%-ным водным раствором отвердителя в соотношении 10:2. Смесь необходимо использовать не более, чем за 6 час. Расход лака В(смеси) должен составлять не менее 300 г/кв. м, а А и Б - по 200 г/кв. м. По степени воздействия на человека этот продукт относится к 4-му классу опасности.

Эмаль огнезащитная КО-5101, ТУ 2312-422-05763441-2004, предназначена для придания древесине 2-ой ГОЭ. После высыхания образуется ПК серо-белого цвета. Необходимый расход - 250 г/кв. м. До рабочей вязкости доводится растворителями 646 или ксилолом.

ЛАКОКРАСОЧНЫЕ МАТЕРИАЛЫ, ОБРАЗУЮЩИЕ ВСПУЧИВАЮЩИЕСЯ ПОКРЫТИЯ

Постепенно эти средства защиты от пожара становятся все более востребованными, поскольку их можно наносить на конструкцию тонким слоем, не утяжеляющим ее (в отличие от обмазок). Защитное действие таких ЛКМ (их еще называют интумесцентными) основано на том, что при нагревании покрытия, образуемые ими, вспучиваются (терморасширяются). При этом возникает слой кокса (негорючего) с малой теплопроводностью твердого тела. Этот слой и предохраняет конструкцию от перегрева.

В качестве функциональных добавок, обеспечивающих вспучивание при нагревании, используют самые разнообразные вещества, но в последние годы наиболее эффективными среди них следует считать так называемые интеркалированные соединения графита (ИСГ). Под действием огня или беспламен¬ного теплового удара ЛКМ, содержащие ИСГ, начинают вспучиваться уже при 120 °С, причем объем увеличивается в десятки раз. Из ИСГ как раз и образуется слой кокса. Он покрывает защищаемые поверхности, заполняет отверстия и щели, что приводит к изолированию ДК от очага пожара. Вследствие всех этих обстоятельств ПК, содержащее ИСГ, может быть толщиной всего в несколько десятков сантиметров. Разработчиком вспучивающихся красок с ИСГ является Московский государственный университет.

Файрекс-200 - композиция на основе неорганического пленкообразователя, покрытие из которой при повышении температуры более чем до 120°С вспучивается. Она предназначена для защиты изделий из древесины, фанеры, ДСП и ДВП, эксплуатируемых внутри помещения, и отвечает требованиям СНиП 21-01-97 «Пожарная безопасность зданий и сооружений». Согласно ГОСТ 16-636-76, обеспечивает 1-ую ГОЭ; предел распространения пламени на поверхности - нулевой.

Рекомендуемая толщина ПК - от 1 до 2 мм, расход - от 1,5 до 3 кг/кв. м. Для создания покрытия толщиной 2 мм композицию рекомендуется наносить в два слоя, причем второй наносят на первый после 10-часовой выдержки.

Краска вспучивающаяся «Протерм Вуд» белая, ТУ 2316-004-20942052-00, при расходе около 400 г/кв. м обеспечивает 1-ую ГОЭ. Она представляет собой суспензию пигментов газообразующих веществ.

Огнезащитная краска ОЗК-45Д, ТУ 2316-019-17297211-01, при расходе 350 г/кв. м может обеспечить 1-ую ГОЭ. Коэффициент вспучивания при температуре 800°С - не мене 15. Краску изготавливают на основе поливинилацетатной дисперсии, наполнителей и целевых добавок; наносят ее в два слоя кистью, валиком или распылителем.

Огнезащитный лак для внутренних работ «Нортекс-лак-огнезащита», ТУ 2313-014-24505934-02, обеспечивает 1-ую ГОЭ (по НПБ 251-98). Он предназначен для покрытия древесины, ДСП, ДВП, ламинированных и крашеных поверхностей (кроме нитроцеллюлозных) внутри зданий и сооружений и представляет собой вязкую жидкость светло-коричневого цвета. При нанесении лак надежно сцепляется с древесиной, образуя на поверхности защитную пленку. Под воздействием высоких температур и пламени защитная пленка преобразуется в пенококсовый слой, предотвращающий доступ кислорода и распространение пламени. Расход лака для придания древесине 1-ой ГОЭ составляет 180 г/кв. м.

В. А. ВОЙТОВИЧ, к. т. н., Аоцент, Нижегородский ГАСУ

СтройПРОФИЛЬ №2(48) 2006