В квартире

Специфические методы селекции растений. Особенности селекции

Специфические методы селекции растений. Особенности селекции

Основными методами селекции являются отбор, гибридизация (с использованием гетерозиса и цитоплазматической мужской стерильности), полиплоидия и мутагенез.

Отбор и его творческая роль

В основе селекционного процесса лежит искусственный отбор . В сочетании с генетическими методами он позволяет создавать сорта, породы и штаммы с заранее определенными признаками и свойствами. В селекции различают два основных типа отбора: массовый и индивидуальный.

Массовый отбор - это выделение группы особей по внешним, фенотипическим признакам без проверки их генотипа. Например, при массовом, или стихийном, отборе из всей популяции кур той или иной породы в хозяйствах оставляют для размножения птиц с яйценоскостью 200-250 яиц, живой массой не менее 1,5 кг, определенной окраски, не проявляющих инстинкты высиживания и т. д. Все остальные куры выбраковываются. При этом потомство каждой курицы и петуха оценивается только по фенотипу. Следовательно, массовый отбор может дать хорошие результаты только при высоком коэффициенте наследуемости ценных признаков, избранных селекционером.

Массовый отбор наиболее эффективен в отношении качественных признаков, контролируемых одним или несколькими генами. Вместе с тем он редко бывает успешным по полигенным признакам с низким коэффициентом наследования. В этом случае необходимо применять индивидуальный, или методический, отбор.

При индивидуальном отборе (по генотипу) получают и оценивают потомство каждого отдельного растения или животного в ряду поколений при обязательном контроле наследования интересующих селекционера признаков. На последующих этапах отбора используют только тех особей, которые дали наибольшее число потомков с высокими показателями. В результате появляется возможность оценивать наследственные качества отдельных особей, т. е. способность передавать свойства потомству.

Значение индивидуального отбора особенно велико в тех отраслях сельскохозяйственного производства, где имеется возможность получения от одного организма большого количества потомков. Так, используя искусственное осеменение, от одного быка можно получить до 35000 телят с помощью глубокого замораживания семени, сохраняющегося долгие годы. Поэтому уже теперь во многих странах мира существуют банки спермы животных с ценными генотипами.

Отбор в селекции отличается наибольшей эффективностью в том случае, если он сочетается с определенными типами скрещиваний.

Методы гибридизации (типы скрещивания) в селекции

Все разнообразие типов скрещиваний сводится к инбридингу и аутбридингу. Инбридинг - это близкородственное (внутрипородное или внутрисортовое), а аутбридинг - неродственное (межпородное или межсортовое) скрещивание.

При инбридинге в качестве исходных форм используются братья и сестры или родители и потомство (отец - дочь, мать - сын, двоюродные братья - сестры и т. д.). Этот тип скрещивания применяют в тех случаях, когда желают перевести большинство генов породы в гомозиготное состояние и, как следствие, закрепить хозяйственно ценные признаки, сохраняющиеся у потомков. Такое скрещивание в определенной степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности.

Вместе с тем при инбридинге часто наблюдается ослабление животных, их постепенное вырождение, обусловленное гомозиготизацией рецессивных аллелей. При этом гомозиготизация по генам, контролирующим изучаемый признак, происходит тем быстрее, чем более близкородственные скрещивания используют при инбридинге. Для избежания этого явления необходимо проводить строгий отбор особей, обладающих ценными хозяйственными признаками.

У растений чистые линии также обладают пониженной жизнеспособностью, что, вероятно, связано с переходом в гомозиготное состояние всех рецессивных мутаций, которые в основном являются вредными.

Чистые линии, полученные в результате инбридинга, отличаются не только различными признаками, но и степенью снижения жизнеспособности. Если эти чистые линии скрещивать между собой, то обычно наблюдается эффект гетерозиса .

Неродственное скрещивание между особями одной породы или между особями разных пород (кроссбридинг) животных позволяет поддерживать свойства или улучшать их в ряду следующих поколений гибридов. Аутбридинг повышает уровень гетерозиготности потомства и гетерогенности популяции.

Полиплоидия и отдаленная гибридизация

При создании новых сортов растений селекционерами широко используется метод автополиплоидии , который приводит к увеличению размеров клеток и всего растения вследствие умножения числа наборов хромосом. Кроме того, избыток хромосом повышает их устойчивость к патогенным организмам (вирусам, грибам, бактериям) и ряду других неблагоприятных факторов, например к радиации: при повреждении одной или даже двух гомологичных хромосом остаются неповрежденными другие такие же. Полиплоидные особи жизнеспособнее диплоидных.

Около 80 % современных культурных растений являются полиплоидами. Среди них хлебные злаки, овощные и плодово-ягодные культуры, цитрусовые, технические, лекарственные и декоративные растения, которые гораздо более урожайны, чем исходные диплоидные сорта. Так, триплоидная сахарная свекла отличается от обычной не только большей урожайностью вегетативной массы и более крупными размерами корнеплодов, но и повышенной их сахаристостью, а также устойчивостью к болезням. Однако триплоиды стерильны, поэтому необходимо каждый раз получать гибридные семена от скрещивания диплоидной и тетраплоидной форм. Успешному решению этой проблемы способствовало открытие мужской стерильности свеклы. Стерильность триплоидных гибридов может иметь положительное значение при получении бессемянных плодов, например винограда и арбуза.

Ценные результаты дает использование в селекции явления аллополиплоидии, основой которого служит метод отдаленной гибридизации , т. е. скрещивания организмов, относящихся к разным видам и даже родам. Например, получены межвидовые полиплоидные гибриды капусты и редьки, ржи и пшеницы. Гибридизация пшеницы (Triticum) и ржи (Secale) позволила получить ряд форм, объединенных общим названием тритикале . Они обладают высокой урожайностью пшеницы и зимостойкостью и неприхотливостью ржи, устойчивостью ко многим болезням, в том числе к линейной ржавчине, являющейся одним из главных факторов, ограничивающих урожайность пшеницы.

На основе гибридизации пшеницы и пырея российским академиком Н. В. Цициным получены пшенично-пырейные гибриды, обладающие высокой урожайностью и устойчивостью к полеганию. Однако отдаленные гибриды, как правило, бесплодны. Это связано с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. Для восстановления плодовитости у межвидовых гибридов в 1924 г. советский генетик Г. Д. Карпеченко предложил использовать удвоение числа хромосом (полиплоидию) у отдаленных гибридов.

Г. Д. Карпеченко проводил скрещивание редьки и капусты. Число хромосом у этих растений одинаково (2n = 18). Соответственно их гаметы несут по 9 хромосом. Гибрид капусты и редьки имеет 18 хромосом, но он бесплоден, так как хромосомы капусты и редьки в мейозе не конъюгируют, поэтому процесс образования гамет не может протекать нормально. В результате удвоения числа хромосом в бесплодном гибриде оказалось 36 хромосом, слагающихся из двух полных диплоидных наборов редьки и капусты. Это создало нормальные возможности для мейоза; хромосомы капусты и хромосомы редьки конъюгировали между собой. Каждая гамета несла по одному гаплоидному набору редьки и капусты (9 + 9 = 18). В зиготе вновь оказалось 36 хромосом; межвидовой гибрид стал плодовитым. По фенотипу этот новый растительный организм совмещал признаки редьки и капусты, например в строении стручка.

Получение экспериментальным путем полиплоидных животных представляет большую трудность, поэтому такие формы животных - редкость. Так, советскому ученому генетику Б. Л. Астаурову путем межвидовой гибридизации удалось получить полиплоидную форму тутового шелкопряда. На сегодняшний день есть уже полиплоидные рыбы, птицы (например, куры), однако внедрение полиплоидных пород животных в практику сельского хозяйства - дело будущего.

Спонтанный и индуцированный мутагенез

Спонтанные мутанты используются преимущественно в селекции растений. Так, на основе мутанта желтого безалкалоидного люпина получено несколько сортов сладкого люпина, которые выращивают на корм скоту. Люпин, содержащий алкалоиды, для этой цели непригоден, поскольку животные его не едят.

Большое число мутантов известно у плодовых культур, которые используются как новые сорта или в гибридизации с другими формами. Один из наиболее известных спонтанных мутантов кукурузы opaque, отличающийся высоким содержанием аминокислоты лизина в зерне, используется для создания так называемых высоколизиновых гибридов кукурузы.

В последние десятилетия во многих странах мира развернуты работы по получению индуцированных мутантов. Индуцированные рентгеновыми лучами мутанты были выделены у многих злаков (ячменя, пшеницы, ржи и др.). Они отличаются не только повышенной урожайностью, но и укороченным побегом. Такие растения устойчивы к полеганию и имеют заметные преимущества при машинной уборке. Кроме того, короткая и прочная соломина позволяет вести дальнейшую селекцию на увеличение размера колоса и массы семян без опасения, что повышение урожая зерна приведет к полеганию растений.

Особенно успешно индуцированный мутагенез применяют в селекции микроорганизмов.

Таблица 54. Основные методы селекции (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Методы Селекция животных Селекция растений
Подбор родительских пар По хозяйственно ценным признакам и по экстерьеру (совокупности фенотипических признаков) По месту их происхождения (географически удаленных) или генетически отдаленных (неродственных)
Гибридизация: а) неродственная (аутбридинг) Скрещивание отдаленных пород, отличающихся контрастными признаками, для получения гетерозиготных популяций и проявления гетерозиса. Получается бесплодное потомство Внутривидовое, межвидовое, межродовое скрещивание, ведущее к гетерозису, для получения гетерозиготных популяций, а также высокой продуктивности
б) близкородственная (инбридинг) Скрещивание между близкими родственниками для получения гомозиготных (чистых) линий с желательными признаками Самоопыление у перекрестноопыляющихся растений путем искусственного воздействия для получения гомозиготных (чистых) линий
Отбор: а) массовый Не применяется Применяется в отношении перекрестноопыляющихся растений
б) индивидуальный Применяется жесткий индивидуальный отбор по хозяйственно ценным признакам, выносливости, экстерьеру Применяется в отношении самоопыляющихся растений, выделяются чистые линии – потомство одной самоопыляющейся особи
Метод испытания производителей по потомству Используют метод искусственного осеменения от лучших самцов-производителей, качества которых проверяют по многочисленному потомству Не применяется
Экспериментальное получение полиплоидов Не применяется Применяется в генетике и селекции для получения более продуктивных, урожайных форм

В селекции растений широко применяют гибридизацию и отбор – массовый (без учета генотипа) и индивидуальный. В растениеводстве по отношению к перекрестноопыляющимся растениям нередко применяется массовый отбор. При таком отборе в посеве сохраняют растения только с желательными качествами. При повторном посеве снова отбирают растения с определенными признаками. Индивидуальный отбор сводится к выделению отдельных особей и получению от них потомства. Индивидуальный отбор приводит к выделению чистой линии – группы генетически однородных (гомозиготных) организмов. Путем отбора были выведены многие ценные сорта культурных растений. Для внесения в генофонд создаваемого сорта растений или породы животных ценных генов и получения оптимальных комбинаций признаков применяют гибридизацию с последующим отбором. При скрещивании разных пород животных или сортов растений, а также при межвидовых скрещиваниях в первом поколении гибридов повышается жизнеспособность и наблюдается мощное развитие. Это явление получило название гибридной силы, или гетерозиса. Оно объясняется переходом многих генов в гетерозиготное состояние и взаимодействием благоприятных доминантных генов. При последующих скрещиваниях гибридов между собой гетерозис затухает вследствие выщепления гомозигот.

Используют также полиплоидию, благодаря которой выведены высокоурожайные полиплоидные сорта сахарной свеклы, хлопчатника, гречихи и др. Таким путем Г. Д. Карпеченко (1935) получил межвидовой капустно-редечный гибрид. Каждая из исходных форм имела в половых клетках по 9 хромосом. В этом случае клетки полученного от них гибрида имели 18 хромосом. Но некоторые яйцеклетки и пыльцевые зерна содержали все 18 хромосом (диплоиды), а при их скрещивании создано растение с 36 хромосомами, которое оказалось плодовитым. Так была доказана возможность использования полиплоида для преодоления нескрещиваемости и бесплодия при отдаленной гибридизации.

Один из приемов селекции – выведение чистых линий путем многократного принудительного самоопыления растений: потомство такого растения становится гомози-готным по всем генам; в дальнейшем скрещивают особи двух чистых линий, что резко повышает урожайность гибридов первого поколения, их жизнестойкость. Это явление называется гетерозисом. Однако в последующих поколениях гетерозис снижается, урожайность уменьшается, и поэтому в практике используют только гибриды первого поколения.

Методами скрещивания и индивидуального отбора П. П. Лукьяненко были выведены высокопродуктивные кубанские сорта пшеницы: Безостая 1, Аврора, Кавказ; В. Н. Ремесло на Украине получил сорт Мироновская 808, а затем более урожайные сорта Юбилейная 50, Харьковская 63 и др. В. С. Пустовойт со своими сотрудниками этими методами создал на Кубани сорт подсолнечника, содержащий до 50–52% масла в семенах.

Преодоление бесплодия межвидовых гибридов. Впервые это удалось осуществить в. начале 20-х годов советскому генетику Г. Д. Карпеченко при скрещивании редьки и капусты. Это вновь созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки занимали как бы промежуточное положение и состояли из двух половинок, из которых одна напоминала стручок капусты, другая – редьки.

Искусственный мутагенез. Естественные мутации сопровождающиеся появлением полезных для человека признаков, возникают очень редко. На их поиски приходится затрачивать много сил и времени. Частота мутаций резко повышается при воздействии мутагенов. К ним относятся некоторые химические вещества а также ультрафиолетовое и рентгеновское излучения. Эти воздействия нарушают строение молекул ДНК и служат причиной резкого возрастания частоты мутаций. Наряду с вредными мутациями нередко обнаруживаются и полезные, которые используются учеными в селекционной работе. Путём воздействия мутагенами в растениеводстве получают и полиплоидные растения, отличающиеся более крупными размерами, высокой урожайностью и более активным синтезом органических веществ. Радиационным облучением с последующим отбором созданы ценные сорта гороха, фасоли, томатов.

Особое место в практике улучшения плодово-ягодных культур занимает селекционная работа И. В. Мичурина. Большое значение он придавал подбору родительских пар для скрещивания. При этом он не использовал местные дикорастущие сорта (так как они обладали стойкой наследственностью, и гибрид обычно уклонялся в сторону дикого родителя), а брал растения из других, отдаленных географических мест и скрещивал их друг с другом. Подобными методами вывели такие ценные сорта, как груша Бере зимняя Мичурина (от скрещивания южного сорта груши Бере Рояль и дикой уссурийской груши) и яблоня Бельфлер-китайка (родители: американский сорт Бельфлер желтый и китайская яблоня родом из Сибири).

Важным звеном в работе Мичурина было целенаправленное воспитание гибридных сеянцев: в определенный период их развития создавались условия для доминирования признаков одного из родителей и подавления признаков другого, т. е. эффективное управление доминированием признаков (разные приемы обработки почвы, внесение удобрений, прививки в крону другого растения и т. п.). Использовался и метод ментора – воспитание на подвое. В качестве привоя он брал как молодое растение, так и почки от зрелого плодоносящего дерева. Этим методом удалось придать желаемую окраску плодам гибрида вишни с черешней под названием «Краса севера». Мичурин применял также отдаленную гибридизацию. Им получен своеобразный гибрид вишни и черемухи – церападус, а также гибрид терна и сливы, яблони и груши, персика и абрикоса. Все мичуринские сорта поддерживают путем вегетативного размножения.

Таблица. Методы селекционно-генетической работы И. В. Мичурина (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Методы Сущность метода Примеры
Биологически отдаленная гибридизация: а) межвидовая Скрещивание представителей разных видов для получения сортов с нужными свойствами Вишня владимирская X черешня Винклера белая = вишня Краса севера (хороший вкус, зимостойкость)
б) межродовая Скрещивание представителей разных родов для получения новых растений Вишня Х черемуха = Церападус
Географически отдаленная гибридизация Скрещивание представителей контрастных природных зон и географически отдаленных регионов с целью привить гибриду нужные качества (вкусовые, устойчивости) Груша дикая уссурийская Х Бере рояль (Франция)=Бере зимняя Мичурина
Отбор Многократный, жесткий: по размерам, форме, зимостойкости, иммунным свойствам, качеству, вкусу, цвету плодов и их лежкости Продвинуто на север много сортов яблонь с хорошими вкусовыми качествами и высокой урожайностью
Метод ментора Воспитание в гибридном сеянце желательных качеств (усиление доминирования), для чего сеянец прививается на растение-воспитатель, от которого эти качества хотят получить. Чём ментор старше, мощнее, длительнее действует, тем его влияние сильнее Яблоня Китайка (под вой)X гибрид (Китайка Х Кандиль-синап) = Кандиль-синап (морозостойкий) Бельфлер-китайка (гибрид-подвой) X Китайка (привой) = Бельфлер-китайка (лежкий позднеспелый сорт)
Метод посредника При отдаленной гибридизации для преодоления нескрещиваемости использование дикого вида в качестве посредника Дикий монгольский миндаль Х дикий персик Давида = миндаль Посредник Культурный персик X миндаль Посредник = гибридный персик (продвинут на север)
Воздействие условиями среды При воспитании молодых гибридов обращалось внимание на метод хранения семян, характер и степень питания, воздействие низкими температурами, бедной питанием почвой, частыми пересадками Закаливание гибридного сеянца. Отбор наиболее выносливых растений
Смешение пыльцы Для преодоления межвидовой нескрещиваемости (несовместимости) Смешивалась пыльца материнского растения с пыльцой отцовского, своя пыльца раздражала рыльце, и оно воспринимало чужую пыльцу

Селекция животных отличается от таковой у растений: животные дают мало потомков, у них позднее наступает половозрелость, они не размножаются вегетативно и у них отсутствует самооплодотворение. Однако и в селекции животных используют гибридизацию и отбор, как массовый, так и индивидуальный. Учитывают признаки экстерьера родительских пар, родословную производителей, проверяют чистоту породы. Путем близкородственного скрещивания (инбридинга) получают чистые линии, когда все или большинство генов переходят в гомозиготное состояние.

Создавая белую степную украинскую породу свиней, акад. М. Ф. Иванов в качестве исходных форм для скрещивания брал высокопродуктивного английского хряка и неприхотливую к условиям содержания плодовитую украинскую свинью (матку). Затем он провел возвратное скрещивание полученных гибридов с тем же хряком. Так был выведен хряк Асканий I превосходного телосложения (масса 479 кг), которого затем он скрещивал с сестрами, с дочерьми, внучками. Параллельно этой инбридной линии были получены другие аналогичные линии. Несмотря на то что в пределах каждой инбридной линии возникли особи с пониженной жизнеспособностью и другими нежелательными признаками, большинство генов было переведено в гомозиготное состояние. Дальнейшим скрещиванием между собой двух чистых линий с последующим многократным индивидуальным отбором была получена порода степной белой украинской свиньи, сочетающая высокую продуктивность, плодовитость и устойчивость.

Гибриды первого поколения, полученные от скрещивания особей двух инбредных линий, как правило, характеризуются выраженным гетерозисом. Этим широко пользуются в животноводстве для получения хозяйственно ценных форм.

Скрещивание неродственных особей называется аутбридингом. Его осуществляют между особями разных пород одного вида животных и даже в пределах различных родов и видов, т. е. при отдаленной гибридизации. Этим путем получены бесплодный гибрид осла и лошади – мул, гибрид одногорбого и двугорбого верблюда, гибрид яка и крупного рогатого скота (самцы у них бесплодные, а самки плодовиты). Эти гибриды характеризуются гетерозисом, т. е. повышенной жизненностью, обладают долголетием и большей выносливостью по сравнению с родителями.

У растений оно осуществляется путем принудительного самоопыления перекрестноопыляющихся форм (инцухт ). У животных — это скрещивание особей, имеющих близкую степень родства и, следовательно, генетическое сходство. Инбридинг используется для получения чистых или гомозиготных линий. Сами по себе эти линии не обладают селективной ценностью, поскольку инбридинг сопровождается депрессией развития. Негативный эффект инбридинга объясняют переходом в гомозиготное состояние многих вредных рецессивных генов. Подобное явление, в частности, наблюдается у человека при родственных браках, на основании чего они запрещены. В то же время в природе существуют виды растений и животных, для которых автогамия является нормой (пшеница, ячмень, горох, фасоль), что можно объяснить, только предположив у них наличие механизма, препятствующего выщеплению вредных комбинаций генов.

В селекции инбредные линии растений и животных широко используются для получения межлинейных гибридов. Такие гибриды обладают ярко выраженным гетерозисом, в том числе и в отношении генеративной сферы. В частности, таким способом получают гибридные семена кукурузы, которыми засевают большую часть мировых площадей, отведенных под эту культуру.

На основе инцухта известным саратовским селекционером Е.М. Плачек был создан выдающийся сорт подсолнечника Саратовский 169.

Противоположностью инбридингу является аутбридинг — неродственное скрещивание организмов. Наряду с межпородным и межсортовым скрещиваниями, к нему относят также внутрипородное и внутрисортовое скрещивания, если родители не имели общих предков в 4-6 поколениях. Это наиболее распространенный тип скрещиваний, поскольку гибриды оказываются более жизнеспособными и устойчивыми к вредным воздействиям, т.е. проявляют ту или иную степень гетерозиса. Явление гетерозиса было впервые описано выдающимся немецким гибридизатором XVIII в. И. Кельрейтером. Однако природа этого явления до сих пор полностью не разгадана. Считают, что гетерозис обусловлен преимуществом гетерозиготного состояния по многим генам, а также большим числом благоприятных доминантных аллелей и их взаимодействием.

Существенным моментом, осложняющим использование гетерозиса в селекции, является его затухание в последующих поколениях. В связи с этим перед селекционерами стоит задача разработки способов закрепления гетерозиса у гибридов. Одним из них генетики считают перевод гибридных растений на апомиктичный способ размножения.

Еще одним типом скрещивания, которое используется в селекции, является отдаленная гибридизация . К ней относятся скрещивания между разновидностями, видами и родами. Скрещивание отдаленных в генетическом отношении форм затруднено из-за их несовместимости, которая может проявляться на разных уровнях. Например, у растений при отдаленной гибридизации может отсутствовать рост пыльцевых трубок на рыльце пестика, у животных препятствием могут служить несовпадение сроков размножения или различия в строении органов размножения. Тем не менее, несмотря на существование барьеров, межвидовая гибридизация осуществляется как в природе, так и в эксперименте. Для преодоления нескрещиваемости видов селекционеры разрабатывают специальные методы. Например, гибриды между кукурузой и ее апомиктичным дикорастущим сородичем — трипсакумом получают, укорачивая рыльца кукурузы до длины пыльцевых трубок трипсакума. При отдаленной гибридизации плодовых И.В. Мичуриным были разработаны такие методы преодоления нескрещиваемости, как метод предварительного вегетативного сближения (прививки), метод посредника, опыление смесью пыльцы разных видов и др. Например, чтобы получить гибрид персика с холодоустойчивым монгольским миндалем, он предварительно скрестил миндаль с полукультурным персиком Давида. Получив гибридный посредник, он скрестил его с персиком.

В 20-х гг. ХХ в. в Научно-исследовательском институте сельского хозяйства Юго-Востока в Саратове Г.К. Мейстером были получены первые пшенично-ржаные гибриды, которые высевались на довольно значительных площадях. Здесь же выдающимся селекционером А.П. Шехурдиным на основе скрещивания мягкой и твердой пшеницы получены высококачественные сорта мягкой пшеницы Саррубра, Сарроза, которые послужили донорами генов для других замечательных сортов и возделывались в Поволжье на огромных площадях. В 1930 г. Н.В. Цициным впервые в мире было осуществлено скрещивание пшеницы с пыреем, а вскоре С.М. Верушкиным были получены гибриды между пшеницей и элимусом. Уже к середине 30-х гг. саратовские ученые стали в нашей стране лидерами в области селекции пшеницы и подсолнечника. И в настоящее время сортами пшеницы и подсолнечника, выведенными саратовскими селекционерами, засеваются сотни тысяч гектаров. Созданный Н.Н. Салтыковой сорт твердой озимой пшеницы Янтарь Поволжья удостоен золотой и серебряной медалей ВВЦ.

Методом отдаленной гибридизации в разных странах были получены устойчивые к болезням и вредителям сорта картофеля, табака, хлопка, сахарного тростника.

Отрицательным моментом отдаленной гибридизации является частичная или полная стерильность отдаленных гибридов, вызываемая, в основном, нарушениями мейоза при образовании половых клеток. Нарушения могут возникать как при совпадении, так и при различии чисел хромосом у исходных форм. В первом случае причиной нарушений является отсутствие гомологии хромосомных наборов и нарушение процесса конъюгации, во втором — к этой причине добавляется также образование гамет с несбалансированными числами хромосом. Если даже такие гаметы являются жизнеспособными, то от их слияния в потомстве возникают анеуплоиды, которые часто оказываются нежизнеспособными и подвергаются элиминации. Например, при скрещивании 28-хромосомных и 42-хромосомных видов пшеницы образуются гибриды с 35-ю хромосомами. У гибридов F2 числа хромосом варьируют от 28 до 42. В последующих поколениях растения с несбалансированными числами постепенно элиминируются, и в конце концов остаются только две группы с родительскими кариотипами.

При отдаленной гибридизации в процессе становления гибридов идет формообразовательный процесс: образуются гибридные формы с новыми признаками. Например, в потомстве пшенично-пырейных гибридов появляются многоцветковые формы, ветвистые колосья и др. Эти формы, как правило, генетически неустойчивы, и для их стабилизации требуется длительный период времени. Однако именно отдаленная гибридизация позволяет селекционерам решать задачи, неразрешимые другими методами. Например, все сорта картофеля сильно поражаются различными болезнями и вредителями. Получить устойчивые сорта можно было, только позаимствовав это свойство у дикорастущих видов.

Обязательным этапом любого селекционного процесса, в том числе и с использованием метода гибридизации, является отбор , с помощью которого селекционер закрепляет признаки, необходимые для создания нового сорта или породы.

Ч. Дарвин различал два вида искусственного отбора: бессознательный и методический. На протяжении многих тысячелетий люди вели отбор бессознательно, отбирая лучшие экземпляры растений и животных по интересующим их признакам. Именно благодаря такому отбору были созданы все культурные растения.

При методическом отборе человек заранее ставит себе цель, какие признаки и в каком направлении он будет изменять. Эту форму отбора стали применять с конца XVIII в. и достигли выдающихся результатов в совершенствовании домашних животных и культурных растений.

Отбор может быть массовым и индивидуальным. Массовый отбор — более простой и доступный. При массовом отборе одновременно отбирается большое число особей популяции с нужным признаком, остальные выбраковываются. У растений семена всех отобранных особей объединяют и высевают на одном участке. Массовый отбор может быть однократным и многократным, что определяется, в первую очередь, способом опыления растений: у перекрестников отбор обычно ведется на протяжении нескольких поколений, пока не будет достигнута однородность потомства. Иногда отбор продолжается непрерывно, чтобы избежать потери ценных признаков. Массовым отбором создано большое количество старых сортов сельскохозяйственных растений, например, сорт гречихи Богатырь, созданный в начале ХХ в., и сейчас остается одним из лучших у этой культуры.

Метод индивидуального отбора более сложен и трудоемок, но гораздо более эффективен. Новый сорт при индивидуальном отборе создается из одного единственного элитного экземпляра. Метод предусматривает отбор в потомстве этого растения на протяжении ряда поколений, что делает процедуру создания сорта очень длительной.

Индивидуальный отбор широко используется в селекции животных. В этом случае используют метод проверки производителя по потомству, при которой генетическая ценность производителя определяется на основании качества потомства. Например, качество быков-производителей оценивается на основании продуктивности их дочерей. Другой способ оценки называется сибселекцией. В этом случае оценку производят по продуктивности родственных особей — братьев и сестер.

Наиболее эффективным будет отбор, который осуществляется на фоне среды, максимально выявляющей наследственные возможности организма. Нельзя вести отбор на засухоустойчивость во влажном климате. Часто отбор специально производится в искусственно созданных крайних условиях, т.е. на провокационном фоне.

Отбор и гибридизация являются традиционными методами селекции, которые длительное время играли основную роль в селекционных схемах. Однако успешное развитие генетики в ХХ в. привело к значительному обогащению арсенала селекционных методов. В частности, нашли свое место в селекционных схемах такие генетические явления, как полиплоидия, гаплоидия, цитоплазматическая мужская стерильность (ЦМС) .

Автополиплоиды у многих культур, например у ржи, клевера, мяты, турнепса, используются в качестве исходного материала для создания новых сортов. В ГДР и Швеции в I половине ХХ в. были получены тетраплоидные короткостебельные сорта ржи, имеющие более крупное зерно по сравнению с диплоидными сортами. Академиком Н.В. Цициным была создана тетраплоидная ветвистоколосая рожь, обладающая высокой продуктивностью. В.В. Сахаровым и А.Р. Жебраком получены крупносемянные, с большим содержанием нектара тетраплоидные формы гречихи.

На основе полиплоидии наибольшие результаты достигнуты в селекции сахарной свеклы. Созданы гибридные триплоидные сорта, которые сочетают высокую урожайность с повышенным содержанием сахара в корнеплодах. Одновременно созданы высокоурожайные тетраплоидные сорта и гибриды сахарной и кормовой свеклы. Японским генетиком Г. Кихарой путем скрещивания тетраплоидной и диплоидной форм арбуза был получен бессемянный арбуз, отличающийся высокой урожайностью и превосходными вкусовыми качествами.

В селекции ряда растений нашла применение и другая форма полиплоидии — аллополиплоидия . Аллополиплоиды — это межвидовые гибриды, у которых в два раза и более увеличен набор хромосом. При удвоении диплоидного набора хромосом гибрида, полученного от скрещивания двух разных видов или родов, образуются плодовитые тетраплоиды, которые называются амфидиплоидами. Им свойствен резко выраженный гетерозис, сохраняющийся в последующих поколениях. Амфидиплоидом, в частности, является новая зерновая культура — тритикале. Она получена В.Е. Писаревым путем скрещивания мягкой озимой пшеницы (2n = 42) с озимой рожью (2n = 14). Для удвоения набора хромосом у межродового 28-хромосомного гибрида использовалась обработка растений колхицином — клеточным ядом, блокирующим расхождение хромосом в мейозе. Полученные 56-хромосомные амфидиплоиды тритикале характеризуются высоким содержанием белка, лизина, крупным колосом, быстрым ростом, повышенной устойчивостью к болезням, зимостойкостью. Еще большую селекционную ценность имеют 42-хромосомные Triticale. Они еще более продуктивны и устойчивы к вредным воздействиям.

Использование для искусственного получения полиплоидов колхицина произвело подлинную революцию в области экспериментальной полиплоидии. С его помощью триплоидные и тетраплоидные формы получены более чем у 500 видов растений. Полиплоидизирующим эффектом обладают также некоторые дозы ионизирующих излучений.

Использование явления гаплоидии открыло большие перспективы в области разработки технологии для быстрого создания гомозиготных линий путем удвоения у гаплоидов набора хромосом. Частота спонтанной гаплоидии у растений очень низкая (у кукурузы — один гаплоид на тысячу диплоидов), в связи с чем разработаны способы массового получения гаплоидов. Одним из них является получение гаплоидов через культуру пыльников. Пыльники на стадии микроспор высаживают на искусственную питательную среду, содержащую стимуляторы роста — цитокинины и ауксины. Из микроспор образуются зародышеподобные структуры — эмбриоиды с гаплоидным числом хромосом. Из них в дальнейшем развиваются проростки, дающие после пересадки на новую среду нормальные гаплоидные растения. Иногда развитие сопровождается образованием каллуса с очагами морфогенеза. После пересадки на оптимальную среду из них также формируются эмбриоиды и проростки, вырастающие в нормальные гаплоидные растения.

Путем создания из гаплоидов гомозиготных диплоидных линий и их скрещивания получены ценные гибридные сорта кукурузы, пшеницы, ячменя, рапса, табака и других культур. Использование гаплоидов позволяет сократить срок создания гомозиготных линий в 2-3 раза.

В селекционных схемах по производству гибридных семян кукурузы, пшеницы и ряда других культур использовано явление ЦМС, что позволило упростить и удешевить этот процесс, т.к. была устранена ручная процедура кастрации мужских соцветий при получении гибридов F 1 .

Использование новейших достижений генетики и создание эффективных технологий позволило во много раз повысить продуктивность сортов культурных растений. В 70-х гг. появился термин “зеленая революция“, который отразил значительный скачок в урожайности важнейших сельскохозяйственных культур, достигнутый с помощью новых технологий. По расчетам экономистов вклад генетических методов в прибавку урожая составил 50%. Остальное приходится на использование усовершенствованных приемов обработки земли и достижений агрохимии. Внедрение сложных технологий привело к масштабному культивированию отдельных видов ограниченного числа культур. Это вызвало проблемы, связанные с болезнями и эпидемиями в результате поражения растений разными вредителями. Именно устойчивость растений к этим вредным факторам вышла на первое место в списке признаков для отбора.

Особенности селекции растений

С самого начала осознанной деятельности человек стремился отобрать для своего использования те растения, которые отвечали потребностями человека. Это касалось различных качеств растений. Для одних целей требовались определенные вкусовые качества, для других – определенный внешний вид растения, для третьих – устойчивость к неблагоприятным факторам внешней среды. Для того, чтобы получить растения с желаемыми качествами, возникла такая отрасль научно-практической деятельности, как селекция.

Определение 1

Селекция – это совокупность способов деятельности человека, направленных на создание новых и улучшения существующих разновидностей живых организмов (сортов растений, пород животных и штаммов микроорганизмов).

Особенность селекции растений заключается в том, что на протяжении года происходит вегетация и созревание плодов. Одно растение может дать большое количество семян. Это означает, что при организации опытной работы можно в течении года получить результаты в большом количестве, которые легко отобрать по фенотипу и обработать статистически.

Общая характеристика методов селекции растений

Как известно, основными методами селекции являются гибридизация и искусственный отбор . Эти методы применяются одновременно и взаимно дополняют друг друга.

Гибридизация дает возможность получить организмы с определенным генотипом, а искусственный отбор позволяет отобрать организмы с определенными внешними признаками (фенотипом) и продолжить работу по их закреплению.

Кроме того в селекции растений применяется метод прививок . Это позволяет искусственно объединить части разных растений для дальнейшей селекционной работы.

Эффективность селекционной работы зависит от разнообразия исходного материала. В селекции растений эту проблему удается решить. Используя различные формы гибридизации в сочетании с искусственным мутагенезом. Благодаря применению последнего и дальнейшему отбору среди мутантных форм были созданы сотни новых сортов пшеницы, ржи, ячменя и других культурных растений. Теперь познакомимся с методами селекции растений подробнее.

Гибридизация

В селекции растений используются различные формы гибридизации: внутривидовое (близкородственное и неродственное) и межвидовое скрещивание .

  • Близкородственным считается такое скрещивание , когда скрещиваемые особи имеют общих близких предков. Этот метод позволяет получить чистые линии растений с высоким процентом гомозиготности по большинству признаков.
  • Неродственное скрещивание проводится между растениями одного вида, но не имеющими общих предков. Оно позволяет сочетать в гибридах различные качества одного и того же вида.
  • Межвидовое скрещивание проводится между растениями, принадлежащими к разным видам.

Но довольно часто межвидовые гибриды стерильны. Причина заключается в количестве хромосом в кариотипе организмов. Но современная наука научилась преодолевать стерильность межвидовых гибридов. Например, И. В. Мичурин применял метод посредника. Чтобы преодолеть нескрещиваемость двух видов растений, он брал третье растение, скрещивал его с первым, а полученный гибрид скрещивал со вторым растением.

Полиплоидия

Определение 2

Полиплоидия – это явление увеличения количества хромосом в ядре клеток растения.

Достигается это различными способами. Если удвоение хромосом не сопровождается делением клетки, то мы можем получить диплоидную половую клетку, а затем – триплоидный гибрид. Еще есть способы получения явления полиплоидии – слияние соматических клеток или их ядер; образование гамет с нередуцированным числом хромосом вследствие нарушения мейоза.

Ученый-генетик Г. Д. Карпеченко применял методику воздействия на веретено деления различными мутагенами (химическими веществами, ионизирующим излучением, критическими температурами) с целью получения гамет с диплоидным набором хромосом и получением тетраплоидного гибрида.

Применяют и мутации, приводящие к кратному уменьшению числа хромосом. Это позволяет быстро получать формы растений, гомозиготные по большинству генов.

Метод прививок

Один из классических методов селекции растений заключается в искусственном объединении частей разных растений. На растущее растение (подвой) прививают часть (почку, побег) другого растения. Часть прививаемого растения называется привой. Прививка не является настоящей гибридизацией. Она приводит только лишь к ненаследуемым изменениям фенотипа объединенного растения, не изменяя генотип исходных форм. Но прививки способствуют сближению биохимических и физиологических процессов объединенных растений. Целью применения данного метода является усиление желаемых изменений фенотипа в результате сочетания свойств привоя и подвоя (например, морозоустойчивость северного подвоя и вкусовые качества южных сортов привоя или устойчивость подвоя против болезней). Кроме того в результате прививок могут проявляться новые качества, которые можно использовать в дальнейшей селекционной работе.

Некоторые сорта культурных растений при их размножении семенами быстро возвращаются к фенотипам предковых форм – «дичают». Поэтому единственным способом поддержания таких сортов является или вегетативное размножение, или их прививка к дичку.

И перекрестным опылением?
2. Что такое полиплоидия?
3. Почему большинство культурных растений размножают вегетативно?

Основой успеха селекционной работы в значительной степени является генетическое разнообразие исходного материала. В своей работе селекционеры стараются использовать все многообразие диких и культурных растений.

На необходимость использовать в селекции растений все видовое многообразие флоры нашей планеты указывал еще академик Николай Иванович Вавилов, выдающийся генетик и селекционер. Под его руководством были организованы научные экспедиции в разные регионы Земли для сбора образцов культурных растений, их диких предков и сородичей. В ходе экспедиций было собрано более 160 тыс. образцов разных видов и сортов растений.

В настоящее время эта уникальная коллекция хранится во Всесоюзном растениеводства и используется селекционерами в их практической работе. Так, известный сорт озимой пшеницы Безостая-1 был получен в результате гибридизации аргентинских пшениц из коллекции Н. И. Вавилова с отечественными сортами.

Работа по созданию семенных коллекций культурных и диких растений продолжается и в наше время. Сейчас коллекция, начало которой положил Н. И. Вавилов, включает более 320 тыс. образцов.

Анализ образцов культурных растений и их диких предков, собранных в предпринятых экспедициях, позволил в свое время Вавилову установить закономерности географического распределения разновидностей и форм культурных растений, а также открыть центры древнего земледелия, где были окультурены дикие виды растений. Н. И. Вавилов выделил 8 центров происхождения культурных растений: 1) Восточноазиатский - родина сои, проса, гречихи, многих плодовых и овощных культур; 2) Южноазиатский тропический - родина риса, сахарного тростника, цитрусовых, многих овощных культур; 3) Юго-Западноазиатский - пшеница, рожь, бобовые культуры, лен, конопля, морковь, виноград и др.; 4) Переднеазиатский - родина мягкой пшеницы, ячменя, овса; 5) Среднеземноморский - родина капусты, свеклы, маслин; б) Абиссинский - родина твердой пшеницы, сорго, бананов, кофе; 7) Центральноамериканский - родина кукурузы, какао, тыквы, табака, хлопчатника; 8) Южноамериканский - родина картофеля, ананаса, хинного дерева.

Дальнейшие исследования ученых привели к установлению еще четырех центров; Австралийского, Африканского, Европейско-Сибирского и Североамериканского (рис. 94).

Закон гомологических рядов наследственной изменчивости.

В результате многолетнего изучения многообразия растений Н. И. Вавилов сделал фундаментальные обобщения, имеющие важное значение как для практической селекции , так и для теории эволюции. Эти обобщения Н. И. Вавилов сформулировал в виде закона гомологических рядов наследственной изменчивости: «Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство».


На примере злаков Н. И. Вавилов показал, что сходные признаки наблюдаются у разных видов данного семейства. Так, у пшеницы, ячменя, овса и кукурузы бывает белая, красная и черная окраска зерновок, существуют голые и пленчатые зерновки, встречаются колосья с длинными и короткими остями, безостые и с вздутиями вместо остей. В ходе последующих наблюдений было выяснено, что данный закон применим не только для растений, но распространяется на животных и микроорганизмы. Так, альбинизм встречается у всех классов позвоночных животных, короткопалость наблюдается у всех пород крупного рогатого скота, овец и собак.

Основные методы селекции растений.

Биологические особенности растений позволяют в селекционной работе с ними использовать инбридинг, полиплоидию, искусственный мутагенез, отдаленную гибридизацию и другие методы.

Отбор и гибридизация являются основными и традиционными методами селекции растений. Применяя массовый или индивидуальный отбор, селекционер не создает ничего нового, а выделяет растения с полезными качествами, уже имеющиеся в популяции. Этим методом выведены многие сорта, в том числе так называемые сорта народной селекции, например знаменитый по своим качествам сорт яблони Антоновка.

Для создания сортов растений с запрограммированными качествами ведется специальная целенаправленная работа - подбирается исходный материал, проводится гибридизация с последующим отбором.

Используя метод гибридизации с последующим отбором, селекционеры получили ценные высокоурожайные сорта пшеницы, ржи, подсолнечника, овощных, плодовых и других культур.

В разработку теории и практики селекции растений большой вклад внес ученый-селекционер Иван Владимирович Мичурин (1855- 1935), Он вывел около 300 новых сортов плодовых растений. В своих работах он широко применял скрещивание географически отдаленных форм. Так, скрещивая французский сорт груши Бере рояль с дикой уссурийской и выращивая сеянцы в условиях средней полосы России, он создал сорт Бере зимняя, сочетающий высокие вкусовые качества плодов с зимостойкостью (рис, 95). Методы, разработанные И. В. Мичуриным, успешно используются селекционерами и в настоящее время.


В селекции растений широко применяется явление гетерозиса.

Сначала выводят ряд отличающихся друг от друга чистых линий, а затем производят межлинейное скрещивание.

Выяснив, в каких случаях эффект гетерозиса проявляется наиболее сильно, используют лишь эти линии для получения гибридных семян. Эта методика применяется для получения высоких урожаев кукурузы, огурцов, томатов и других культур (рис. 96).


Полиплоидию (кратное увеличение числа хромосом) издавна использовали при создании сортов пшеницы, овса, картофеля, хлопчатника, плодовых, декоративных и других культур. Полиплоидные растения появлялись в популяциях случайно в результате естественных мутаций. В настоящее время применяют методы искусственного получения полиплоидов, воздействуя на растения разными мутагенами (в основном колхицином), разрушающими веретено деления клетки. Таким образом из диплоидных (2n) можно получить тетраплоидные (4n) формы.

Большинство их неперспективны, но отдельные формы служат ценным материалом для гибридизации и отбора. Полиплоидные растения могут отличаться более крупными размерами, высокой урожайностью и более активным синтезом органических веществ. Использование метода полиплоидии позволило селекционерам получить ценные сорта сахарной свеклы, ржи, гречихи, фасоли и других культур (рис. 97).

Отдаленная гибридизация позволяет в одном организме совместить признаки, характерные для растений разных видов и даже родов. Получать такие формы из-за нескрещиваемости родителей и бесплодия гибридов очень сложно. Стерильность гибридов связана с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. Для восстановления плодовитости у отдаленных гибридов известный генетик Георгий Дмитриевич Карпеченко еще в 1924 г. предложил использовать метод полиплоидии, работая с гибридами редьки и капусты.

Сочетание отдаленной гибридизации с последующим получением полиплоидных форм позволило преодолеть бесплодие отдаленных гибридов. В результате многолетних работ академика Н. В. Цицина и его сотрудников были получены многолетние пшенично-пырейные гибриды. Для получения сорта тритикале, сочетающего многие качества пшеницы (высокие хлебопекарные качества) и ржи (высокое содержание незаменимой аминокислоты лизина, а также способность расти на бедных песчаных почвах), применялась следующая схема:

Р: пшеница (2n = 42) х рожь (2n = 14)
G: n = 21
F1 2n = 28 (все непарные)
G: Мейоз нарушен, гибрид стерилен, нормальных гамет нет.
Обработка колхицином приводит к удвоению числа хромосом,
F1:(колхицированное): 2n = 56
G: n = 28
F2, F3, Fn: 2n= 56 (тритикале)

У таких гибридов в клетках содержится полный диплоидный набор хромосом обоих родителей, поэтому их хромосомы конъюгируют друг с другом и мейоз проходит нормально.

С помощью метода отдаленной гибридизации с последующим получением полиплоидных форм были выведены новые перспективные сорта картофеля, табака и других культур.

Методами отдаленной гибридизации и радиационного мутагенеза созданы перспективные сорта хлопчатника. Химический мутагенез лежал в основе получения многих новых сортов кукурузы, пшеницы, риса, овса, подсолнечника.


Селекционеры все шире начинают применять для получения новых сортов растений методы клеточной инженерии. В качестве примера можно привести работу по соматической гибридизации двух видов картофеля: культурного - Solanum tuberosum и дикого Solanum chacoense (рис. 98). Для гибридизации использовались протопласты (греч. protos - первый и греч. plastos - вылепленный, образованный) - клетки, полностью лишенные клеточной стенки (оболочки) и имеющие только клеточную мембрану, которая ограничивает цитоплазму с различными органоидами.

Полученный соматический гибрид в сравнении с родительскими формами имел промежуточные характеристики по форме листа, величине клубней, но отличался большей мощностью куста и высотой стеблей, благодаря чему и был включен в дальнейшую практическую селекционную работу (рис. 99).


Метод вегетативного размножения культурой тканей широко применяется в селекции для быстрого размножения новых перспективных сортов растений.

В различных регионах нашей страны созданы научно-исследовательские институты и селекционные станции, которые проводят работы по выведению и районированию новых сортов растений. Эта работа играет важнейшую роль в повышении урожайности сельскохозяйственных культур и обеспечении населения продовольствием.
Центры происхождения культурных растений. Закон гомологических рядов наследственной изменчивости.

Протопласт.

1. Какие методы применяются в селекции растений?
2. Какое значение для селекции имеет открытие закона гомологических рядов наследственной изменчивости?
3. Почему межлинейные гибриды сохраняют ценные признаки при вегетативном размножении и теряют их при семенном?
4. Почему селекционеры стремятся Получить растения-полиплоиды?
5. Какая методика позволяет преодолеть стерильность межвидовых (межродовых) гибридов?


Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 10 класс
Отправлено читателями с интернет-сайта

Онлайн библиотека с учениками и книгами, плани-конспекти уроковс Биологии 10 класса, книги и учебники согласно календарного плана планирование