Измерительные

Вырастить рассаду петунии в домашних условиях. Правильное выращивание петунии из семян в домашних условиях

Вырастить рассаду петунии в домашних условиях. Правильное выращивание петунии из семян в домашних условиях

Воздействие электрического тока на человека

Электрический ток оказывает на человека термическое, электролитическое, биологическое и механическое воздействие.

Термическое воздействие тока проявляется ожогами отдель­ных участков тела, нагревом до высокой температуры орга­нов, что вызывает в них значительные функциональные рас­стройства.

Электролитическое воздействие в разложении различных жидкостей организма (воды, крови, лимфы) на ионы, в резуль­тате чего происходит нарушение их физико-химического состава и свойств.

Биологическое действие тока проявляется в виде раздражения и возбуждения живых тканей организма, судорожного сокраще­ния мышц, а также нарушения внутренних биологических про­цессов.

Действие электрического тока на человека приводит к трав­мам или гибели людей.

Электрические травмы разделяются на общие (электрические удары) и местные электротравмы (рис. 2.26).

Наибольшую опасность представляют электрические удары.

Электрический удар - это возбуждение живых тканей про­ходящим через человека электрическим током, сопровождаю­щееся судорожными сокращениями мышц; в зависимости от исхода воздействия тока различают четыре степени электриче­ских ударов:

I- судорожное сокращение мышц без потери сознания;

II-судорожное сокращение мышц с потерей сознания, но с
сохранившимися дыханием и работой сердца;

III - потеря сознания и нарушение сердечной деятельности или дыхания (или того и другого вместе);

IV - клиническая смерть, т. е. отсутствие дыхания и крово­обращения.


Кроме остановки сердца и прекращения дыхания причиной смерти может быть электрический шок - тяжелая нервно-реф­лекторная реакция организма на сильное раздражение электри­ческим током. Шоковое состояние длится от нескольких десят­ков минут до суток, после чего может наступить гибель или вы­здоровление в результате интенсивных лечебных мероприятий.

Местные электротравмы - это местные нарушения целостно­сти тканей организма. К местным электротравмам относятся:

электрический ожог - бывает токовым и дуговым; токо­вый ожог связан с прохождением тока через тело человека и является следствием преобразования электрической энергии в тепловую (как правило, возникает при относи­тельно невысоких напряжениях электрической сети); при высоких напряжениях электрической сети между провод­ником тока и телом человека может образоваться электри­ческая дуга, возникает более тяжелый ожог - дуговой, т. к. электрическая дуга обладает очень большой темпера­турой - свыше 3500 "С;

электрические знаки - пятна серого или бледно-желтого цвета на поверхности кожи человека, образующиеся в мес­те контакта с проводником тока; как правило, знаки име­ют круглую или овальную форму с размерами 1-5 мм; эта травма не представляет серьезной опасности и достаточно быстро проходит;

металлизация кожи - проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги; в зависимости от места поражения травма может быть очень болезненной, с течением времени пораженная кожа сходит; поражение же глаз может закончиться ухудшением или даже потерей зрения;

электроофтальмия - воспаление наружных оболочек глаз под действием потока ультрафиолетовых лучей, испускае­мых электрической дугой; по этой причине нельзя смот­реть на сварочную электродугу; травма сопровождается сильной болью и резью в глазах, временной потерей зре­ния, при сильном поражении лечение может быть слож­ным и длительным; на электрическую дугу без специальных защитных очков или масок смотреть нельзя;

механические повреждения возникают в результате резких судорожных сокращений мышц под действием проходяще­го через человека тока, при непроизвольных мышечных сокращениях могут произойти разрывы кожи, кровенос­ных сосудов, а также вывихи суставов, разрывы связок и даже переломы костей; кроме того, при испуге и шоке че­ловек может упасть с высоты и получить травму.

Как видим, электрический ток очень опасен и обращение с ним требует большой осторожности и знания мер обеспечения элетробезопасности.

Параметры, определяющие тяжесть поражения электриче­ским током (рис. 2.27).


Основными факторами, определяющими степень поражения электрическим током, являются: сила тока, протекающего через человека, частота тока, время воздействия и путь протекания тока через тело человека.

Сила тока. Протекание через организм переменного тока промышленной частоты (50 Гц), широко используемого в про­мышленности и в быту, человек начинает ощущать при силе тока 0,6...1,5 мА (мА - миллиампер равен 0,001 А). Этот ток на­зывают пороговым ощутимым током.

Большие токи вызывают у человека болезненные ощущения, которые с увеличением тока усиливаются. Например, при токе 3...5 мА раздражающее действие тока ощущается всей кистью, при 8... 10 мА - резкая боль охватывает всю руку и сопровожда­ется судорожными сокращениями мышц кисти и предплечья.

При 10... 15 мА судороги мышц руки становятся настолько сильными, что человек не может их преодолеть и освободиться от проводника тока. Такой ток называется пороговым неотпус-кающим током.

При токе величиной 25...50 мА происходят нарушения в ра­боте легких и сердца, при длительном воздействии такого тока может произойти остановка сердца и прекращение дыхания.

Начиная с величины 100 мА протекание тока через человека вызывает фибрилляцию сердца - судорожные неритмичные со­кращения сердца; сердце перестает работать как насос, перека­чивающий кровь. Такой ток называется пороговым фибрилляциейным током. Ток более 5 А вызывает немедленную остановку сердца, минуя состояние фибрилляции.

Частота тока. Наиболее опасен ток промышленной часто­ты - 50 Гц. Постоянный ток и ток больших частот менее опа­сен, и пороговые значения для него больше. Так, для постоян­ного тока:

Пороговый ощутимый ток - 5...7 мА;

Пороговый неотпускающий ток - 50...80 мА;

Фибрилляционный ток - 300 мА.

Путь протекания тока. Опасность поражения электрическим током зависит от пути протекания тока через тело человека, так как путь определяет долю общего тока, которая проходит через сердце. Наиболее опасен путь «правая рука-ноги» (как раз пра­вой рукой чаще всего работает человек). Затем по степени сни­жения опасности идут: «левая рука-ноги», «рука-рука», «но­ги-ноги». На рис. 2.28 изображены возможные пути протекания тока через человека.

Время воздействия электрического тока. Чем продолжитель­нее протекает ток через человека, тем он опаснее. При протека­нии электрического тока через человека в месте контакта с про­водником верхний слой кожи (эпидермис) быстро разрушается, электрическое сопротивление тела уменьшается, ток возрастает, и отрицательное действие электротока усугубляется. Кроме того, с течением времени растут (накапливаются) отрицательные по­следствия воздействия тока на организм.



Рис. 2.28. Характерные пути тока в теле человека: 1 - рука-рука; 2 - правая рука-ноги; 3 - левая рука-ноги; 4 - правая рука-правая нога; 5 - правая рука-левая нога; 6 - левая рука-левая нога; 7 - левая рука-правая нога; 8 - обе руки-обе ноги; 9 - нога-нога; 10 - голова-руки; 11 - голова-ноги; 12 - голова-правая рука: 13 - голова-левая рука; 14 - голова-правая нога; 15 - голова-левая нога

Определяющую роль в поражающем действии тока играет ве­личина силы электрического тока, протекающего через организм человека. Электрический ток возникает тогда, когда создается замкнутая электрическая цепь, в которую оказывается включен­ным человек. По закону Ома сила электрического тока (I) равна электрическому напряжению U, деленному на сопротивление электрической цепи R:

Таким образом, чем больше напряжение, тем больше и опас­нее электрический ток. Чем больше электрическое сопротивле­ние цепи, тем меньше ток и опасность поражения человека.

Электрическое сопротивление цепи равно сумме сопротивле­ний всех участков, составляющих цепь (проводников, пола, обу­ви и др.). В общее электрическое сопротивление обязательно входит и сопротивление тела человека.

Электрическое сопротивление тела человека при сухой, чис­той и неповрежденной коже может изменяться в довольно ши­роких пределах - от 3 до 100 кОм (1 кОм = 1000 Ом), а иногда и больше. Основной вклад в электрическое сопротивление челове­ка вносит наружный слой кожи - эпидермис, состоящий из ороговевших клеток. Сопротивление внутренних тканей тела не­большое - всего лишь 300...500 Ом. Поэтому при нежной, влаж­ной и потной коже или повреждении эпидермиса (ссадины, раны) электрическое сопротивление тела может быть очень не­большим. Человек с такой кожей наиболее уязвим для электри­ческого тока. У девушек более нежная кожа и тонкий слой эпи­дермиса, нежели у юношей; у мужчин, имеющих мозолистые руки, электрическое сопротивление тела может достигать очень больших величин, и опасность их поражения электротоком сни­жается. В расчетах на электробезопасность обычно принимают величину сопротивления тела человека, равную 1000 Ом.

Электрическое сопротивление изоляции проводников тока, если она не повреждена, составляет, как правило, 100 и более килоом.

Электрическое сопротивление обуви и основания (пола) зависит от материала, из которого сделано основание и подошва обуви, и их состояния - сухие или мокрые (влажные). Например, сухая подошва из кожи имеет сопротивление примерно 100 кОм, влажная подошва - 0,5 кОм; из резины соответственно 500 и 1,5 кОм. Сухой асфальтовый пол имеет сопротивление около 2000 кОм, мокрый - 0,8 кОм; бетонный соответственно 2000 и 0,1 кОм; деревянный - 30 и 0,3 кОм; земляной - 20 и 0,3 кОм; из керамической плитки - 25 и 0,3 кОм. Как видим, при влаж­ных или мокрых основаниях и обуви значительно возрастает электроопасность.

Поэтому при пользовании электричеством в сырую погоду, осо­бенно на воде, необходимо соблюдать особую осторожность и при­нимать повышенные меры обеспечения электробезопасности.

Для освещения, бытовых электроприборов, большого коли­чества приборов и оборудования на производстве, как правило, используется напряжение 220 В. Существуют электросети на 380, 660 и более вольт; во многих технических устройствах при­меняются напряжения в десятки и сотни тысяч вольт. Такие тех­нические устройства представляют исключительно высокую опасность. Но и значительно меньшие напряжения (220, 36 и даже 12 В) могут быть опасными в зависимости от условий и электрического сопротивления цепи R.

Предельно допустимые напряжения прикосновения и токи для человека устанавливаются ГОСТ 12.1.038-82 (табл. 2.13) при аварийном режиме работы электроустановок постоянного тока час­тотой 50 и 400 Гц. Для переменного тока частотой 50 Гц допус­тимое значение напряжения прикосновения составляет 2 В, а силы тока - 0,3 мА, для тока частотой 400 Гц соответственно - 2 В и 0,4 мА; для постоянного тока - 8 В и 1 мА. Указанные данные приведены для продолжительности воздействия тока не более 10 мин в сутки.

Таблица 2.13. Предельно допустимые уровни напряжения и токов

Род тока Нормируемая величина Предельно допустимые уровни, не более, при продолжительности воз­действия тока 4___
0,01...0,08 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Св. 1,0
Переменный, 50 Гц 16 5 36 6
Переменный, 400 Гц 36 8
Постоянный 40 15

Электрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает - ток есть. Если типичное сопутствующее току явление наблюдается - ток в цепи есть, и т. д.

Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.


В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, - это тоже тепловое действие тока.

Выделяемое на участке цепи количество теплоты зависит от приложенного к этому участку напряжения, значения протекающего тока и от времени его протекания ().

Преобразовав закон Ома для участка цепи, можно для вычисления количества теплоты использовать либо напряжение, либо силу тока, но тогда обязательно необходимо знать и сопротивление цепи, ведь именно оно ограничивает ток, и вызывает, по сути, нагрев. Или, зная ток и напряжение в цепи, можно так же легко найти количество выделяемой теплоты.

Химическое действие электрического тока

Электролиты, содержащие ионы, под действием постоянного электрического тока - это и есть химическое действие тока. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) - положительные ионы (катионы). То есть вещества, содержащиеся в электролите, в процессе электролиза выделяются на электродах источника тока.

Например, в раствор определенной кислоты, щелочи или соли погружают пару электродов, и при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом - отрицательный. Ионы содержащиеся в растворе начинают откладываться на электроде с противоположным зарядом.

Скажем, при электролизе медного купороса (CuSO4), катионы меди Cu2+ с положительным зарядом движутся к отрицательно заряженному катоду, где они получают недостающий заряд, и становятся нейтральными атомами меди, оседая на поверхности электрода. Гидроксильная группа -OH отдаст электроны на аноде, и в результате выделится кислород. Положительно заряженные катионы водорода H+ и отрицательно заряженные анионы SO42- останутся в растворе.

Химическое действие электрического тока используется в промышленности, например, для разложения воды на составляющие ее части (водород и кислород). Также электролиз позволяет получать некоторые металлы в чистом виде. С помощью электролиза покрывают тонким слоем определенного металла (никеля, хрома) поверхности - это и т.д.

В 1832 году Майкл Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит. Если через электролит пропускается в течение времени t постоянный ток I, то справедлив первый закон электролиза Фарадея:

Здесь коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

При наличии электрического тока в любом проводнике (в твердом, жидком или газообразном) наблюдается магнитное поле вокруг проводника, то есть проводник с током приобретает магнитные свойства.

Так, если к проводнику, по которому течет ток, поднести магнит, например в виде магнитной стрелки компаса, то стрелка повернется перпендикулярно проводнику, а если намотать проводник на железный сердечник, и пропустить по проводнику постоянный ток, то сердечник станет электромагнитом.

В 1820 году Эрстед открыл магнитное действие тока на магнитную стрелку, а Ампер установил количественные закономерности магнитного взаимодействия проводников с током.


Магнитное поле всегда порождается током, то есть движущимися электрическими зарядами, в частности - заряженными частицами (электронами, ионами). Противоположно направленные токи взаимно отталкиваются, однонаправленные токи взаимно притягиваются.

Такое механическое взаимодействие происходит благодаря взаимодействию магнитных полей токов, то есть это, в первую очередь, - магнитное взаимодействие, а уж потом - механическое. Таким образом, магнитное взаимодействие токов первично.

В 1831 году, Фарадей установил, что изменяющееся магнитное поле от одного контура порождает ток в другом контуре: генерируемая ЭДС пропорциональна скорости изменения магнитного потока. Логично, что именно магнитное действие токов используется по сей день и во всех трансформаторах, а не только в электромагнитах (например, в промышленных).

В простейшем виде световое действие электрического тока можно наблюдать в лампе накаливания, спираль которой разогревается проходящим через нее током до белого каления и излучает свет.

Для лампы накаливания на световую энергию приходится около 5% от подведенной электроэнергии, остальные 95% которой преобразуется в тепло.

Люминесцентные лампы более эффективно преобразуют энергию тока в свет - до 20% электроэнергии преобразуется в видимый свет благодаря люминофору, принимающему от электрического разряда в парах ртути или в инертном газе типа неона.


Более эффективно световое действие электрического тока реализуется в светодиодах. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда - электроны и дырки - рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Лучшие излучатели света относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), например GaAs, InP, ZnSe или CdTe. Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). КПД светодиода как источника света доходит в среднем до 50%.

Как было отмечено выше, каждый проводник, по которому течет электрический ток, образует вокруг себя . Магнитные действия превращаются в движение, например, в электродвигателях, в магнитных подъемных устройствах, в магнитных вентилях, в реле и т. д.


Механическое действие одного тока на другой описывает закон Ампера. Впервые этот закон был установлен Андре Мари Ампером в 1820 для постоянного тока. Из следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных - отталкиваются.

Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна току в проводнике и векторному произведению элемента длины проводника на магнитную индукцию.

На этом принципе основана , где ротор играет роль рамки с током, ориентирующейся во внешнем магнитном поле статора вращающим моментом M.

Электрический ток - направленное (упорядоченное) движение заряженных частиц. Допустимым следует считать ток, при котором человек может самостоятельно освободиться от электрической цепи. Его величина зависит от скорости прохождения тока через тело человека: при длительности действия более 10 с - 2 мА, а при 120 с и менее - 6 мА.

Безопасным напряжением считают

36 В (для светильников местного стационарного освещения, переносных светильников и т. д.) и 12 В (для переносных светильников при работе внутри металлических резервуаров, котлов). Но при определенных ситуациях и такие напряжения могут представлять опасность.

Безопасные уровни напряжения получают из осветительной сети, используя для этого понижающие трансформаторы. Распространить применение безопасного напряжения на все электрические устройства невозможно.

В производственных процессах используются два рода тока - постоянный и переменный . Они оказывают различное воздействие на организм при напряжениях до 500 В. Опасность поражения постоянным током меньше, чем переменным. Наибольшую опасность представляет ток частотой 50 Гц, которая является стандартной для отечественных электрических сетей.

При эксплуатации и ремонте электрического оборудования и сетей человек может оказаться в сфере действия электрического поля или непосредственного соприкосновения с находящимися под напряжением проводниками электрического тока. В результате прохождения тока через человека может произойти нарушение его жизнедеятельных функций. Опасность поражения людей электрическим током на производстве возникает при несоблюдении мер безопасности, а также при отказе или неисправности электрического оборудования. По сравнению с другими видами производственного травматизма электротравматизм составляет небольшой процент, однако по числу травм с тяжелым и особенно летальным исходом занимает одно из первых мест. На производстве из-за несоблюдения правил электробезопасности происходит 75% электропоражений.

Поражение электрическим током происходит, когда человеческий организм вступает в контакт с источником напряжения. Коснувшись проводника, который находится под напряжением, человек становится частью электросети, по которой начинает протекать электрический ток. Как известно, организм человека состоит из большого количества солей и жидкости, что является хорошим проводником электричества, поэтому действие электрического тока на организм человека может быть летальным.

В соответствии с ГОСТ Р 12.1.019-2009 «Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты» степень опасного и вредного воздействия на человека электрического тока зависит от многих факторов:

  • от величины и рода протекающего тока (переменный ток является более опасным, чем постоянный);
  • продолжительности его воздействия (чем больше время действия тока на человека, тем тяжелее последствия);
  • пути протекания (самую большую опасность представляет ток, протекающий через головной и спинной мозг, область сердца и органов дыхания (легкие));
  • от физического и психологического состояния человека (организм человека обладает неким сопротивлением, это сопротивление варьируется в зависимости от состояния человека).

Минимальная сила тока, которую способен почувствовать человеческий организм составляет 1 мА. При повышении тока более 1 мА человек начинает чувствовать себя некомфортно, возникают болезненные сокращения мышц, при увеличении тока до 12-15 мА возникает судорожное сокращение мышц. Контролировать свою мышечную систему человек уже не в состоянии и собственными силами не может разорвать контакт с источником тока. Этот ток называется неотпускаемым. Действие электрического тока более 25 мА приводит к параличу мышц органов дыхания, в результате чего человек может просто-напросто задохнуться. При дальнейшем увеличении тока возникает фибрилляция сердца.

Сила тока - главный фактор, от которого зависит исход поражения: чем больше сила тока, тем опаснее последствия. Сила тока (в амперах) зависит от приложенного напряжения (в вольтах) и электрического сопротивления организма (в омах).

По степени воздействия на человека различают три пороговых значения тока:

  • ощутимый — электрический ток, который при прохождении через организм вызывает ощутимое раздражение (минимальная величина, которую начинает ощущать человек при переменном токе с частотой 50 Гц, составляет 0,6–1,5 мА);
  • неотпускающий — ток, при котором непреодолимые судорожные сокращения мышц руки, ноги или других частей тела не позволяют пострадавшему самостоятельно оторваться от токоведущих частей (10,0–15,0 мА);
  • фибрилляционный — ток, вызывающий при прохождении через организм фибрилляцию сердца - быстрые хаотические и разновременные сокращения волокон сердечной мышцы, приводящие к его остановке (90,0–100,0 мА). Через несколько секунд происходит остановка дыхания. Чаще всего смертельные исходы наступают от напряжения 220 В и ниже. Именно низкое напряжение заставляет беспорядочно сокращаться сердечные волокна и приводит к моментальному сбою в работе желудочков сердца.

Путь, по которому электрический ток проходит через тело человека, во многом определяет степень поражения организма. Возможны следующие варианты направлений движения тока по телу человека:

  • человек обеими руками дотрагивается до токоведущих проводов (частей оборудования), в этом случае возникает направление движения тока от одной руки к другой, т. е. “рука-рука” , эта петля встречается чаще всего;
  • при касании одной рукой к источнику путь тока замыкается через обе ноги на землю “рука-ноги” ;
  • при пробое изоляции токоведущих частей оборудования на корпус под напряжением оказываются руки работающего, вместе с тем стекание тока с корпуса оборудования на землю приводит к тому, что и ноги оказываются под напряжением, но с другим потенциалом, так возникает путь тока “руки-ноги” ;
  • при стекании тока на землю от неисправного оборудования земля поблизости получает изменяющийся потенциал напряжения, и человек, наступивший обеими ногами на такую землю, оказывается под разностью потенциалов, т. е. каждая из этих ног получает разный потенциал напряжения, в результате возникает шаговое напряжение и электрическая цепь “нога-нога” , которая случается реже всего и считается наименее опасной;
  • прикосновение головой к токоведущим частям может вызвать в зависимости от характера выполняемой работы путь тока на руки или на ноги - “голова-руки” , “голова-ноги” .

Все варианты различаются степенью опасности. Наиболее опасными являются варианты “голова-руки” , “голова-ноги” , “руки-ноги” (петля полная ). Это объясняется тем, что в зону поражения попадают жизненно важные системы организма - головной мозг, сердце.

Продолжительность воздействия тока влияет на конечный исход поражения. Чем дольше воздействуeт электрический ток на организм, тем тяжелее последствия. Условия внешней среды, окружающей человека в ходе производственной деятельности, могут повысить опасность поражения электрическим током. Увеличивают опасность поражения током повышенная температура и влажность, металлический или другой токопроводящий пол.

Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм человека, электроток производит:

  • термическое воздействие , характеризующееся нагревом кожи и тканей до высокой температуры вплоть до ожогов;
  • электролитическое воздействие , заключающееся в разложении органической жидкости, в том числе крови, и нарушении ее физико-химического состава;
  • механическое воздействие , приводящее к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара из тканевой жидкости и крови (механическое действие связано с сильным сокращением мышц вплоть до их разрыва);
  • биологическое действие , проявляющееся в раздражении и возбуждении живых тканей и сопровождающееся судорожными сокращениями мышц)
  • световое воздействие , выражающееся в поражении слизистых оболочек глаз.

Выделяют несколько основных видов поражения, которые возникают в результате действия электрического тока на человека. Электрические травмы - местное повреждение тканей организма в результате действием электрического тока или электрической дуги, которые условно разделяют на общие (электрический удар), местные и смешанные.

Наиболее распространенной электротравмой являются электрические ожоги , примерно 60% от всех случаев поражения электрическим током. Электрические ожоги - наиболее распространенная электротравма, возникает в результате локального воздействия тока на ткани. Ожоги бывают двух видов - контактный и дуговой. Контактный ожог является следствием преобразования электрической энергии в тепловую и возникает в основном в электроустановках напряжением до 1 000 В. Электрический ожог – это как бы аварийная система, защита организма, так как обуглившиеся ткани в силу большей сопротивляемости, чем обычная кожа, не позволяют электричеству проникнуть вглубь, к жизненно важным системам и органам. Иначе говоря, благодаря ожогу ток заходит в тупик.

Когда организм и источник напряжения соприкасались неплотно, ожоги образуются на местах входа и выхода тока. Если ток проходит по телу несколько раз разными путями, возникают множественные ожоги. Множественные ожоги чаще всего случаются при напряжении до 380 В из-за того, что такое напряжение “примагничивает” человека и требуется время на отсоединение. Высоковольтный ток такой “липучестью” не обладает. Наоборот, он отбрасывает человека, но и такого короткого контакта достаточно для серьезных глубоких ожогов. При напряжении свыше 1 000 В случаются электротравмы с обширными глубокими ожогами, поскольку в этом случае температура поднимается по всему пути следования тока.

При напряжении свыше 1 000 В в результате случайных коротких замыканий может возникнуть и дуговой ожог. Дуговой ожог обусловлен воздействием электрической дуги, создающей высокую температуру. Дуговой ожог возникает при работе в электроустановках различных напряжений, часто является следствием случайных коротких замыканий в установках выше 1000 В и до 10 кВ или ошибочных операций персонала. Поражение возникает от перемены электрической дуги или загоревшейся от нее одежды.

Электрические знаки и метки — проявляются на коже человека, который подвергся действию тока, в виде пятен серого или бледно-желтого цвета. Обычно электрические знаки имеют круглую или овальную форму с углубленным в центре размером от 1 до 5 мм. Как правило, они безболезненны, затвердевают подобно мозоли, со временем омертвевший слой кожи сходит самостоятельно.

Металлизация кожи — возникает в результате проникновения в верхний слой кожи мелких частиц металла, который оплавился под действием электрической дуги. Кожа в месте поражения становится болезненной, становится жесткой, принимает темный металлический оттенок.

Электроофтальмия – возникает в результате воспаления наружной оболочки глаз под действием ультрафиолетовых лучей электрической дуги. Для защиты от светового воздействия электрического тока необходимо пользоваться защитными очками и масками с цветными стеклами.

Механические повреждения проявляются под действием тока непроизвольным судорожным сокращением мышц. Это может привести к разрыву кожи, кровеносных сосудов и нервных тканей. Такие травмы возникают при контакте с напряжением ниже 380 В, когда человек не теряет сознания и пытается самостоятельно освободиться от источника тока.

Из выше перечисленных повреждений, которые возникают в результате действия электрического тока на организм человека, наиболее опасными являются электрические удары. Электрический удар сопровождается возбуждением живых тканей организма током, который через него проходит. В этот момент возникают непроизвольные судорожные сокращения мышц.

В зависимости от того, какие последствия возникают после электрического удара, их разделяют на четыре степени воздействия :

Еще в 18 веке было доказано, что электрический ток способен оказывать сильное негативное влияние на человеческий организм. Но только спустя около века были сделаны первые описания электротравм, получаемых от воздействия постоянного тока (1863 г.) и переменного (1882 г.).

Что такое электротравма и электротравматизм?

Электротравма – повреждение человеческого организма электрическим током (электрической дугой).

Явление электротравматизма объясняется последовательностью следующих особенностей: в организме человека, случайно оказавшегося под воздействием напряжения, возникает защитная реакция. Иными словами, противостояние электрическому току начинает происходить в момент его непосредственного протекания через наше тело. В таких ситуациях происходит непросто сильное воздействие токов на организм человека, но и нарушение кровообращения, дыхания, сердечно-сосудистой и нервной системы и т. п.

Электротравму предугадать нелегко, поскольку ее получение происходит не только при непосредственном контакте с токоведущими элементами, но и при взаимодействии с электрической дугой и шаговым напряжением.

Электротравматизм хоть и случается реже других видов производственных травм, но при этом находится на первых местах среди тех повреждений, которые оцениваются тяжелыми и приводящими к летальному исходу. Наибольший процент травм, вызванных влиянием электрического тока, происходит в процессе работы на электрических установках высокого напряжения (до 1000 В). Главной причиной электротравм служит частое использование именно таких типов электрических установок, а также недостаточная квалификация работников. Безусловно, существуют агрегаты с более высоким показателем напряжения (свыше 1000 В), но, как ни странно, в их эксплуатации поражения током редки. Такая закономерность объясняется высоким профессионализмом и компетентностью обслуживающего высоковольтные установки персонала.

Самыми распространенными причинами поражения током являются:

  • прямой телесный контакт с неизолированными токоведущими частями;
  • прикосновение к деталям электрического оборудования, изготовленным из металла;
  • прикосновение к неметаллическим элементам, находящимся под сильным напряжением;
  • взаимодействие с током шагового напряжения или с электрической дугой.

Классификация поражений электрическим током

Воздействие электрического тока при протекании через человеческий организм бывает термическим , электролитическим и биологическим .

    • Термическое воздействие– сильный нагрев тканей, что нередко сопровождается ожогами.
    • Электролитическое воздействие– разложение органических жидкостей, к которым относится и кровь.
    • Биологическое воздействие – нарушение биоэлектрических процессов, раздражение и возбуждение живых тканей, частое и беспорядочное сокращение мышц.

Поражения электротоком делятся на два основных вида:

  • Электротравмы – локальные поражения тканей или органов (ожоги, знаки, электрометаллизация).
    • Электрический ожог – итог сильного нагрева током (свыше одного ампера) тканей человека. Ожог, поражающий только кожный покров, называется поверхностным; повреждающий глубокие ткани тела является внутренним. Также электрические ожоги делятся по принципу возникновения: контактные, дуговые, смешанные.
    • Электрический знак внешне выглядит как серое или бледно-желтое пятно, напоминающее мозоль. Возникает данная травма в области контакта с токоведущим элементом. В основном, знаки не сопровождаются сильной болью и по прошествии небольшого количества времени сходят.
    • Электрометаллизация – явление, при котором кожа человека пропитывается металлическими микрочастицами. Это происходит в момент, когда металл под влиянием тока испаряется и разбрызгивается. Пораженная кожа приобретает цвет, соответствующий проникшим соединениям металла, и становится шероховатой. Процесс электрометаллизации не опасен, а эффект после него по истечении некоторого времени пропадает аналогично электрическим знакам. Куда более серьезные последствия имеет металлизация органов зрения.

Помимо ожогов, знаков и электрометаллизации в число электротравм также входит электроофтальмия и различные механические повреждения . Последние являются итогом непроизвольных сокращений мышц в момент протекания тока. К ним относятся сильные разрывы кожного покрова, кровеносных сосудов, нервов, а также вывихи и переломы. Электроофтальмия – явление, представляющее собой сильное воспаление глазных яблок после воздействия УФ-лучей электрической дуги.


  • Электрический удар выражается в форме сильного возбуждения живых тканей после воздействия на них электрического тока. Как правило, данное явление сопровождается беспорядочным судорожным сокращением мышц. Исход электроударов бывает разным, на основе чего они и делятся на пять видов :
    • без потери сознания;
    • с потерей сознания, сопровождающееся нарушением функционирования сердца и дыхания;
    • с потерей сознания, но без сбоев в работе сердечно-сосудистой системы и без нарушения дыхания;
    • клиническая смерть;
    • электрический шок.

Два последних вида стоит рассмотреть более подробно.

Клиническая смерть иначе называется также «мнимой» смертью, характеризующаяся длительностью в 6-8 минут. Данное явление считается переходным состоянием от жизни к смерти, которое сопровождается прекращением работы сердца и приостановлением дыхания. По прошествии вышеуказанного периода времени начинается необратимый процесс гибели клеток коры головного мозга, что заканчивается биологической смертью.

Распознать мнимую смерть можно по следующим признакам:

    • фибрилляция сердца (т.е. разрозненное сокращение его мышечных волокон, сопровождающееся нарушением синхронной деятельности и насосной функции) или его полная остановка;
    • отсутствие пульса и дыхания;
    • синеватый цвет кожи;
    • расширенные зрачки без реагирования на свет, как следствие недостатка кислорода в коре головного мозга.

Электрический шок представляет собой тяжелую нервнорефлекторную реакцию человеческого организма на воздействие тока. Данное явление сопровождается сильными расстройствами дыхания, функционирования кровеносной и нервной системы и др.

Организм моментально реагирует на влияние электрического тока, вступая в фазу сильного возбуждения. В этот период происходит полная реакция на причинение боли, сопровождающаяся повышением артериального давления и другими процессами. Фаза возбуждения сменяется фазой торможения, которой свойственно истощение нервной системы, слабое дыхание, попеременное падение и учащение пульса, снижение артериального давления. Все перечисленные признаки приводят о рганизм в состояние глубокой депрессии. Электрический шок может длиться как несколько десятков минут, так и несколько суток. Итог может быть полярно разным: либо полное выздоровление, либо необратимая биологическая смерть.


Предельные значения действия тока на человека

От показателя силы тока напрямую зависит его влияние на организм человека:

  • 0,6-1,5 мА при переменном токе (50Гц) и 5-7 мА при постоянном токе – ощутимый ток;
  • 10-15 мА при переменном токе (50Гц) и 50-80 мА при постоянном токе – не отпускающий ток, который в момент прохождения через организм провоцирует сильные судорожные сокращения мышц той руки, которая сжимает проводник;
  • 100 мА при переменном (50Гц) и 300 мА при постоянном токе – фибрилляционный ток, который приводит к фибрилляции сердца.
Влияние различных факторов на степень воздействия тока

Итог влияния электрического тока на организм человека также напрямую зависит от следующих факторов:

  • длительность протекания тока. То есть, чем дольше человек находился под воздействием, тем выше опасность и серьезней нанесенные травмы;
  • специфические особенности каждого организма в данный момент: масса тела, физическое развитие, состояние нервной системы, наличие каких-либо заболеваний, алкогольное или наркотическое опьянение и др.;
  • «фактор внимания», т.е. подготовленность к возможности получения электрического удара;
  • путь тока сквозь человеческое тело. Например, более серьезную опасность несет прохождение тока через сердце, легкие, мозг. В случае, если ток обошел жизненно важные органы, риск серьезных поражений резко снижается. На сегодняшний день зафиксирован самый популярный путь прохождения тока, который называется «петлей тока» - правая рука-ноги. Петли, отнимаемые работоспособность человека более чем на трое суток, представляют собой пути рука-рука (40%), правая рука-ноги (20%), левая рука-ноги (17%).

Знание влияния электрического тока на человеческий организм крайне необходимо. Это поможет Вам в чрезвычайных ситуациях оказать правильную пострадавшему.

Торговая сеть "Планета Электрика" обладает широким ассортиментом различных средств защиты при различных работах, с которым более подробно можно ознакомиться