Энергосберегающие

Что значит температура вспышки. Большая энциклопедия нефти и газа

Что значит температура вспышки. Большая энциклопедия нефти и газа

Теоретическая часть.

Дизельные топлива предназначены для быстроходных дизельных и газотурбинных двигателей наземной и судовой техники. Условия смесеобразования и воспламенения в дизелях отличаются от таковых в карбюраторных двигателях. Преимуществом дизелей является возможность осуществления высокой степени сжатия топливо-воздушной смеси, вследствие чего удельный расход топлива в них на 25…30 % ниже, чем в карбюраторных двигателях.

Дизельное топливо – это сложная смесь парафиновых (10…40 %), нафтеновых (20…60 %) и ароматических углеводородов средней молярной массы – 110…230 г/моль , выкипающих в пределах 170…380 о С. Температура вспышки топлива составляет 35…80 о С, застывания – минус 5 о С.

Основные эксплуатационные показатели дизельных топлив:

· цетановое число , характеризующее мощностные и экономические показатели работы двигателя;

· фракционный состав , определяющий полноту сгорания топлива, дымность и токсичность отработанных газов;

· вязкость и плотность , обеспечивающие нормальную подачу топлива, распыление в камере сгорания и работоспособность системы фильтрования;

· низкотемпературные свойства , определяющие функционирование системы топливоподачи при отрицательных температурах окружающей среды и условия хранения топлива;

· степень чистоты , характеризующая надежность работы фильтров грубой и тонкой очистки и цилиндропоршневой группы двигателя;

· температура вспышки , определяющая условия безопасности использования топлива в двигателе;

· наличие сернистых соединений, металлов, непредельных углеводородов, характеризующее нагарообразование, коррозию и износ двигателя.

Дизельное топливо выпускается согласно ГОСТ 305-82 трех марок: Л – летнее, применяемое при температуре окружающей среды ниже 0 о С, З – зимнее до – 30 о С, А – арктическое до – 50 о С. Общее содержание серы в прямогонных фракциях – 0,8…1,0 %, после гидроочистки – 0,08…0,12 % (табл. 1).

Основной показатель дизельного топливацетановое число (ЦЧ), который характеризует воспламеняемость топлива, жесткость рабочего хода, определяет запуск двигателя, расход топлива и дымность отработанных газов.

1.1 Цетановое число

ЦЧ указывает на процент содержания хорошо воспламеняющегося цетана С 16 Н 34 в смеси с трудно воспламеняемым a-метилнафталином С 11 Н 10 в эталонном топливе, которое по своим характеристикам соответствует исследуемому дизельному топливу.

Оптимальное ЦЧ дизельного топлива – 40…50 (табл. 10). Применение топлива с ЦЧ < 40 приводит к жесткой работе двигателя, а ЦЧ > 50 – к увеличению удельного расхода топлива за счет снижения полноты сгорания. ЦЧ дизельного топлива зависит от его углеводородного состава. Наиболее высокими ЦЧ обладают нормальные парафиновые углеводороды, причем с повышением их молярной массы ЦЧ также повышается. Самые низкие ЦЧ у ароматических углеводородов, не имеющих боковых цепей. Непредельные углеводороды имеют более низкие ЦЧ, чем соответствующие парафиновые. Чем выше температура кипения топлива, тем выше ЦЧ, зависимость носит линейный характер.

1.2 Таблица 1- Основные показатели качества дизельных топлив
(ГОСТ 305-82)

Показатель Марка топлива
Л З
Цетановое число, не менее 47…51 40…42
Фракционный состав, max t о перегонки, о С: 50 % топлива 96 % топлива
Кинематическая вязкость при 20 о С, мм 2 /с (сСт ) 3,0…6,0 1,8…5,0
Плотность при 20 о С, кг/м 3 , не более
Температура вспышки в закрытом тигле, о С
Температура застывания, о С, не выше для климатической зоны: умеренной, холодной –10 – –35 –45
Общее содержание серы, %, не более 0,5 0,5
Массовая доля меркаптановой серы, %, не более 0,01 0,01
Кислотность, мг КОН на 100 см 3 топлива, не более
Иодное число, г иода на 100 г топлива, не более
Зольность, %, не более 0,01 0,01
Содержание механических примесей отсутствуют отсутствуют
Содержание воды отсутствует отсутствует
Содержание фактических смол, мг /100 см 3 топлива, не более
Коксуемость 10 % остатка, %, не более 0,20 0,30

1.3 Фракционный состав дизельного топлива – это основной показатель топлива, влияющий на процесс его сгорания, как и ЦЧ. Его определяют согласно ГОСТ 2177-82 нагреванием 100 мл топлива в специальном приборе, образующиеся пары охлаждают, собирают в мерный цилиндр. В процессе разгонки фиксируют температуру выкипания 50 и 96 % топлива (табл. 1).

От фракционного состава топлива зависит качество его распыления и полнота сгорания. Если в дизельном топливе много легких углеводородов, то на их сгорание требуется меньше кислорода. Для такого топлива более полно протекает процесс смесеобразования, однако повышается жесткость работы двигателя (резко нарастает давление на градус угла поворота коленчатого вала). Тяжелые фракции при распылении образуют крупные капли, ухудшается качество горючей смеси, повышается расход топлива, существенно усиливается коксование распылителей форсунок, возрастает количество нагаров в зоне цилиндропоршневой группы.

Плотность

Абсолютной плотностью вещества называется масса, содержащаяся в единице объема. В системе СИ плотность выражается в кг/м 3 . За единицу абсолютной плотности принята масса 1м 3 дистиллированной воды при температуре 4С.

На практике часто приходится определять плотность при температуре отличающейся от 20°C. Для пересчета плотности используется формула, предложенная Д.И. Менделеевым:

Коэффициент α берется из таблицы:

Температура вспышки в закрытом тигле

Температурой вспышки называется температура, при которой пары нефтепродукта, нагреваемого в стандартном аппарате, образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ней открытого огня.

Прибор для определения температуры вспышки в закрытом тигле.

Температура вспышки может определяться в аппаратах закрытого и открытого типа. Для одного и того же продукта температура вспышки, определенного в приборе открытого типа, будет всегда выше, чем в приборе закрытого типа.

Вязкость кинематическая

Вязкость – это свойство жидкости оказывать сопротивление перемещению ее слоев относительно друг друга под действием внешней силы.

Определение кинематической вязкости проводят в капиллярных вискозиметрах, в которых исследуемый нефтепродукт протекает через капиллярную трубку определенного диаметра.

Кинематическая вязкость испытуемого нефтепродукта вычисляется по формуле:

ν=С*τ,

где τ – время истечения жидкости через капилляр вискозиметра, с;

С – постоянная вискозиметра, мм 2 /с 2 .

Вискозиметр ВПЖ-4

Ход работы.

Определение плотности ареометром

В стеклянный цилиндр осторожно наливаем 100 мл испытуемого дизельного топлива. Взяв за верхний конец ареометр, опускаем его в жидкостью. После установления ареометра снимаем показания:

ρ= 812кг/м 3

Определение температуры вспышки в закрытом тигле

Испытуемый нефтепродукт наливаем в тигель до метки, устанавливаем его на место и закрываем крышкой. В крышке укрепляем термометр, проверяем, работает ли мешалка, открывается ли заслонка, и зажигаем лампу.

Включаем электрообогрев и при периодическом перемешивании нагреваем прибор. Не более чем за 17ºС до предполагаемой температуры вспышки начинаем проводить испытания. В момент испытания перемешивание прекращаем, поворачиваем заслонку с помощью рукоятки и наблюдаем за появлением быстро исчезающего пламени над поверхностью нефтепродукта. Отмечаемую при этом температуру фиксируют как температуру вспышки. Испытания проводим через каждые 2ºС. Получив первую вспышку, нагревание продолжаем и через 2ºС повторяем зажигание, и вновь видим вспышку.

Т вспышки =67ºС

Определение кинематической вязкости

Вискозиметр с нефтепродуктом с помощью штатива и держателей устанавливаем в вертикальном положении в термостатируемый сосуд. Вискозиметр закрепляют так, чтобы верхнее расширение оказалось полностью в жидкости термостата. Засасываем грушей жидкость в колено выше метки М 1 . затем грушу снимают и уровень жидкости начинает убывать. Когда уровень жидкости достигает метки М 1 , включаем секундомер и останавливаем его в тот момент, когда уровень жидкости достигнет метки М 2 . Проводим 3 замера.

τ ср = 250 с

С const =0,01057мм 2 /с 2

Определим вязкость: σ= 0,01057*250= 2,6425

Вывод:

1. По ГОСТ для зимнего дизельного топлива плотность при 20ºС должна быть не более 840 кг/м 3 . Исследуемое дизельное топливо имеет плотность, равную ρ=812 кг/м 3 ; что соответствует ГОСТ.

2. По ГОСТ температура вспышки в закрытом тигле должна быть не ниже 35ºС. Температура вспышки исследуемого дизельного топлива равна: Т вспышки =67ºС, что соответствует ГОСТ.

3. По ГОСТ кинематическая вязкость при 20ºС должна быть в интервале: 1,8-5,0. У исследуемого нефтепродукта кинематическая вязкость равна σ=2,6425, что соответствует ГОСТ.

По всем основным качественным показателям исследуемый нефтепродукт соответствует требованиям ГОСТ 305-82 на зимнее и арктическое дизельное топливо.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27

Температура вспышки - это та, при которой над поверхностью нагреваемого в тигле жидкого горючего вещества кратковременно вспыхивают её пары. Обычно вспышка не переходит в горение, поскольку скорость образования горючих паров при этой температуре меньше скорости их сгорания. Горение пламенем наступает позже, при более высокой температуре, называемой температурой воспламенения (или возгорания).

Этот параметр имеет ключевое значение в технике использования всех видов горючих жидкостей, поскольку позволяет устанавливать правила и границы безопасного обращения с ними, определять чистоту топлива, наличие опасных добавок, выявлять фальсификаты, достоверно рассчитывать режимы работы двигателей и энергетических установок.

Температуру вспышки жидкого топлива измеряют двумя методами - в открытом и закрытом тиглях. Они отличаются тем, что в последнем методе пары не могут улетучиваться в окружающее пространство, и вспышка наступает при менее высокой температуре. Температура вспышки в открытом тигле всегда выше, и эта разность температур растёт с увеличением абсолютного значения параметра.

В нашей стране стандартизованы в ГОСТ 4333-87 два метода определения температуры вспышки в открытом тигле – Кливленда и Бренкена. Другой стандарт - ГОСТ 6356-75 – устанавливает аналогичную методику для закрытого тигля.

Принцип измерения

Исследование проводят на отечественном приборе типа ТВО.

Оба ГОСТа устанавливают следующий порядок измерения температур вспышки.
Нефтепродукты наливают в открытый (или в закрытый) металлический чашеобразный тигель до обозначенной метки на внутренней стенке. Тигель устанавливают в прибор на асбестовую поверхность нагревательного устройства, с помощью штатива закрепляют термометр так, чтобы ртутная головка находилась внутри жидкости на высоте не менее 8 мм от дна тигля в центре круга. Включают нагрев, устанавливают нужную скорость нарастания температуры.

Через каждые 2 ºС над поверхностью жидкости проводят в горизонтальном направлении наконечником газовой горелки с пламенем длиной не более 4 мм. При возникновении кратковременной голубой вспышки паров регистрируют температуру. Это и есть искомая величина. При дальнейшем нагревании жидкости она возгорается красным пламенем. Регистрируют температуру воспламенения.

При исследовании вспышки в закрытом тигле под крышку помещают газовый запальник с постоянным горением. Пары в таком тигле накапливаются быстрее, вспышка происходит раньше.

Некоторые данные по измерению температур вспышек

Сегодня существуют более совершенные, чем ТВО, аппараты для определения температур вспышки. Они отличаются высокой точностью измерений, автоматизацией операций, дружественными интерфейсами, большой производительностью, поэтому существенно облегчают работу операторов в загруженных лабораториях.

Методику открытого тигля используют для исследований веществ с низким давлением летучих паров – минеральных масел, остаточных нефтепродуктов. Анализы в закрытом тигле более применимы для жидкостей с высоколетучими парами. Результаты исследований по обеим методикам могут иметь существенные различия (до двух десятков ºС).

Вещества с температурами вспышки в закрытом тигле ниже 61 ºС относят к легковоспламеняющимся. Они, в свою очередь, подразделяются на особо опасные (Т всп.≤ -18 ºС), опасные (Т всп.от -18 ºС до +23 ºС) и опасные при повышенной температуре (Т всп. от 23 ºС до 61 ºС).

Для дизельного топлива температура вспышки в открытом тигле колеблется в диапазоне от 52 до 96 ºС, для бензина - -43 ºС. Температура самовоспламенения для бензина - 246 ºС, для дизтоплива - 210 ºС. Поскольку последнее не поджигается в камере сгорания ДВС, а самовоспламеняется, становится понятным, почему для него характерны столь высокая по сравнению с бензином температура вспышки и более низкая температура самовоспламенения.

Температура вспышки топлива в открытом тигле является важным информативным параметром жидкого горючего, используемым для определения качества продукта.

Температура вспышки - это температура, при которой нагреваемый в стандартных условиях нефтепродукт выделяет такое количество паров, которое образует с окружающим воздухом горючую смесь, вспыхиваю­щую при поднесении к ней пламени.

Этот показатель тесно увязан с температурой кипения, т.е. с испаря­емостью. Чем легче нефтепродукт, тем лучше он испаряется, тем ниже его температура вспышки. Например, бензиновые фракции имеют отри­цательные температуры вспышки (до -40°С), керосиновые фракции име­ют температуры вспышки в пределах 28-60°С, фракции дизельного топ­лива - 50-80°С, более тяжелые, масляные фракции - 130-325°С. Темпе­ратуры вспышки различных нефтей могут быть как положительными, так и отрицательными.

Наличие влаги в нефтепродуктах приводит к снижению температуры вспышки. Поэтому при определении ее в лабораторных условиях нефте­продукт должен быть освобожден от воды. Существуют два стандартных метода определения температуры вспышки: в открытом (ГОСТ 4333-87) и закрытом (ГОСТ 6356-75) тигле. Разница в определении температуры вспышки между ними составляет 20-30°С. При определении вспышки в открытом тигле часть образовавшихся паров улетает в воздух, и требуе­мое их количество, необходимое для вспышки, накапливается позднее, чем в закрытом тигле.

Поэтому температура вспышки одного и того же нефтепродукта, оп­ределенная в открытом тигле, будет выше, чем в закрытом тигле. Как правило, температуру вспышки в открытом тигле определяют для высококипящих фракций нефти (масла, мазуты). За температуру вспышки принимают ту температуру, при которой на поверхности нефтепродукта появляется и сразу гаснет первое синее пламя. По температуре вспышки судят о взрывоопасных свойствах нефтепродукта, т.е. о возможности об­разования взрывчатых смесей его паров с воздухом. Различают нижний и верхний пределы взрываемости.

Если концентрация паров нефтепродукта в смеси с воздухом ниже нижнего предела, взрыв не произойдет, так как имеющийся избыток воз­духа поглощает выделившееся в точке взрыва тепло и таким образом пре­пятствует возгоранию других частей горючего.

При концентрации паров нефтепродукта в смеси с воздухом выше верхнего предела взрыва не происходит из-за недостатка кислорода в смеси.

Температура воспламенения. При определении температуры вспыш­ки наблюдается явление, когда нефтепродукт вспыхивает и сразу гаснет. Если нефтепродукт нагреть еще выше (на 30-50°С) и снова поднести ис­точник огня к поверхности нефтепродукта, то он не только вспыхнет, но и будет спокойно гореть. Минимальная температура, при которой неф­тепродукт вспыхивает и начинает гореть, называется температурой вос­пламенения.


Температура самовоспламенения . Если нефтепродукт нагреть до вы­сокой температуры без контакта с воздухом, а далее обеспечить такой контакт, то нефтепродукт может воспламениться самопроизвольно.

Минимальная температура, соответствующая этому явлению, назы­вается температурой самовоспламенения. Она зависит от химического состава. Наиболее высокими температурами самовоспламенения обла­дают ароматические углеводороды и богатые ими нефтепродукты, далее следуют нафтены и парафины.

Чем легче нефтепродукт, тем выше его температура самовоспламене­ния. Так, для бензинов она находится в пределах 400-450°С, для газой­лей - 320-360°С.

Самовоспламенение нефтепродуктов часто является причиной по­жаров на заводах. Любая разгерметизация фланцевых соединений в ко­лоннах, теплообменных аппаратах, трубопроводах и т.д. может привести к пожару.

Облитый нефтепродуктом изоляционный материал необходимо уда­лять, поскольку его каталитическое воздействие может вызвать самовосп­ламенение нефтепродукта при значительно более низких температурах.

Температура застывания . При транспортировке нефтепродуктов по тру­бопроводам и применении их в области низких температур в авиации боль­шое значение имеет их подвижность и хорошая прокачиваемость в этих ус­ловиях. Температура, при которой нефтепродукт в стандартных условиях испытаний теряет подвижность, называется температурой застывания.

Потеря подвижности нефтепродукта может происходить за счет двух факторов: или повышения вязкости нефтепродукта, или за счет образо­вания кристаллов парафина и загустевания всей массы нефтепродукта.

Определение температуры вспышки в открытом тигле.

Температуру вспышки в открытом тигле определяют в приборе Бренкена (рис. 36).

Рис. 36 – Прибор для определения

температуры вспышки в открытом тигле

Нагрев нефтепродукта осуществляют в железном тигле диаметром 63-65, высотой 46-48 и толщиной стенок 1 мм. Тигель помещают в металлическую песчаную баню высотой 45-55 и диаметром 95-105 мм, установленную на штативе. Термометр на 360°С прикрепляется к штативу. Нагрев бани осуществляется газовой горелкой, а испытание на вспышку – зажигательным устройством. Последняя представляет собой оттянутую стеклянную или металлическую трубку диаметром 1 мм, соединенную резиновой трубкой с источником газа.

В тигель прибора Бренкена, предварительно промытый и осушенный, наливают испытуемое масло до уровня на 12 мм ниже края тигля, если продукт имеет температуру вспышки до 210 0 С, и на 18 мм для продукта с более высокой температурой вспышки. Уровень налива нефтепродукта в тигле устанавливается по металлическому шаблону, входящему в комплект прибора Бренкена. Тигель помещают в песчаную баню, содержащую на дне слой прокаленного песка толщиной 5-8 мм. Под песчаную баню устанавливают горелку и регулируют ее пламя так, чтобы продукт нагревался на 10°С в мин и за 40°С до ожидаемой температуры вспышки нагревание уменьшают до 4°С в минуту.

Определение температуры вспышки начинается за 10°С до ожидаемой температуры вспышки, проводя на расстоянии 10-14 мм от поверхности масла через каждые 2 градуса пламя зажигательного устройства. Длина пламени должна быть 3-4 мм, а длительность каждого испытания – 2-3 с.

За температуру вспышки принимают ту температуру, при которой отмечается появление перебегающего и быстро исчезающего синего пламени.

Достаточно похоже, но с большей долей автоматизации различных этапов работы, температура вспышки в открытом тигле определяется в приборе ТВО-ЛАБ-01 (рис. 37).


Рис.37 - Лабораторный ТБО-ЛАБ-01

для определения температуры вспышки в открытом тигле.

Цвет масел

Интенсивность окраски масел зависит от присутствия в нем темных смолистых веществ. Эти вещества окрашивают большинство масел в цвета от бледно-желтого до желто-бурого. Между интенсивностью окраски и количеством смолистых веществ не существует прямой зависимости. Лишь приблизительно по цвету масла можно судить о степени его очистки. Более точное заключение о цвете масла делают путем сравнения испытуемого масла с эталонным стеклом или стандартным раствором. Цвет масла нормируется в миллиметрах (ГОСТ 2667-80). Сущность определения цвета масла состоит в том, что подбирают такую толщину слоя испытуемого масла, при которой интенсивность его окраски совпадает с окраской эталонного стекла или раствора определенной высоты столба. Естественно, что чем светлее масло, тем толще слой. Поэтому в ГОСТе этот показатель нормируется не менее той или иной толщины слоя (в миллиметрах). Цвет масла можно определять в колориметре ЦНТ согласно ГОСТ 20284-74 «Нефтепродукты. Метод определения цвета на колориметре ЦНТ».

Температурные пределы воспламенения. Температура жидкости, при которой над поверхностью создается концентрация насыщенного пара, равная нижнему концентрационному пределу воспламенения, называется нижним температурным пределом воспламенения (НТПВ).

Температура жидкости, при которой над поверхностью создается концентрация насыщенного пара, равная верхнему концентрационному пределу воспламенения, называется верхним температурным пределом воспламенения (ВТПВ).

Например, для ацетона температурные пределы равны: НТПВ 253 К, ВТПВ 279 К. При этих температурах образуются концентрации паров соответственно 2,6 и 12,6 % (об.).

Температурные пределы воспламенения используют для оценки пожарной опасности жидкостей, при расчете безопасных режимов работы закрытых технологических аппаратов и складских емкостей с жидкостями и летучими твердыми веществами. Для пожаробезопасности технологического процесса, связанного с применением жидкостей, последний ведут при температурах ниже НТПВ на 10 К или выше НТПВ на 15 К. Для многих жидкостей температурные пределы определены и результаты сведены в справочные таблицы.

Температурные пределы могут быть рассчитаны. Расчетный метод применяют для ориентировочного определения температурных пределов воспламенения в целях нахождения предполагаемых температурных пределов перед началом экспериментального их определения, а также для ориентировочного расчета безопасных режимов работы технологической аппаратуры на стадии предпроектной проработки технологического процесса в отсутствие экспериментальных данных. Температурные пределы воспламенения можно вычислить, используя данные о давлении насыщенного пара при различных температурах, по формуле

где Р 1 , Р 2 – ближайшие к Р п меньшее и большее табличные значения давления пара, соответствующие температурам Т 1 и Т 2 .

Температурные пределы воспламенения можно рассчитать по экспериментально определенным концентрационным пределам. Если вычисленная величина не совпадает с экспериментальной, то в качестве действительной принимают более низкое значение для НТПВ и более высокое для ВТПВ. Вычисляют температурные пределы следующим образом.

Определяют давление паров Р н и Р в вещества, соответствующего нижнему и верхнему концентрационным пределам паров в воздухе

Если Р общ = 101080 Па, то Р в =1010 С в и Р н = 1010 С н , где Р н и Р в – экспериментальные значения нижнего и верхнего концентрационных пределов воспламенения паров в воздухе, % (об.).

По найденным значениям Р н и Р в вычисляют температурные пределы воспламенения, используя приведенные выше формулы и табличные данные зависимости давления пара от температуры.

Температура вспышки. Температура вспышки – самая низкая температура (в условиях специальных испытаний) вещества, при которой над поверхностью его образуются пары и газы, способные вспыхивать в воздухе от источника зажигания, но скорость образования еще недостаточна для последующего горения.

Этот термин применяют для характеристики горючих жидкостей и он вошел во многие стандарты. Согласно ГОСТ 12.1.004-90 (Пожарная безопасность. Общие требования), жидкости, способные гореть, делятся на легковоспламеняющиеся (ЛВЖ) и горючие (ГЖ). ЛВЖ – это жидкости, имеющие температуру вспышки не выше 61 0 С (в закрытом тигле) или 65 0 С (в открытом тигле). ГЖ – это жидкости, имеющие температуру вспышки выше 61 0 С (в закрытом тигле) или 66 0 С (в открытом тигле).

I разряд – особо опасные ЛВЖ, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки от -18 0 С и ниже в закрытом тигле или от -13 0 С и ниже в открытом тигле;

II разряд – постоянно опасные ЛВЖ, к ним относятся легковоспламеняющиеся жидкости с температурой вспышки выше -18 0 С до 23 0 С в закрытом тигле или выше -13 0 С до 27 0 С в открытом тигле;

III разряд –ЛВЖ, опасные при повышенной температуре воздуха, к ним относятся легковоспламеняющиеся жидкости с температурой вспышки выше 23 0 С до 61 0 С в закрытом тигле или выше 27 0 С до 66 0 С в открытом тигле.

В зависимости от температуры вспышки устанавливают безопасные способы хранения, транспортирования и применения жидкостей для различных целей. температура вспышки жидкостей, принадлежащих к одному и тому же классу, закономерно изменяется с изменением физических свойств членов гомологического ряда (табл. 5.2).

Из данных табл. 5.2 видно, что температура вспышки повышается с увеличением молекулярной массы, температуры кипения и плотности. Эти закономерности в гомологическом ряду говорят о том, что температура вспышки связана с физическими свойствами веществ и сама является физическим параметром. Необходимо отметить, что закономерность изменения температуры вспышки в гомологических рядах нельзя распространять на жидкости, принадлежащие к разным классам органических соединений.

Таблица 5.2

Физические свойства спиртов

Молекулярная масса

Плотность, кг/м 3

Температура, К

Метиловый СН 3 ОН

Этиловый С 2 Н 5 ОН

н -Пропиловый С 3 Н 7 ОН

н -Бутиловый С 4 Н 9 ОН

н- Амиловый С 5 Н 11 ОН

При смешении горючих жидкостей с водой или четыреххлористым углеродом давление горючих паров при той же температуре понижается, что приводит к повышению температуры вспышки. Можно разбавить горючую жидкость до такой степени, что получившаяся смесь не будет иметь температуру вспышки:

растворе, % …………………

Температура вспышки, 0 С

метилового спирта …………

этилового спирта …………..

Практика пожаротушения показывает, что горение хорошо растворимых в воде жидкостей прекращается, когда концентрация горючей жидкости достигает 10-25%.

Для бинарных смесей горючих жидкостей, хорошо растворимых друг в друге, температура вспышки находится между температурами вспышки чистых жидкостей и приближается к температуре вспышки одной из них в зависимости от состава смеси.

С повышением температуры жидкости скорость испарения увеличивается и при определенной температуре достигает такой величины, что раз подожженная смесь продолжает гореть после удаления источника воспламенения.


Такую температуру жид-кости принято называть температурой воспламенения. Для ЛВЖ она отличается на 1 – 5 0 С от температуры вспышки, а для ГЖ – на 30 – 35 0 С. При температуре воспламенения жидкостей устанавливается постоянный (стационарный) процесс горения.

5.3. Процесс горения жидкостей. Скорость выгорания

Горение жидкостей сопровождается не только химической реакцией (взаимодействие горючего вещества с кислородом воздуха), но и физическими явлениями, без которых горение невозможно. Взаимодействие горючих паров с кислородом воздуха происходит в зоне горения, в которую непрерывно должны поступать горючие пары и воздух. Это возможно, если жидкость будет получать определенное количество тепла, необходимое для испарения. Тепло в процессе горения поступает только из зоны горения (пламени), где оно непрерывно выделяется. Тепло из зоны горения к поверхности жидкости передается излучением. Передача тепла теплопроводностью невозможна, так как скорость движения паров от поверхности жидкости к зоне горения больше скорости передачи тепла по ним от зоны горения к жидкости. Передача тепла конвекцией также невозможна, так как поток паров в объеме пламени направлен от поверхности менее нагретой (жидкость) к поверхности более нагретой.

Количество тепла, излучаемое пламенем, зависит от его степени черноты и температуры. Степень черноты пламени определяется концентрацией углерода, выделяющегося в пламени жидкости при горении жидкости. Например, степень черноты пламени при горении нефти и нефтепродуктов в больших резервуарах близка к единице.

Количество тепла, поступающее от факела Q р в единицу времени на единицу поверхности жидкости, можно определить по формуле

,

где e – степень черноты; s – постоянная Стефана – Больцмана, равная 2079×10 -7 кДж/(м 2 ×ч×К 4); Т ф – температура пламени факела, К; Т ж – температура поверхности жидкости, К.

Это тепло расходуется на испарение жидкости , ее нагревание от начальной температуры до температуры поверхности , т.е. прогрев жидкости в глубину:

,

где r – теплота испарения, кДж/ч; r – плотность, г/см 3 ; v – линейная скорость горения, мм/ч; u – скорость прогрева жидкости в глубину, мм/ч; Т п – температура поверхности жидкости, К; Т 0 – начальная температура жидкости, К; с удельная теплоемкость жидкости, Дж/(г×К).

Таким образом,

В установившемся процессе горения (т.е. при постоянной температуре пламени) наблюдается равновесие между количеством сгоревшего в зоне горения (пламени) вещества и массой пара, поступающего в пламя. Это определяет постоянную скорость испарения и, следовательно, выгорание жидкости в течение всего процесса горения.

Скорость горения жидкостей. Различают две скорости горения жидкостей – массовую и линейную. Массовой скоростью G называется масса жидкости (кг), вы-горающей в единицу времени (ч, мин) с единицы поверхности. Под линейной скоростью v горения жидкости понимают высоту ее слоя (мм, см), выгорающего в единицу времени:

где r — плотность жидкости, кг/м 3 ; h – высота слоя сгоревшей жидкости, мм; t — время горения.

Зная или определив линейную скорость выгорания, можно вычислить массовую и наоборот.

Скорость горения жидкостей непостоянна и изменяется в зависимости от начальной температуры, диаметра резервуара, уровня жидкости в резервуаре, скорости ветра и других факторов. Для горелок малых диаметров скорость сгорания сравнительно велика. С увеличением диаметра скорость сгорания сначала уменьшается, а затем возрастает, пока не достигнет определенного постоянного значения для данной жидкости. Такая зависимость обусловлена различными причинами. На скорость горения в малых горелках существенно влияют стенки, так как пламя, соприкасаясь с ними, нагревает верхнюю кромку до высокой температуры. От верхней кромки тепло теплопроводностью распространяется по всей стенке и передается жидкости. Этот дополнительный приток тепла со стороны стенки увеличивает скорость испарения жидкости. Увеличение скорости горения с увеличением диаметра связано с переходом от ламинарного режима горения к турбулентному. Этот переход сопровождается уменьшением полноты сгорания, а большое количество выделяющейся сажи способствует увеличению степени черноты пламени, что приводит к увеличению теплового потока от пламени. При турбулентном горении обеспечивается наиболее быстрый отвод паров от поверхности жидкости, увеличивается скорость испарения.

Скорость горения в больших резервуарах увеличивается с ростом диаметра незначительно. Считают, что скорость горения в резервуарах диаметром больше 2 м практически одинакова.

Сильный ветер способствует смешиванию паров с воздухом, повышению температуры пламени, в результате чего интенсивность горения увеличивается.

По мере снижения уровня жидкости в резервуаре увеличивается расстояние от пламени до поверхности жидкости, поэтому уменьшается приток тепла к жидкости. Скорость сгорания же постепенно уменьшается и при некотором критическом расстоянии поверхности жидкости от кромки борта может наступить самотушение. Это расстояние называется критической высотой ; она увеличивается с увеличением диаметра резервуара. Для больших резервуаров зависимость скорости горения от высоты свободного борта практического значения не имеет, так как высота стандартных резервуаров всегда значительно меньше критической высоты. Так, расчет показывает, что само- тушение в резервуаре диаметром 23 м может наступить при высоте его более 1 км. Действительная высота резервуара 12 м.