Выключатели

Какие искусственные материалы человек использует в технике. Какие материалы применяются в технике? Что можно сшить из модала

Какие искусственные материалы человек использует в технике. Какие материалы применяются в технике? Что можно сшить из модала

В деревообрабатывающей промышленности использу­ются многие производственные материалы, которые либо целиком состоят из искусственных материалов, на­пример лаки и клеи, либо искусственные материалы яв­ляются их важными компонентами, как, например, пла­стины ламината или древесностружечные плиты. Также готовые детали типа нажимной дверной ручки часто из­готавливаются из искусственных материалов (рис. 2.101).

2.11.1. Структура, обозначения, свойства искусственных материалов

Основными сырьевыми веществами для производства искусственных материалов являются нефть, газ, уголь, вода и воздух. Из них прежде всего производятся хи­мическим путем предварительные продукты, молекулы которых состоят из малого количества атомов, напри­мер, этилен (С2Н2) и формальдегид (СН20). Эти не­большие молекулы называют мономерами.

Благодаря химическому соединению тысяч мономе­ров (моно, от греч. - один) образуются большие моле­кулы, макромолекулы (макро, от греч. - большой). Мак­ромолекулы могут иметь нитевидную структуру или объединяться в пространственные структуры, что для дальнейших свойств искусственных материалов имеет Рис. 2.101. Примеры не­большое значение. Вещества, состоящие из макромо - пользования искусственных лекул, называют полимерами (поли, от греч. - много). материалов

Все искусственные материалы являются полимерами. Искусственные мате­риалы состоят, как и натуральные органические вещества, например хлопок, рог и целлюлоза , в основном из элементов углерода (С), водорода (Н) и кислорода (О). Поэтому они также относятся к органическим веществам. Однако некоторые искусственные вещества содержат в качестве важного элемента крем­ний. Такие вещества называются силиконами.

В соответствии с DIN EN ISO 1043 и DIN ISO 1629 искусственные материалы имеют условные обозначения, которые ведут свое начало от их химических на­званий. Например, поливинилхлорид обозначают как ПВХ (PVC), полиэтилен как ПЭ (РЕ) и фенолформальдегидная смола как ПФ (PF) (табл. 2.21, 2.22 и 2.23).

Так как искусственные материалы на некоторых стадиях обработки могут де­формироваться пластично, то их также можно назвать пластмассами.

Искусственные материалы - это произведенные химическим способом органические, макро - молекулярные вещества. Они состоят в основном из элементов углерода (С), водорода (Н), кислорода (О), азота (N), хлора (CI), серы (S), фтора (F) и кремния (Si).

Искусственные материалы производят в промышленных масштабах тремя спо­собами: полимеризацией, поликонденсацией и ступенчатой полимеризацией.

При полимеризации чаще всего одинаковые мономеры преобразуются в мак­ромолекулы с нитевидной или линейной структурой. Мономеры - это ненасы­щенные углеводородные соединения, например этилен (С2Н2). После разделе­ния двойной связи они могут полимезироваться в длинные молекулярные нити. Из этилена получают полиэтилен (ПЭ) (рис. 2.102).

Полиэтилен (полимер)

Рис. 2.102. Полимеризация (на примере полиэтилена)

Основными полимерами наряду с полиэтиленом (защитная пленка строитель­ных конструкций от коррозии, трубы) являются поливинилхлорид (кантовый профиль, покрытие полов, оконные переплеты) и поливинилацетат (клей ПВА).

Поликонденсацией называется химический процесс получения высокомоле­кулярных соединений из низкомолекулярных исходных веществ, например при реакции фенола (С6Н5ОН) с формальдегидом (СН20), при одновременном выде­лении побочных продуктов (веществ), например воды (Н20) (рис. 2.103).

Основными полимерами, полученными поликонденсацией, являются фенол­формальдегидная смола, резорцино-альдегидный полимер, мочевиноформаль - дегидная смола и полиамиды.

При ступенчатой полимеризации высокомолекулярные соединения, структу­ра которых нитевидная или пространственная, образуются благодаря соедине­нию различных молекул исходных веществ без выделения побочных продуктов, например при реакции диэтилового спирта (С4Н8(ОН)2) с диизоцианатом (С4Н|;(СМО)3).

Основными продуктами ступенчатой полимеризации являются полиуретано­вая смола - клеящее вещество и полиуретановая пена (рис. 2.104).

Благодаря соответствующему химическому составу и способу изготовления искусственных материалов, а также смешиванию различных искусственных ве­ществ можно достичь почти любых свойств материалов.

Типичными свойствами искусственных материалов являются:

Низкая плотность,

Регулируемые механические свойства,

Электрическая непроводимость,

Теплоизоляция,

Коррозионная и химическая стойкость,

Хорошая деформируемость и обрабатываемость,

Хорошая окрашиваемость,

Гладкие, декоративные поверхности.

Искусственные материалы имеют также свойства, которые ограничивают их применение:

В основном низкая термостойкость,

Частично воспламеняющиеся,

В основном невысокая прочность,

Частично неустойчивы против растворителей.

Высокая сопротивляемость искусственных материалов хоть и является пре­имуществом в случае их применения, но служит недостатком при их утилизации. Из-за возрастания количества применяемых продуктов из искусственных мате­риалов их утилизация стала проблемой для охраны окружающей среды.

Честно говоря, я только недавно узнал об этом материале. Старлит - пластик, созданный достаточно давно, а его свойства просто удивительны. Вот, например, видео с демонстрацией возможностей старлита.

После этого выступления по ТВ, с ученым, создавшим старлит связались сотрудники некоторых университетов, решив проверить возможности материала. ОКазалось, что они просто невероятны, старлит выдерживает огромную температуру, оставаясь при этом практически неповрежденным. При этом старлит нетоксичен даже при очень высокой температуре, и очень легкий.

К сожалению, создатель старлита умер в 2011 году, так и не запатентовав свое детище. Плюс ко всему, секрет создания материала, как это принято говорить, ушел с ним в могилу.

2. Аэрогель

Это действительно гель, с очень малой плотностью. При этом аэрогель является довольно прочным материалом, гораздо более прочным, чем некоторые прочие материалы с подобной плотностью. Он - чрезвычайно эффективный теплоизолятор. Например, тонкую пластину аэрогеля можно нагревать с одной стороны, а с другой он будет осаваться холодным.

Еще интересно то, что аэрогель отталкивает воду, и поглощает нефть. На этом свойстве материала базируется намерение ученых создать надежное средство для борьбы с нефтяными пятнами.

3. BacillaFilla

Это не материал, а микроорганизм, бактерия, которая выделяет особого рода цементирующее вещество. Все звучит не очень интересно, но стоит вспомнить, что некоторые здания, базирующиеся на бетонном фундаменте, сносят только потому, что фундамент "устал".

И во многих случаях починить его нет никакой возможности. А вот BacillaFilla - бактерия, которая выделяет вещество, способное надежно зацементировать прорехи в "уставшем" бетоне. В результате можно сэкономить огромное количество денег и человеко-часов.

пока что непонятно, когда эта бактерия пойдет в дело, но ее возможности сейчас оценивают ученые со всего мира.

4. D3o

Еще один уникальный материал, который назвали коротко - D3o. В этом материале молекулы находятся в свободном движении в обычных условиях, фиксируясь при ударе. Материал этот напоминает смесь кукурузного крахмала и воды. При этом из материала можно делать защитную одежду, выдерживающую значительные нагрузки.

Ну, например, шапка из D3o способна принять на себя удар лопатой, оставив голову человека неповрежденной.

Разнообразие природы безгранично, но есть материалы, которые не появились бы на свет без человеческого участия. Предлагаем вашему вниманию 10 веществ, созданных руками человека и проявляющих фантастические свойства.

1. Одностороннее пуленепробиваемое стекло

У самых богатых людей есть проблемы: судя по растущим продажам этого материала, им необходимо пуленепробиваемое стекло, которое спасло бы жизнь, но не мешало им отстреливаться.
Это стекло останавливает пули с одной стороны, но в то же время пропускает с другой - этот необычный эффект заключается в «сэндвиче» из хрупкого акрилового слоя и более мягкого эластичного поликарбоната: под давлением акрил проявляет себя как очень твёрдое вещество, и при попадании пули он гасит её энергию, трескаясь при этом. Это даёт возможность амортизирующему слою выдержать удар пули и осколков акрила, не разрушаясь при этом.
При выстреле с другой стороны упругий поликарбонат пропускает через себя пулю растягиваясь и разрушая ломкий акриловый слой, что не оставляет никакого дальнейшего барьера для пули, но не стоит отстреливаться слишком часто, поскольку из-за этого в защите образуются дыры.

2. Жидкое стекло

Было время, когда средства для мытья посуды не существовало - люди обходились содой, уксусом, серебряным песком, трением или проволочной щёткой, но новое средство поможет сэкономить немало времени и сил и вообще оставить мытьё посуды в прошлом. «Жидкое стекло» содержит диоксид кремния, образующий при взаимодействии с водой или этанолом материал, который затем высыхает, превращаясь в тонкий (более чем в 500 раз тоньше человеческого волоса) слой эластичного, сверхстойкого, не токсичного и влагоотталкивающего стекла.

С таким материалом отпадает необходимость в чистящих и дезинфицирующих средствах, так как он способен отлично предохранять поверхность от микробов: бактерии на поверхности посуды или раковины просто изолируются. Также изобретение найдёт применение в медицине, ведь стерилизовать инструменты теперь можно с помощью лишь горячей воды, без использования химических дезинфицирующих средств.

Это покрытие может использоваться для борьбы с грибковыми инфекциями на растениях и герметизации бутылок, его свойства действительно уникальны - оно отталкивает влагу, дезинфицирует, при этом оставаясь эластичным, прочным, пропускающим воздух, и совершенно незаметным, а также дешёвым.

3. Бесформенный металл

Это вещество позволяет игрокам в гольф сильнее бить по мячу, увеличивает поражающую способность пули и продлевает срок службы скальпелей и деталей двигателя.

Вопреки своему названию, материал сочетает прочность металла и твёрдость поверхности стекла: на видео видно, как отличается деформация стали и бесформенного металла при падении металлического шарика. Шарик оставляет на поверхности стали множество маленьких «ям» - это означает, что металл поглощает и рассеивает энергию удара. Бесформенный металл остался гладок, значит, он лучше возвращает энергию удара, о чём также говорит более продолжительный отскок.

Большинство металлов имеет упорядоченное кристаллическое молекулярное строение, и от удара или другого воздействия, кристаллическая решётка искажается, из-за чего на металле и остаются вмятины. В бесформенном металле атомы расположены хаотично, поэтому после воздействия атомы возвращаются на первоначальную позицию.

4. Старлит

Это пластик, выдерживающий невероятно высокую температуру: его тепловой порог настолько высок, что сначала изобретателю просто не поверили. Лишь после демонстрации возможностей материала в прямом эфире на телевидении, с создателем старлита связались сотрудники Британского Центра Атомного Вооружения.
Учёные облучили пластик вспышками высокой температуры, эквивалентными мощности 75-ти бомб, сброшенных на Хиросиму - образец лишь немного обуглился. Один из испытателей заметил: «Обычно между вспышками приходится ждать несколько часов, чтобы материал остыл. Сейчас мы облучали его каждые 10 минут, а он остался невредим, будто в насмешку».

В отличие от других термостойких материалов, старлит не становится токсичным при высокой температуре, также он невероятно лёгок. Его можно применять при строительстве космических аппаратов, самолётов, огнезащитных костюмов или в военной промышленности, но, к сожалению, старлит так и не покинул пределы лаборатории: его создатель Моррис Уард умер в 2011-м году, не запатентовав своё изобретение и не оставив никаких описаний. Всё, что известно о строении старлита - что в его состав входит 21 органический полимер, несколько сополимеров и небольшое количество керамики.

5. Аэрогель

Представьте себе пористое вещество такой низкой плотности, что 2,5 см³ его заключает в себе поверхности, сравнимые с размером футбольного поля. Но это не определённый материал, а, скорее, класс веществ: аэрогель - это форма, которую могут принимать некоторые материалы, а сверхмалая плотность делает его отличным теплоизолятором. Если сделать из него окно толщиной 2,5 см, оно будет иметь те же теплоизоляционные свойства, что и стеклянное окно толщиной 25 см.

Все самые лёгкие в мире материалы - аэрогели: например, кварцевый аэрогель (по сути, высушенный силикон) всего в три раза тяжелее воздуха и достаточно хрупок, зато может выдержать вес, в 1000 раз превышающий его собственный. Графеновый аэрогель (на иллюстрации выше) состоит из углерода, а его твёрдый компонент в семь раз легче воздуха: имея пористую структуру, это вещество отталкивает воду, но поглощает нефть - его предполагается использовать для борьбы с нефтяными пятнами на поверхности воды.

6. Диметилсульфоксид (DMSO)

Этот химический растворитель сначала появился, как побочный продукт выработки целлюлозы и никак не применялся до 60-х годов прошлого века, когда раскрыли его медицинский потенциал: доктор Джейкобс обнаружил, что DMSO может легко и безболезненно проникать в ткани тела - это позволяет быстро и без повреждения кожи вводить различные препараты.

Его собственные лечебные свойства снимают боль при растяжении связок или, например, воспалении суставов при артрите, также DMSO может использоваться для борьбы с грибковыми инфекциями.
К сожалению, когда его медицинские свойства были открыты, производство в промышленных масштабах уже давно было налажено, и его широкая доступность не позволяла фармацевтическим компаниям получать прибыль. Кроме того у DMSO есть неожиданный побочный эффект - запах изо рта использовавшего его человека, напоминающий чеснок, поэтому он используется в основном в ветеринарии.

7. Углеродные нано-трубки

Фактически это листы углерода толщиной в один атом, свёрнутые в цилиндры - их молекулярная структура напоминает рулон проволочной сетки, и это самый прочный материал, известный науке. В шесть раз легче, но в сотни раз крепче стали, нано-трубки обладают лучшей теплопроводностью, чем алмаз, и проводят электричество эффективнее меди.

Сами трубки не видны невооружённым взглядом, а в необработанном виде вещество напоминает сажу: чтобы проявились его необыкновенные свойства, надо заставить вращаться триллионы этих невидимых нитей, что стало возможным относительно недавно.
Материал может применяться в производстве кабеля для проекта «лифта в космос», достаточно давно разработанного, но до недавнего времени совершенно фантастичного из-за невозможности создать кабель длиной 100 тыс км, не согнувшийся бы под собственным весом.

Углеродные нано-трубки помогают и при лечении рака груди - их можно помещать в каждую клетку тысячами, а наличие фолиевой кислоты позволяет выявлять и «захватывать» раковые образования, затем нано-трубки облучают инфракрасным лазером, и клетки опухоли при этом погибают. Также материал может применяться в производстве лёгких и прочных бронежилетов…

8. Пайкерит

В 1942-м году перед англичанами стояла проблема недостатка стали для строительства авианосцев, необходимых для борьбы с немецкими подводными лодками. Джеффри Пайк предложил соорудить огромные плавучие аэродромы изо льда, однако она себя не оправдала: лёд хоть и недорог, но недолговечен. Всё изменилось с открытием нью-йоркскими учёными необыкновенных свойств смеси льда и древесных опилок, которая по прочности была подобна кирпичу, а также не трескается и не плавится. Зато материал можно было обрабатывать, как дерево или плавить, подобно металлу, в воде опилки разбухали, образуя оболочку и предотвращая таяние льда, за счёт чего любое судно можно было ремонтировать прямо во время плавания.

Но при всех положительных качествах, пайкерит был малопригоден для эффективного использования: для постройки и создания ледяного покрова судна весом до 1000 т достаточно было двигателя мощностью в одну лошадиную силу, но при температуре выше -26 °С (а для её поддержания необходима сложная система охлаждения) лёд имеет свойство проседать. Кроме того, целлюлоза, используемая также в производстве бумаги, была в дефиците, поэтому пайкерит так и остался неосуществимым проектом.

9. BacillaFilla - строительный микроб

У бетона есть свойство «уставать» со временем - он становится грязно-серым, и в нём образуются трещины. Если речь идёт о фундаменте здания, ремонт может быть достаточно трудоёмким и дорогим, при этом не факт, что он устранит «усталость»: многие здания сносят именно по причине невозможности восстановления фундамента.
Группа студентов Университета Ньюкасла разработала генно-модифицированные бактерии, способные проникать в глубокие трещины и вырабатывать смесь карбоната кальция и клея, укрепляя здание. Бактерии запрограммированы так, что они распространяются по поверхности бетона, пока не достигнут края очередной трещины, и тогда начинается производство цементирующего вещества, имеется даже механизм самоуничтожения бактерий, предотвращающий образование бесполезных «наростов».

Эта технология позволит уменьшить антропогенный выброс двуокиси углерода в атмосферу, ведь 5% его даёт именно производство бетона, а также с её помощью будет продлён срок службы зданий, восстановление которых традиционным способом обошлось бы в большую сумму.

10. Материал D3o

Устойчивость к механическому воздействию во все времена была одной из основных проблем материаловедения, пока не изобрели D3o - вещество, молекулы которого находятся в свободном движении при нормальных условиях и фиксируются при ударе. Строение D3o напоминает смесь кукурузного крахмала и воды, которой иногда наполняют бассейны. Специальные куртки из этого материала, удобные и обеспечивающие защиту при падении, ударе битой или кулаками, которые могут вам достаться, уже находятся в свободной продаже. Защитные элементы не заметны снаружи, что подходит для каскадёров и даже полиции.

К атегория: Выбор стройматериалов

Искусственные материалы

Искусственные инертные материалы - это либо отходы промышленных предприятий (доменные и котельные шлаки, терриконники, кирпичный бой, черепица и т. д.), либо специально изготовленные изделия (дорожный клинкер, кирпич, железобетонные дорожные плиты и поребрик и т. д.).

Доменные и мартенные шлаки - являются побочным продуктом при выплавке чугуна и стали с твердой и плотной структурой, который при ударе разбивается на щебень. Шлаковым щебнем улучшают дороги в местах весенних деформаций (пучин). Он обладает хорошими теплоизоляционными свойствами, способствуя тем самым меньшей глубине промерзания проезжей части. В дорожном строительстве в основном для создания оснований дорог применяют кислые шлаки, т. е. бедные известью и не подвергающиеся известковому распаду.

Котельные шлаки (гарь) - являются отходом при сгорании каменного угля в топках котельных, паровозов. Лучшей считается гарь, полученная от сжигания жирных каменных углей - она пориста, не твердая, темного цвета. Применяется в качестве оснований дорожек и площадок, верхнего слоя беговых дорожек и набивных футбольных полей. Из топливной гари готовят шлакоблочные изделия.

Кирпичный бой или щебень - отходы кирпичной промышленности при недожоге или пережоге кирпича, переработанные на камнедробилкев щебень. Красный кирпич однородного обжига - наиболее хороший исходный материал. В его составе допустимо наличие пережженного кирпича («железняка») до 30%.

Недожженный кирпич («недокал») не отличается крепостью и легко размокает, поэтому предел его допустимого содержания в щебне не более 10-15%. В садово-парковом строительстве применяют кирпичный щебень фракции 15-20 мм для оснований дорожек и площадок, а также кирпичную крошку фракции 0,1-5 мм для основополагающего материала специальных смесей спортивных площадок.

Кирпич клинкерный - искусственный камень с высокой прочностью, вырабатываемый из глины путем ее обжига при высоких температурах и обдуве. Применяется для устройства покрытий дорожек и тропинок, клинкерная крошка - основной материал для покрытия теннисных кортов.

Кирпич строительный - искусственный камень со средней прочностью, получаемый из глины путем обжига. Широко применяется для устройства подпорных стенок, бордюров, покрытий и нешироких дорожек, цветников.

Черепица - отходы производства покрытия сооружений, морозостойка и долговечна. Используется в молотом виде с крупностью зерен до 15 мм в основании набивных безгазонных полей и с крупностью зерен до 5 мм для создания верхнего покрова спортивных плоскостных сооружений.

Пиритовые огарки - отходы химической промышленности, работающей на железном или серном колчедане мелкозернистой структуры, темно-фиолетового цвета с розовым оттенком. Могут быть рядовыми с фракцией 1-10 мм и флотационными с фракцией менее 2 мм, состоят в основном из окиси железа - 95-97 % и серы 2,5-5 %. Являются антисептирующим материалом, предохраняющим древесину от гниения. Смесь из пиритовых огарков и опилок используют для устройства нижнего, упругого слоя плоскостных спортивных сооружений. Чтобы на дорожках и площадках с мягким покрытием не росла трава, следует вводить в специальную смесь верхнего слоя 5-10 % пиритовых огарков, прогрохоченных через грохот с ячейками 5×5 мм.

Зола угольная - продукт сгорания размельченного каменного угля в топках электростанций. Представляет собой порошок темно-серого цвета, содержащий мелкие песчаные и пылеватые частицы. Используется в смеси верхних мягких слоев дорожных одежд (до 70 % общего объема). Такой покров хорошо фильтрует влагу и делает покрытие мягким.

Шлам - отходы при производстве глинозема; мелкие, пористые, угловатые или окатанные камешки фракцией до 10 мм, розоватого или темно-красного цвета. Наиболее дешевый материал для верхнего покрытия дорожек и площадок.



- Искусственные материалы

«Искусственные материалы: пластмасса, пластик, полиэтилен».

Программное содержание:

Углублять представление детей об искусственных материалах: пластмасса, пластик, полиэтилен.

Уточнить знания детей о естественных и искусственных материалах.

Закрепить знания о свойствах и качествах пластмассы, пластика и полиэтилена.

Расширять представление детей о применении этих материалов в быту.

Воспитывать бережное отношение к природе и уважительное отношение к трудовой деятельности людей.

Материал к занятию :

Набор предметов, сделанных из пластмассы (банки для сыпучих продуктов, игрушки, пробки, ручки, ведро); из пластика (бутылки, ваза, одноразовая посуда); образцы полиэтилена, скатерть, полиэтиленовый пакет; образцы природных материалов (глина, дерево, кожа, уголь, песок).

Ход занятия .

Дети, мы с вами знаем о том, что предметы, которые нас окружают, сделаны из разных материалов. Одни из них человек нашёл в природе (это естественные, натуральные материалы). Назовите, что к ним относится? (глина, песок, дерево - их нам дают растения или люди добывают их из земли (уголь, нефть)).

(Показать образцы природных материалов).

А ещё есть материалы, которые получают на промышленных предприятиях. Они создаются руками человека или техникой, придуманной им. Эти материалы носят название, - вспомните какое? (рукотворные или искусственные).

Дети, посмотрите, у меня на столе лежат предметы (показать игрушки пластмассовые, ведро, пробки, телефон). Как вы думаете, из чего они сделаны?

Это пластмассовые предметы.

Как вы думаете, это природный или искусственный материал?

Искусственный. (Почему?)

Слово пластмасса обозначает «пластическая масса». Пластическая потому, что при сильном нагревании она превращается в массу, напоминающую пластилин, и из этой массы можно сделать любой предмет (как из пластилина). Затем пластмасса охлаждается и застывает, и получается предмет любой нужной формы.

А сейчас возьмите эти предметы в руки. Потрогайте. Что вы можете о них сказать? Они какие? (тяжёлые или лёгкие, мягкие или твёрдые, шершавые или гладкие).

А если посмотреть сквозь пластмассу? Она не прозрачная.

А если уронить предметы на пол, то они разобьются? Нет, они прочные.

Пластмасса очень практичный и дешёвый материал. Благодаря тому, что пластмасса обладает такими свойствами и качествами, как твёрдость, гладкость, лёгкий вес, прочность – люди стали широко применять предметы из пластмассы в своей жизни. Более того, без них уже невозможно представить нашу жизнь.

Назовите пластмассовые предметы, которые вам встречаются (игрушки, телефоны, часы, пуговицы, шприцы, корпус холодильника, компьютера; пластмассовые детали есть и в машинах, и на кораблях, и на самолётах).

Вот как много пластмассовых предметов, потому что они удобные в использовании и не сложные в исполнении.

Дети, на моём столе есть ещё одна группа предметов, сделанных из другого искусственного материала – он называется пластик. С предметами, сделанными из пластика, вы тоже часто встречаетесь. Вот, например, пластиковые бутылки, в которых продаётся газированная вода или соки. Они разные по размеру: большие и маленькие. Они удобны в использовании. А ещё есть пластиковая одноразовая посуда; вам она тоже, наверное, встречалась. Вот она, какая разноцветная (показать), чтобы было приятно ею пользоваться.

Потрогайте, пожалуйста, пластиковые предметы и скажите, какие они?

Лёгкие, твёрдые, гладкие, тонкие, пластик легко гнётся.

По сравнению с пластмассой, пластик более мягкий, пластичный. Менее прочный, если задеть чем-то острым или сильно загнуть, он может порваться. (Режется ножницами).

А сейчас перейдём к третьей группе предметов.

Вот, посмотрите – это пакеты, скатерть, плёнка пищевая. Они тоже встречаются нам каждый день. Сделаны они из искусственного материала, который называется (спросить, кто знает) – полиэтилен.

Возьмите образцы полиэтилена, потрогайте. Что вы можете сказать о свойствах полиэтилена?

Он мягкий, если крепко сжать в кулак – мнётся, шуршит (издаёт звук); если потянуть, то он сначала потянется, а затем порвётся. Значит, он не очень прочный. Лёгкий по весу. Может быть как прозрачный, так и не прозрачный.

Из полиэтилена делают занавески для ванной, т. к. полиэтилен не пропускает воду.

А ещё вы, наверное, видели как на даче, на огороде, мамы и бабушки делают парник (домик для растущих овощей). Там летом, благодаря полиэтилену, всегда тепло, даже жарко. Оно долго сохраняется, и посаженные овощи растут и созревают быстрее, т. к. очень любят тепло.

А теперь вы подумайте, и подскажите мне, где вы встречали полиэтилен?

Дети, представьте себе, что вы поиграли в пластмассовую игрушку, и она сломалась; попили из пластиковой бутылки, поели из одноразовой пластиковой посуды; использовали полиэтиленовые пакеты, они порвались, помялись – что вы тогда с ними делаете?

Выбрасываете. Часто люди выбрасывают это не в специальные места, а прямо на землю. Или ветер унёс лёгкий полиэтиленовый пакет из мусора, и не один! То возникает какая проблема? – Мы засоряем природу, засоряем нашу землю. У искусственных материалов пластмасса, пластик, полиэтилен есть одно отрицательное (плохое) свойство – они трудно уничтожаются. Им не страшны ни солнечные лучи, ни вода; они могут сотни лет пролежать в земле! А если каждый день это выкидывать, то сколько мусора может накопиться!

Один учёный говорил об этих искусственных материалах: « Вы можете их ломать, рубить, закапывать, но они всё равно отказываются умирать!»

А если их сжигать, то они выделяют вредный ядовитый дым, и мы загрязняем воздух.

Поэтому, если вы воспользовались чем-то пластмассовым, пластиковым, полиэтиленовым, то выбрасывать это необходимо только в специальные места для мусора. А затем машина это увезёт и на специальных заводах это переработают.

Подведение итога:

Сегодня мы с вами рассмотрели предметы, сделанные из пластмассы, пластика и полиэтилена. Это искусственные материалы, их создал человек.

Определили, какими свойствами и качествами они обладают. Вспомнили, где и как применяет человек предметы, сделанные из этих материалов в своей жизни.

А также вы теперь знаете, что использованные предметы, попадая в природу, засоряют её. Поэтому надо заботиться о природе, беречь её и правильно поступать.