Осветительные приборы

Оптимальная скорость движения теплоносителя в тепловых сетях. Об оптимальной скорости движения воды в трубопроводах теплосетей

Оптимальная скорость движения теплоносителя в тепловых сетях. Об оптимальной скорости движения воды в трубопроводах теплосетей

Сегодня мы расскажем, как отказаться от городской системы горячего водоснабжения, при этом не только навсегда забыть о слабом нагреве воды, но и сделать это максимально экономно. Эта статья раскроет некоторые подводные камни такого перехода и предоставит реальный расчет окупаемости.

Почему стоит отказаться от городского ГВС

Городская система ГВС известна многим своим печальным качеством услуг. Пользование ей не только часто влетает в копеечку, во многих квартирах вода подается недогретой до установленных норм и ее температура выше 40-50 °С практически не поднимается. К этому следует обязательно добавить несколько недель отсутствия горячей воды в период летних плановых отключений, когда владельцы вынуждены греть воду для бытовых и санитарных нужд буквально подручными методами.

Альтернатива есть: отказаться от подачи горячей воды в квартиру и нагревать ее самостоятельно, используя электрический или газовый водонагреватель . При этом вмешательства в черновую сантехнику минимальны, большинство приборов имеют простейшую схему обвязки и могут устанавливаться даже после завершения отделочных работ.

Что предстоит сделать:

  1. Обратиться в ЭСО или ЖКХ с запросом на отключение от системы городского ГВС. Если это возможно по проекту дома, получить технические условия.
  2. Установить водонагреватель и обвязать его.
  3. Предусмотреть возможность установки пломб на каждом отводе каждого из стояков ГВС. Оптимальный вариант — заглушки с петлями под опломбирование.
  4. В присутствии инспектора составить акт об отключении и наличии видимого разрыва трубопровода.

Почему это считается экономией

Выгода от перехода на самообеспечение горячей водой кажется очевидной, если учесть, что в стоимость одного кубометра заложены общие потери тепла по всей системе. Для примера рассмотрим частный случай для небольшой квартиры в московском регионе. По состоянию на июль 2015 года тарифы по региону на коммунальные услуги такие:

Семья из четырех человек в среднем в месяц потребляет 16 м 3 горячей воды, то есть платит за городское горячее водоснабжение 1933,12 руб. в месяц. Стоимость самой воды в тарифе ГВС — это 493,92 руб., оставшиеся 1439,20 руб. — это затраты на нагрев 16 м 3 воды до 50 °С, то есть по 89 руб. 95 коп. за 1 м 3 .

Как видно, установки нагрева воды в городской системе не очень экономные, потому что на нагрев одного кубометра в них тратится 17,9 кВт электроэнергии по одноставочному тарифу или 14,9 м 3 природного газа.

Срок окупаемости

Но будут ли бытовые приборы достаточно экономичными, чтобы окупить себя в обозримые сроки? Для упомянутой выше семьи из 4 человек необходимо около 500 литров горячей воды в сутки. Эта задача под силу напорному проточному водонагревателю мощностью 6-6,5 кВт или накопительному нагревателю на 120 литров с буферной емкостью и общей мощностью ТЭНов до 3 кВт.

Хороший и надежный накопительный обогреватель обойдется примерно в 10 000-20 000 рублей, а проточный — 15 000-30 000 рублей. Проточный установить будет несколько сложнее, так как все, что имеет электрическую мощность выше 3 кВт, должно подключаться отдельным кабелем с сечением жил от 4 мм 2 с обязательной организацией защитного заземления и отключения, а это дополнительные 3500 руб. Для бойлера же нужен только дифференциальный автомат стоимостью в 1400 руб. и обычная розетка на отдельной защитной группе.

Что касается сантехнической обвязки, она для обоих устройств одинакова. Поскольку водонагревательный прибор можно врезать практически в любую точку горячего и холодного водопроводов, для его подключения понадобится набор запорной арматуры и 6-8 метров трубы, что обойдется еще в 3000 руб. Итого, затраты на проточный водонагреватель и его установку составят 35 500 руб., а накопительный потянет на 30 400 руб.

Пример подключения накопительного водонагревателя: 1 — вентиль входящей холодной воды; 2 — предохранительный клапан; 3 — сливной вентиль; 4 — вентиль для воздуха при сливе воды; 5 — накопительный водонагреватель; 6 — дифференциальный автомат; 7 — к щитку; 8 — вода к потребителям

Накопительный водонагреватель объемом 120 литров мощностью 2 кВт тратит 2 часа для нагрева воды до 50 градусов. Для нагрева 1 м 3 ему потребуется 1000 / 120 х 2 х 2 = 33,33 кВт·ч. То есть для самоокупаемости необходимо, чтобы средняя стоимость электроэнергии для работы водонагревателя составляла менее 2,70 руб.

Проточный нагреватель при пропускной способности 3 л/мин за час нагреет 180 л воды, затратив на это 8 кВт·ч. То есть расход электроэнергии у него выше примерно на 30%. Можно поспорить, что накопительный водонагреватель потребляет энергию не только на непосредственный нагрев, но и на поддержание температуры, однако это кратковременные включения и такой поправкой можно пренебречь.

На самом деле экономны в этом отношении только газовые водонагреватели, да и стоят они дешевле электрических. При мощности в 24 кВт и протоке в 14 л/мин колонка прогреет кубометр воды до 70-80 °С примерно за 70 мин, затратив на это менее трех кубометров газа.

Так какой водонагреватель выбрать

Если в проекте квартиры есть возможность установить газовый нагреватель — именно так и нужно поступать. Даже полтысячи рублей в месяц за ГВС — это не деньги, при этом вода стабильной температуры, под хорошим напором и в полном объеме. Ни один электронагреватель на такое не способен.

Если дом не газифицирован, что в современном строительстве случается все чаще, использования электрических водонагревателей не избежать. Да, на лицо небольшая переплата, но зато насколько более комфортным становится быт! Тем более что можно не тратиться на дорогой нагреватель, а установить более дешевый.

Наибольший расход воды отмечается в вечернее и ночное время, когда тариф на электроэнергию составляет 4,63 и 1,43 руб. за 1 кВт. Средняя суточная стоимость киловатта для работы ГВС — около 1,8 руб. А при такой стоимости цена электрического горячего водоснабжения вполне сопоставима с городским. По крайней мере, горячая вода не обходится дороже, а вся система надежна и долговечна. Наиболее экономны в таком случае накопительные водонагреватели большого объема, подключенные через контактор с таймером для работы только в ночную и полупиковую суточные зоны. Срок их окупаемости обычно составляет около 3 лет, проточные окупятся за 5-7 лет. Если вода подается в дом недогретой, то срок окупаемости значительно сократится, ведь расход горячей воды значительно снизится.

Нагреватели, за исключением безнапорных проточных, запрещено размещать в ванной комнате по требованиям электробезопасности. Поэтому лучшее место для размещения накопительных водонагревателей — это туалет, а для напорных проточных — кухня или ниша кухонного гарнитура.

В обоих местах есть подвод и холодной, и горячей воды, в трубы можно легко врезаться даже тройниками в месте подключения кухонной мойки. Не забывайте, что накопительный водонагреватель необходимо снабжать обратным клапаном, а проточный — сетчатым фильтром.

При проведении дальнейших расчетов мы будем использовать все основные гидравлические параметры, в том числе расход теплоносителя, гидравлическое сопротивление арматуры и трубопроводов, скорость теплоносителя и т.д. Между данными параметрами есть полная взаимосвязь, на что и нужно опираться при расчетах. сайт

К примеру, если повысить скорость теплоносителя, одновременно будет повышаться гидравлическое сопротивление у трубопровода. Если повысить расход теплоносителя, с учетом трубопровода заданного диаметра, одновременно возрастет скорость теплоносителя, а также гидравлическое сопротивление. И чем больше будет диаметр трубопровода, тем меньше будет скорость теплоносителя и гидравлическое сопротивление. На основе анализа данных взаимосвязей, можно превратить гидравлический (программа расчета есть в сети) в анализ параметров эффективности и надежности работы всей системы, что, в свою очередь, поможет снизить расходы на использующиеся материалы.

Отопительная система включает в себя четыре базовых компонента: теплогенератор, отопительные приборы, трубопровод, запорная и регулирующая арматура. Данные элементы имеют индивидуальные параметры гидравлического сопротивления, которые нужно учесть при проведении расчета. Напомним, что гидравлические характеристики не отличаются постоянством. Ведущие производители материалов и отопительного оборудования в обязательном порядке указывают информацию по удельным потерям давления (гидравлические характеристики) на производимое оборудование или материалы.

Например, расчет для полипропиленовых трубопроводов компании FIRAT существенно облегчается за счет приведенной номограммы, в которой указываются удельные потери давления или напора в трубопроводе для 1 метра погонного трубы. Анализ номограммы позволяет четко проследить обозначенные выше взаимосвязи между отдельными характеристиками. В этом и состоит основная суть гидравлических расчетов.


Гидравлический расчет систем водяного отопления: расход теплоносителя

Думаем, вы уже провели аналогию между термином «расход теплоносителя» и термином «количество теплоносителя». Так вот, расход теплоносителя будет напрямую зависеть от того, какая тепловая нагрузка приходится на теплоноситель в процессе перемещения им тепла к отопительному прибору от теплогенератора.

Гидравлический расчет подразумевает определение уровня расхода теплоносителя, касательно заданного участка. Расчетный участок представляет собой участок со стабильным расходом теплоносителя и с постоянным диаметром.

Гидравлический расчет систем отопления: пример

Если ветка включает в себя десять киловаттных радиаторов, а расход теплоносителя рассчитывался на перенос энергии тепла на уровне 10 киловатт, то расчетный участок будет представлять собой отрезом от теплогенератора до радиатора, который в ветке является первым. Но только при условии, что данный участок характеризуется постоянным диаметром. Второй участок располагается между первым радиатором и вторым радиатором. При этом, если в первом случае высчитывался расход переноса 10-киловаттной тепловой энергии, то на втором участке расчетное количество энергии будет составлять уже 9 киловатт, с постепенным уменьшением по мере проведения расчетов. Гидравлическое сопротивление должно рассчитываться одновременно для подающего и обратного трубопровода.

Гидравлический расчет однотрубной системы отопления подразумевает вычисление расхода теплоносителя

для расчетного участка по следующей формуле:

Gуч= (3,6*Qуч)/(с*(tг-tо))

Qуч –тепловая нагрузка расчетного участка в ваттах. К примеру, для нашего примера нагрузка тепла на первый участок будет составлять 10000 ватт или 10 киловатт.

с (удельная теплоемкость для воды) – постоянная, равная 4,2 кДж/(кг °С)

tг –температура горячего теплоносителя в отопительной системе.

tо –температура холодного теплоносителя в отопительной системе.

Гидравлический расчет системы отопления: скорость потока теплоносителя

Минимальная скорость теплоносителя должна принимать пороговое значение 0,2 — 0,25 м/с. Если скорость будет меньше, из теплоносителя будет выделяться избыточный воздух. Это приведет к появлению в системе воздушных пробок, что, в свою очередь, может служить причиной частичного или полного отказа отопительной системы. Что касается верхнего порога, то скорость теплоносителя должна достигать 0,6 — 1,5 м/с. Если скорость не будет подниматься выше данного показателя, то в трубопроводе не будут образовываться гидравлические шумы. Практика показывает, что оптимальный скоростной диапазон для отопительных систем составляет 0,3 — 0,7 м/с.

Если есть необходимость рассчитать диапазон скорости теплоносителя более точно, то придется брать в расчет параметры материала трубопроводов в отопительной системе. Точнее, вам понадобится коэффициент шероховатости для внутренней трубопроводной поверхности. К примеру, если речь идет о трубопроводах из стали, то оптимальной считается скорость теплоносителя на уровне 0,25 — 0,5 м/с. Если трубопровод полимерных или медный, то скорость можно увеличить до 0,25 – 0,7 м/с. Если хотите перестраховаться, внимательно почитайте, какая скорость рекомендуется производителями оборудования для систем отопления. Более точный диапазон рекомендованной скорости теплоносителя зависит от материала трубопроводов применяемых в системе отопления а точнее от коэффициента шероховатости внутренней поверхности трубопроводов. Например для стальных трубопроводов лучше придерживаться скорости теплоносителя от 0,25 до 0,5 м/с для медных и полимерных (полипропиленовые, полиэтиленовые, металлопластиковые трубопроводы) от 0,25 до 0,7 м/с либо воспользоваться рекомендациями производителя при их наличии.

Расчет гидравлического сопротивления системы отопления: потеря давления

Потеря давления на определенном участке системы, которую также называют термином «гидравлическое сопротивление», представляет собой сумму всех потерь на гидравлическое трение и в локальных сопротивлениях. Данный показатель, измеряемый в Па, высчитывается по формуле:

ΔPуч=R* l + ((ρ * ν2) / 2) * Σζ

где
ν — скорость используемого теплоносителя, измеряемая в м/с.

ρ — плотность теплоносителя, измеряемая в кг/м3.

R –потери давления в трубопроводе, измеряемые в Па/м.

l – расчетная длина трубопровода на участке, измеряемая в м.

Σζ — сумма коэффициентов локальных сопротивлений на участке оборудования и запорно-регулирующей арматуры.

Что касается общего гидравлического сопротивления, то оно представляет собой сумму всех гидравлических сопротивлений расчетных участков.

Индивидуальные системы гидравлического отопления

Чтобы правильно провести гидравлический расчет системы отопления, необходимо принять во внимание некоторые эксплуатационные параметры самой системы. Сюда входят скорость теплоносителя, его расход, гидравлическое сопротивление запорной арматуры и трубопровода, инертность и так далее.

Может показаться, что эти параметры никак друг с другом не связаны. Но это ошибка. Связь между ними прямая, поэтому нужно при анализе опираться именно на них.

Приведем пример этой взаимосвязи. Если увеличить скорость теплоносителя, то сразу же возрастет сопротивление трубопровода. Если увеличить расход, то увеличивается скорость горячей воды в системе, а, соответственно, и сопротивление. Если увеличить диаметр труб, то снижается скорость движения теплоносителя, а значит, снижается сопротивление трубопровода.

Система отопления включает в себя 4 основных компонента:

  1. Отопительный котел.
  2. Трубы.
  3. Приборы отопления.
  4. Запорная и регулирующая арматура.

Каждый из этих компонентов имеет свои параметры сопротивления. Ведущие производители обязательно их указывают, потому что гидравлические характеристики могут изменяться. Они во многом зависят от формы, конструкции и даже от материала, из которого изготовлены составляющие отопительной системы. И именно эти характеристики являются самыми важными при проведении гидравлического анализа отопления.

Что же такое гидравлические характеристики? Это удельные потери давления. То есть, в каждом виде отопительного элемента, будь то труба, вентиль, котел или радиатор, всегда присутствует сопротивление со стороны конструкции прибора или со стороны стенок. Поэтому, проходя по ним, теплоноситель теряет свое давление, а, соответственно, и скорость.

Расход теплоносителя

Расход теплоносителя

Чтобы показать, как производится гидравлический расчет отопления, возьмем для примера простую отопительную схему, в которую входят отопительный котел и радиаторы отопления с киловаттным потреблением тепла. И таких радиаторов в системе 10 штук.

Здесь важно правильно разбить всю схему на участки, и при этом точно придерживаться одного правила - на каждом участке диаметр труб не должен меняться.

Итак, первый участок - это трубопровод от котла до первого отопительного прибора. Второй участок - это трубопровод между первым и вторым радиатором. И так далее.

Как происходит теплоотдача, и каким образом понижается температура теплоносителя? Попадая в первый радиатор, теплоноситель отдает часть тепла, которое снижается на 1 киловатт. Именно на первом участке гидравлический расчет производится под 10 киловатт. А вот на втором участке уже под 9. И так далее с понижением.

Обратите внимание, что для подающего контура и для обратки данный анализ выполняется отдельно.

Существует формула, по которой можно рассчитать расход теплоносителя:

G = (3,6 х Qуч) / (с х (tr-to))

Qуч - это расчетная тепловая нагрузка участка. В нашем примере для первого участка она равна 10 кВт, для второго 9.

с - удельная теплоемкость воды, показатель постоянный и равный 4,2 кДж/кг х С;

tr - температура теплоносителя при входе на участок;

to - температура теплоносителя при выходе с участка.

Скорость теплоносителя

Схематический расчет

Существует минимальная скорость горячей воды внутри отопительной системы, при которой само отопление работает в оптимальном режиме. Это 0,2-0,25 м/с. Если она уменьшается, то из воды начинает выделяться воздух, что ведет к образованию воздушных пробок. Последствия - отопление не будет работать, и котел закипит.

Это нижний порог, а что касается верхнего уровня, то он не должен превышать 1,5 м/с. Превышение грозит появлением шумов внутри трубопровода. Наиболее приемлемый показатель - 0,3-0,7 м/с.

Если необходимо провести точный подсчет скорости движения воды, то придется принять во внимание параметры материала, из которого изготовлены трубы. Особенно в этом случае учитывается шероховатость внутренних поверхностей труб. К примеру, по стальным трубам горячая вода движется со скоростью 0,25-0.5 м/с, по медным 0,25-0,7 м/с, по пластиковым 0,3-0,7 м/с.

Выбор основного контура

Гидравлическая стрелка отделяет котловые и отопительные контура

Здесь необходимо рассматривать отдельно две схемы - однотрубную и двухтрубную. В первом случае расчет нужно вести через самый нагруженный стояк, где установлено большое количество отопительных приборов и запорной арматуры.

Во втором случае выбирается самый загруженный контур. Именно на его основе и нужно делать подсчет. Все остальные контуры будет иметь гидравлическое сопротивление гораздо ниже.

В том случае, если рассматривается горизонтальная развязка труб, то выбирается самое загруженное кольцо нижнего этажа. Под загруженностью понимают тепловую нагрузку.

Заключение

Отопление в доме

Итак, подведем итог. Как видите, чтобы сделать гидравлический анализ отопительной системы дома, необходимо учесть многое. Пример специально был простым, поскольку разобраться, скажем, с двухтрубной системой отопления дома в три или более этажей очень сложно. Для проведения такого анализа придется обратиться в специализированное бюро, где профессионалы разберут весь «по косточкам».

Необходимо будет учесть не только вышеописанные показатели. Сюда придется включить потерю давления, снижение температуры, мощность циркуляционного насоса, режим работы системы и так далее. Показателей много, но все они присутствуют в ГОСТах, и специалист быстро разберется, что к чему.

Единственное, что необходимо предоставить для расчета - это мощность отопительного котла, диаметр труб, наличие и количество запорной арматуры и мощность насоса.

Для того, чтобы система водяного отопления правильно фунциклировала необходимо обеспечить нужную скорость теплоносителя в системе. Если скорость будет маленькая, обогрев помещения будет очень медленный и дальние радиаторы будут значительно холоднее ближних. Наоборот, если же скорость теплоносителя будет слишком большой, то сам теплоноситель не будет успевать нагреваться в котле, температура всей системы отопления будет ниже. Добавится и уровень шума. Как видим скорость теплоносителя в системе отопления – очень важный параметр. Разберёмся же подробнее – какая должна быть самая оптимальная скорость.

Системы отопления где происходит естественная циркуляция, как правило, имеют сравнительно низкую скорость теплоносителя. Перепад давления в трубах достигается правильным расположением котла, расширительного бачка и самих труб – прямых и обратки. Только правильный расчёт перед монтажом, позволяет добиться правильного, равномерного движения теплоносителя. Но всё равно инерционность отопительных систем с естественной циркуляцией жидкости очень большая. Результат – медленный прогрев помещений, маленький КПД. Главный плюс такой системы – это максимальная независимость от электроэнергии, нет электрических насосов.

Чаще всего в домах используется система отопления с принудительной циркуляцией теплоносителя. Основным элементом такой системы является циркуляционный насос. Именно он ускоряет движение теплоносителя, от его характеристик зависит скорость жидкости в системе отопления.

Что влияет на скорость теплоносителя в системе отопления:

Схема системы отопления,
- вид теплоносителя,
- мощность, производительность циркуляционного насоса,
- из каких материалов изготовлены трубы и их диаметр,
- отсутствие воздушных пробок и засоров в трубах и радиаторах.

Для частного дома наиболее оптимальным будет скорость теплоносителя в пределах 0,5 – 1,5 м/с.
Для административно-бытовых зданиях – не более 2 м/с.
Для производственных помещений – не более 3 м/с.
Верхний предел скорости теплоносителя выбирается, в основном, из-за уровня шума в трубах.

Многие циркуляционные насосы имеют регулятор скорости потока жидкости, так что возможно подобрать наиболее оптимальную именно для вашей системы. Правильно нужно выбирать и сам насос. Не надо брать с большим запасом мощности, так как будет большее потребление электроэнергии. При большой протяжённости системы отопления, большом количестве контуров, этажности и так далее лучше устанавливать несколько насосов меньшей производительности. Например, отдельно поставить насос на тёплый пол, на второй этаж.

Скорость воды в системе отопления
Скорость воды в системе отопления Для того, чтобы система водяного отопления правильно фунциклировала необходимо обеспечить нужную скорость теплоносителя в системе. Если скорость будет маленькая,

Скорость движения воды в трубах системы отопления.

Thượng Tá Quân Đội Nhân Dân Việt Nam

Ох и дурют там вашего брата!
Ты чего хочешь-то? «Военную тайну» (как на самом деле надо делать) узнать, или курсовик сдать? Если только курсовик — то по методичке, которую преподаватель и написал и ничего иного не знает и знать не хочет. И если сделаешь как надо , еще и не примет.

1. Есть минимальная скорость движения воды. Это 0.2-0.3 м/с, из условия удаления воздуха.

2. Есть максимальная скорость, которая ограничивается, чтобы трубы не шумели. Теоретически это надо расчетом проверять и некоторые программы это делают. Практически же знающие люди пользуются указаниями старинного СНиП еще 1962 года, где была таблица предельных скоростей. Оттуда и по всем справочникам разошлось. Это 1,5 м/с при диаметре 40 и более, 1 м/с для диаметра 32, 0,8 м/с для диаметра 25. Для более мелких диаметров были другие ограничения но потом на них наплевали.

Допустимая скорость и теперь есть в пукте 6.4.6 (аж до 3 м/с) и в приложении Ж СНиП 41-01-2003, только «доценты с кандидатами» постарались, чтобы бедные студенты не смогли разобраться. Там и к уровню шума привязано, и к кмс и к прочей хрени.

Но допустимая — это совсем не оптимальная. Про оптимальную в СНиП вообще не упоминается.

3. Но все-таки есть и оптимальная скорость. Не какая-то 0,8-1,5, а самая настоящая. Вернее, не сама скорость, а оптимальный диаметр трубы (скорость-то не сама важна), причем с учетом всех факторов, включая металлоемкость, трудоемкость монтажа, комплектации да и гидравлической устойчивости.

Вот секретные формулы:

0.037*G^0.49 — для сборных магистралей
0.036*G^0.53 — для стояков отопления
0.034*G^0.49 — для ммагистралей ветки, пока нагрузка не уменьшится до 1/3
0.022*G^0.49 — для концевых участков ветки с нагрузкой в 1/3 от всей ветки

Здесь везде G — расход в т/ч, а получается внутренний диаметр в метрах, который надо округлить до ближайшего большего стандартного.

Ну, а правильные пацаны вообще никакими скоростями не задаются, а просто делают в жилых домах все стояки постоянного диаметра и все магистрали постоянного диаметра. Но тебе еще рано знать, какие именно диаметры.

Скорость движения воды в трубах системы отопления
Скорость движения воды в трубах системы отопления. Отопление


Гидравлический расчёт трубопроводов системы отопления

Как видно из названия темы в расчёте участвуют такие параметры, связанные с гидравликой, как расход теплоносителя, скорость потока теплоносителя, гидравлическое сопротивление трубопроводов и арматуры. При этом между указанными параметрами существует полная взаимосвязь.

Например при увеличении скорости теплоносителя увеличивается гидравлическое сопротивление трубопровода. При увеличении расхода теплоносителя через трубопровод определённого диаметра скорость теплоносителя возрастает и естественно растёт гидравлическое сопротивление при этом изменяя диаметр в большую сторону скорость и гидравлическое сопротивление снижаются. Анализируя эти взаимосвязи гидравлический расчёт превращается в своего рода анализ параметров для обеспечения надёжной и эффективной работы системы и снижения затрат на материалы.

Система отопления состоит из четырёх основных компонентов это трубопроводы, отопительные приборы, теплогенератор, регулирующая и запорная арматура. Все элементы системы имеют свои характеристики гидравлического сопротивления и должны учитываться при расчёте. При этом, как было сказано выше, гидравлические характеристики не являются постоянными. Производители отопительного оборудования и материалов обычно приводят данные по гидравлическим характеристикам (удельные потери давления) на производимое ими материалы или оборудование.

Номограмма для гидравлического расчёта полипропиленовых трубопроводов производства фирмы FIRAT (Фират)

Удельные потери давления (потеря напора) трубопровода указано для 1 м.п. трубы.

Проанализировав номограмму вы более наглядно увидите ранее указанные взаимосвязи между параметрами.

Итак суть гидравлического расчёта мы определили.

Теперь пройдёмся отдельно по каждому из параметров.

Расход теплоносителя

Расход теплоносителя, для более широкого понимания количество теплоносителя, напрямую зависит от тепловой нагрузки которую теплоноситель должен переместить от теплогенератора к отопительному прибору.

Конкретно для гидравлического расчёта требуется определить расход теплоносителя на заданном расчётном участке. Что такое расчётный участок. Расчетным участком трубопровода принимается участок постоянного диаметра с неизменным расходом теплоносителя. Например если в состав ветки входят десять радиаторов (условно каждый прибор мощностью 1 кВт) а общий расход теплоносителя рассчитан на перенос теплоносителем тепловой энергии равной 10 кВт. То первым участком будет участок от теплогенератора до первого в ветке радиатора (при условии что по всему участку постоянный диаметр) с расходом теплоносителя на перенос 10 кВт. Второй участок будет находится между первым и вторым радиатором с расходом на перенос тепловой энергии 9 кВт и так далее вплоть до последнего радиатора. Рассчитывается гидравлическое сопротивление как подающего трубопровода так и обратного.

Расход теплоносителя (кг/час) для участка рассчитывается по формуле:

Q уч — тепловая нагрузка участка Вт. Например для вышеуказанного примера тепловая нагрузка первого участка равна 10 кВт или 1000 Вт.

с = 4,2 кДж/(кг·°С) — удельная теплоемкость воды

t г — расчетная температура горячего теплоносителя в системе отопления, °С

t о — расчетная температура охлажденного теплоносителя в системе отопления, °С.

Скорость потока теплоносителя.

Минимальный порог скорости теплоносителя рекомендуют принимать в пределах 0,2 — 0,25 м/с. На меньших скоростях начинается процесс выделения избыточного воздуха содержащегося в теплоносителе что может приводить к образованию воздушных пробок и как следствие полный либо частичный отказ работы системы отопления. Верхний порог скорости теплоносителя лежит в диапазоне 0,6 — 1,5 м/с. Соблюдение верхнего порога скорости позволяет избежать возникновение гидравлических шумов в трубопроводах. На практике было определён оптимальный диапазон скорости 0,3 — 0,7 м/с.

Более точный диапазон рекомендованной скорости теплоносителя зависит от материала трубопроводов применяемых в системе отопления а точнее от коэффициента шероховатости внутренней поверхности трубопроводов. Например для стальных трубопроводов лучше придерживаться скорости теплоносителя от 0,25 до 0,5 м/с для медных и полимерных (полипропиленовые, полиэтиленовые, металлопластиковые трубопроводы) от 0,25 до 0,7 м/с либо воспользоваться рекомендациями производителя при их наличии.

Скорость потока теплоносителя
Скорость потока теплоносителя. Гидравлический расчёт трубопроводов системы отопления Как видно из названия темы в расчёте участвуют такие параметры, связанные с гидравликой, как расход


Скорость — движение — теплоноситель

Скорости движения теплоносителей в технологических аппаратах обычно обеспечивают турбулентный режим движения потоков, при котором, как известно, происходит интенсивный обмен количеством движения, энергией и массой между соседними участками потока за счет хаотических турбулентных пульсаций. По физической сущности турбулентный перенос теплоты является конвективным переносом.

Скорости движения теплоносителя в трубопроводах систем отопления с естественной циркуляцией обычно составляют 0 05 — 0 2 м / с, а при искусственной циркуляции — 0 2 — 1 0 м / с.

Скорость движения теплоносителя влияет на скорость сушки кирпича. Из приведенных исследований следует, что ускорение сушки кирпича яри увеличении скорости движения теплоносителя более заметно, когда эта скорость больше 0 5 м / сек. В первый же период сушки значительное повышение скорости движения теплоносителя сказывается губительным для качества кирпича, если теплоноситель недостаточно влажный.

Скорость движения теплоносителя в трубках теплоутилизаторов должна быть во всех режимах эксплуатации не менее 0 35 м / с при теплоносителе воде и не менее 0 25 м / с при незамерзающем теплоносителе.

Скорости движения теплоносителя в системах отЬпления определяют гидравлическим расчетом и экономическими соображениями.

Скорость движения теплоносителей, определяемая сечением каналов теплообменного аппарата, колеблется в очень широких пределах и без большой погрешности не может быть принята или установлена до решения вопроса о типе и размерах теплообменного аппарата.

Скорость движения теплоносителя w сильно влияет на теплоотдачу. Чем выше скорость, тем интенсивнее протекает теплообмен.

Скорость движения теплоносителя в сушильном канале не должна превышать 5 — 6 м / мин во избежание образования бугристой поверхности рабочего слоя и чрезмерно напряженной структуры. Практически скорость теплоносителя выбирают в пределах 2 — 5 м / мин.

Скорость движения теплоносителя в водяных системах отопления допускается до 1 — 1 5 м / с в жилых и общественных зданиях и до 3 м / с в производственных по мещениях.

Увеличение скорости движения теплоносителя выгодно только до определенного предела. Если эта скорость будет выше оптимальной, газы не успеют отдать материалу полностью свое тепло и выйдут из барабана с высокой температурой.

Увеличение скорости движения теплоносителя может быть достигнуто и в элементных (батарейных) теплообменниках, представляющих собой батарею из нескольких последовательно соединенных друг с другом теплообменников.

С увеличением скорости движения теплоносителей увеличиваются Re w / / v, коэффициент теплоотдачи а и плотность теплового потока q a At. Однако вместе со скоростью пропорционально w2 растет гидравлическое сопротивление и расход мощности на насосы, прокачивающие теплоноситель через теплообменный аппарат. Существует оптимальное значение скорости, определяемое сопоставлением увеличения интенсивности теплообмена и более интенсивного роста гидравлических сопротивлений с увеличением скорости.

Для повышения скорости движения теплоносителя в межтрубном пространстве устраивают продольные и поперечные перегородки.

Большая Энциклопедия Нефти и Газа
Большая Энциклопедия Нефти и Газа Скорость — движение — теплоноситель Скорости движения теплоносителей в технологических аппаратах обычно обеспечивают турбулентный режим движения потоков, при