Альтернативные источники энергии

Виды тепловой изоляции тепловых сетей. Правила изоляции трубопроводов отопления

Виды тепловой изоляции тепловых сетей. Правила изоляции трубопроводов отопления

В основе каждого технологического процесса лежит экономическая эффективность, на которую влияет совокупность множества факторов. Одним из таких моментов, важным для многих отраслей промышленности (химической, нефтеперерабатывающей, металлургической, пищевой, услуг ЖКХ и многих других), является тепловая изоляция оборудования и трубопроводов. В промышленных масштабах она применяется на горизонтальных и вертикальных аппаратах, резервуарах для хранения различных жидкостей, в различных обменниках и насосах. Выделяются особо высокими требованиями к тепловой изоляции процессы использования криогенного и низкотемпературного оборудования. Энергетическая отрасль использует изоляционные элементы при эксплуатации всех видов котлов и турбин, баков-аккумуляторов и различных В зависимости от участка применения к ним предъявляются те или иные требования, которые включены в СНиП. Тепловая обеспечивает сохранение неизменности заданных параметров, при которых происходят а также их безопасность, снижает потери.

Общие сведения

Тепловая изоляция - один из наиболее распространенных видов защиты, нашедший свое применение практически во всех отраслях промышленности. Благодаря ей обеспечивается безаварийная работа большинства объектов, представляющих угрозу здоровью человека или окружающей среде. Существуют определенные требования по выбору материала и монтажу. Они собраны в СНиП. Изоляция трубопроводов должна соответствовать нормам, поскольку от этого зависит нормальное функционирование многих систем. Практически все требования, перечисленные в документации, являются обязательными к исполнению. В большинстве случаев тепловая изоляция теплопроводов является ключевым фактором для бесперебойной работы и функционирования объектов энергетики, жилищно-коммунального хозяйства и промышленности. Дополнительным качеством, которым обладает тепловая изоляция трубопроводов, является обеспечение требований, применяемых в области энергосбережения. Грамотная, выполненная по всем стандартам изоляция трубопроводов позволяет сократить потери тепла в процессе его передачи от поставщика к конечному потребителю (например, при предоставлении услуг горячего водоснабжения в системе жилищно-коммунального хозяйства), что в свою очередь снижает общие энергетические затраты.

Требования к сооружениям

Монтаж и процесс эксплуатации теплоизоляционных сооружений напрямую зависят от их предназначения и места установки. Существует ряд факторов, оказывающих влияние на К ним относят температурные, влажностные, механические и прочие воздействия. На сегодняшний день приняты и утверждены определенные требования, в соответствии с которыми производится расчет изоляции трубопроводов и последующий монтаж. Они считаются основными, учет их является базовым при строительстве сооружений. К ним, в частности, относят:

Безопасность применительно к окружающей среде;

Пожароопасность, надежность и долговечность материалов, из которых изготавливается сооружение;

Теплотехнические показатели.

К параметрам, характеризующим эксплуатационные свойства материалов теплоизоляции, относят некоторые физические величины. Это теплопроводность, сжимаемость, упругость, плотность, вибростойкость. Немаловажное значение имеют и горючесть, стойкость к воздействию агрессивных факторов, толщина изоляции трубопроводов и ряд других параметров.

Теплопроводность материала

Коэффициент теплопроводности сырья, из которого изготавливается изоляция, определяет эффективность всего сооружения. Исходя из его значения, рассчитывается необходимая толщина будущего материала. Это в свою очередь влияет на величину нагрузки, которая будет оказываться со стороны теплоизолятора на объект. При вычислении значения коэффициента учитывают всю совокупность факторов, оказывающих на него непосредственное влияние. Итоговое значение влияет на выбор материала, способ его укладки, необходимую толщину для достижения максимального эффекта. Также учитывается температуростойкость, степень деформации при заданной нагрузке, допустимая нагрузка, которую добавит материал на изолируемую конструкцию, и многое другое.

Срок службы

Эксплуатационный период теплоизоляционных сооружений различен и зависит от множества оказывающих непосредственно на него влияние факторов. К ним, в частности, следует относить месторасположение объекта и погодные условия, наличие/отсутствие механического влияния на теплоизоляционное сооружение. Эти факторы, имеющие ключевое значение, влияют на долговечность конструкции. Увеличить срок эксплуатации помогает нанесение дополнительного специального покрытия, которое существенно снижает уровень воздействия со стороны окружающей среды.

Требования пожарной безопасности

Нормы пожарной безопасности определены для каждой из отраслей промышленности. Например, для газовой, нефтехимической, химической отраслей в составе теплоизоляционных сооружений допускается применение трудногорящих или негорючих материалов. При этом на выбор влияют не только указанные показатели выбранного вещества, но и поведение теплоизоляционного сооружения при общем пожаре. Увеличение пожароустойчивости достигается за счет нанесения дополнительного покрытия, устойчивого к действию высоких температур.

Санитарно-гигиенические требования к сооружениям

При проектировании объектов, в рамках которых должны протекать специфические технологические процессы с повышенными требованиями к стерильности и чистоте (например, для фармацевтической промышленности), ведущее значение имеют определенные нормы. Важно для таких помещений использовать материалы, которые не оказывают влияния на Аналогична ситуация и для ЖКХ. Изоляция трубопроводов осуществляется в строгом соответствии с установленными нормами, при этом должна быть обеспечена надежность и безопасность использования.

Отечественные производители защитных материалов

Рынок теплоизоляционных материалов разнообразен и способен удовлетворить потребности любого покупателя. Здесь представлена проду

кция как импортных, так и отечественных производителей. Российские компании занимаются выпуском следующих видов теплоизоляционных материалов:

Маты, представляющие собой прошитую с двух сторон стеклоткань, в обкладках из минераловаты или крафт-бумаги;

Минераловатные изделия на основе гофрированной структуры (с ее помощью осуществляется промышленная изоляция трубопроводов);

На синтетической основе;

Продукция, в основе которой лежат стеклянные штапельные синтетические волокна.

Наиболее крупными производителями теплоизоляционных материалов являются: ОАО "Термостепс", Назаровский ЗТИ, "Минеральная вата" (ЗАО), ОАО "УРСА-Евразия".

Иностранные производители материалов

На рынке теплоизоляционных материалов представлена и продукция иностранных компаний. Среди ни выделяются: "Partek", "Rockwool" (Дания), "Paroc" (Финляндия), "Izomat" (Словакия), "Сан-Гобэн Изовер" (Финляндия). Все они специализируются на различных видах и сочетаниях волокнистых теплоизоляционных материалов. Самыми распространенными являются маты, цилиндры и плиты, которые могут быть без покрытия или с покрытием с одной стороны (например, в качестве него может использоваться алюминиевая фольга).

Каучуковые и пенопластовые материалы

Наибольшее распространение из пенопластовых теплоизоляционных материалов получил пенополиуретан заливочный. Применяется он в двух видах: в виде плиточных изделий и напыления, используется в основном для защиты при низкотемпературном производстве. Разработчиком его является НИИ синтетических смол (во Владимире), и его дочернее предприятие - ЗАО «Изолан». Изоляция трубопроводов производится и материалами на синтетической основе. В этом случае защите подвергается оборудование, работающее в условиях отрицательных и положительных температур окружающей среды. Основными поставщиками таких материалов являются фирмы "L’ISOLANTE K-FLEX" и "Армаселл". Выглядит такая теплоизоляция как трубки (цилиндры) или плитно-листовые изделия.

Монтажные работы

Состав операций и средства контроля

Этапы

работ

Контролируемые операции Контроль (метод , объем ) Документация
Подготовительные работы Проверить:

Наличие документа о качестве;

Качество материалов, изделий;

Обработку поверхностей трубопроводов под изоляцию.

Визуальный, измерительный, выборочно, не менее 5% изделий

Паспорта (сертификаты), акт приемки, акт испытания, общий журнал работ
Изоляция трубопроводов Контролировать:

Качество противокоррозионной изоляции;

Качество теплоизоляции;

Крепление основного теплоизоляционного слоя бандажами или сетками;

Качество покровного слоя.

Визуальный, измерительный

Журнал работ,

акт освидетельствования скрытых работ

Приемка выполненных работ Проверить:

Качество выполнения изоляции;

Соответствие материалов требованиям проекта, стандартов.

Визуальный, измерительный

Акт приемки выполненных работ
Контрольно-измерительный инструмент: линейка металлическая, щуп.
Операционный контроль осуществляют: мастер (прораб). Приемочный контроль осуществляют: работники службы качества, мастер (прораб), лаборант, представители технадзора заказчика.

Технические требования

СНиП 3.04.01-87 пп. 2.32, 2.34, 2.35, табл. 7

Допускаемые отклонения:

При устройстве теплоизоляции из жестких изделий, укладываемых на­сухо, необходимо обеспечивать:

Зазор между изделиями и изолируемой поверхностью не более 2 мм;

Ширину швов между изделиями не более 2 мм;

Крепление изделий - по проекту.

При устройстве теплоизоляции с применением мягких и полужестких волокнистых изделий необходимо обеспечивать:

Коэффициент уплотнения:

для полужестких изделий - не более 1,2; для мягких - не более 1,5;

Плотное прилегание изделий к изолируемой поверхности и между собой;

Перекрытие продольных и поперечных швов при изоляции в несколько слоев;

Установку на горизонтальных трубопроводах креплений от провисания теплоизоляции.

При устройстве покровных оболочек теплоизоляции необходимо обеспечить:

Плотное прилегание оболочек к теплоизоляции;

Надежное крепление при помощи крепежных изделий;

Тщательное уплотнение стыков гибких оболочек.

При устройстве антикоррозионного покрытия металлических труб необходимо проверять сплошность, сцепление с защищенной поверхностью, толщину.

Не допускаются:

Механические повреждения;

Провисание слоев;

Неплотное прилегание к основанию.

Требования к качеству применяемых материалов

ГОСТ 10296-79*. Изол. Технические условия.

ГОСТ 23307-78*. Маты теплоизоляционные из минеральной ваты вертикально слоистые. Технические условия.

ГОСТ 16381-77*. Материалы и изделия строительные теплоизоляционные. Классификация и общие технические требования.

ГОСТ 23208-83. Цилиндры и полуцилиндры теплоизоляционные из минеральной ваты на синтетическом связующем.

Изол должен быть гибким. При изгибании полоски изола марки И-БД при температуре минус 15 «С, марки И-ПД при температуре минус 20 «С на стержне диаметром 10 мм на полоске изола не должно появляться трещин. Изол должен быть температуроустойчивым. При нагревании в вертикальном положении в течение 2 часов при температуре 150 °С не должно наблюдаться увеличение длины и появление вздутий. Полотно изола должно быть намотано на жесткий сердечник диаметром не менее 60 мм, изготовленный из материала, обеспечивающий сохранность изола при его транспортировании и хранении. Длина сердечника должна быть равна ширине полотна или меньше ее не более чем на 10 мм. Торцы рулона изола, а также края полотен в стыке рулона должны быть ровно обрезаны. Полотно изола не должно иметь дыр, разрывов, складок, надрывов кромок, а также не переработанных частиц резины и посторонних включений. Нижняя поверхность полотна изола (внутренняя в рулоне) должна быть покрыта сплошным слоем пылевидной посыпки. Полотно изола не должно быть слипшимся.

Теплоизоляционные материалы и изделия должны удовлетворять следующим общим техническим требованиям:

Обладать теплопроводностью не более 0,175 Вт/(м К) при 25 «С;

Иметь плотность (объемную массу) не более 600 кг/м 3 ;

Обладать стабильными физико-механическими итеплотехническими свойствами;

Не выделять токсические вещества и пыль в количествах, превышающих предельно допустимые концентрации.

Для тепловой изоляции оборудования и трубопроводов с температурой изолируемой поверхности свыше 100 °С должны применяться неоргани­ческие материалы.

Пенодиатомитовые и диатомитовые теплоизоляционные изделия должны иметь правильную геометрическую форму. Допускаемые отклонения от перпендикулярности граней и ребер не должны превышать 3 мм. В изделиях не допускаются дефекты внешнего вида:

Пустоты и включения шириной и глубиной более 10 мм;

Отбитости и притупленности углов и ребер глубиной более 12 мм и
длиной более 25 мм;

Сквозные трещины длиной свыше 30 мм; изделия с трещинами свыше
30 мм считаются половняком.

Указания по производству работ

СНиП 3.04.01-87 пп. 1.3, 2.1, 2.8-2.9, 2.32, 2.33,

СНиП 3.05.03-85 пп. 6.1, 6.2

Теплоизоляционные работы могут начинаться только после оформления акта (разрешения), подписанного заказчиком и представителями монтажной организации и организации, выполняющей теплоизоляционные работы.

Изоляционные работы допускается выполнять при положительных тем­пературах (до 60 °С) и отрицательных (до -30 °С).

Поверхности трубопроводов перед изоляцией должны быть очищены от ржавчины, а подлежащие антикоррозионной защите обработаны в соответствии с требованиями проекта. Теплоизоляционные работы на трубопроводах должны начинаться только после их постоянного закрепления. Изоляцию трубопроводов, расположенных в непроходных каналах и лотках, необходимо выполнять до их прокладки.

При температуре теплоносителя до 140 °С для зашиты наружной поверхности труб тепловых сетей от коррозии применяется покрытие из изола в два слоя на мастике изол. Общая толщина покрытия 5-6 мм. Для воздушной теплосети с температурой теплоносителя до 140 «С для защиты поверхности труб от коррозии применяются покрытия комбинированные краской БТ-177 по грунтовке ГФ-020. Общая толщина покрытия 0,15- 0,20 мм.

Для проверки качества работ по наклейке противокоррозионной защиты делают надрез до металла на участке размером 200 х 200 х 200. Качество считается удовлетворительным, если изоляция отделяется от трубы с не­которым усилием. Такой проверке на отрыв подвергается 5% труб.

Закрепление теплоизоляции на трубопроводах следует производить бандажами. Для зашиты основного слоя теплоизоляции от увлажнения, механических повреждений необходимо применять покровные оболочки из жестких или гибких (неметаллических) материалов.

Монтаж теплоизоляционных изделий необходимо начинать от фланцевых соединений и фасонных частей и проводить в направлении, противоположном уклону.

При промежуточной проверке осматривают поверхности, подготовленные под тепловую изоляцию, при многослойной теплоизоляции проверяют каждый слой до нанесения следующего. При окончательной проверке теплоизоляции определяют равномерность толщины изоляции по всей длине прямого и обратного трубопровода.

Толщину изоляции проверяют щупом. Особенно внимательно нужно следить за дозировкой цемента и асбеста при защите изоляции асбесто-цементным раствором. Избыток цемента в асбоцементной массе приводит после ее затвердения и нагрева к растрескиванию.

В практике частного строительства не столь часто, но все же встречаются ситуации, когда коммуникации отопления требуется не только развести по помещениям основного дома, но и протянуть их к другим, рядом расположенным зданиям. Это могут быть жилые флигели, пристройки, летние кухни, хозяйственные или сельскохозяйственные постройки, например, пользующиеся для содержания домашних животных или птицы. Не исключается вариант, когда, наоборот, сама автономная котельная расположена в отдельном здании, на некотором удалении от основного жилого корпуса. Бывает, что дом подключается к центральной теплотрассе, от которой к нему протягиваются трубы.

Прокладка труб отопления между зданиями возможна двумя вариантами – подземная (канальная или бесканальная) и открытая. Менее трудоёмким видится процесс монтажа локальной теплотрассы над землей, и к этому варианту в условиях самостоятельного строительства прибегают чаще. Одно из основных условий эффективности работы системы – это правильно спланированная и качественно исполненная теплоизоляция для труб отопления на открытом воздухе. Именно этот вопрос будет рассмотрен в настоящей публикации.

Казалось бы, нонсенс – зачем утеплять и без того почти всегда горячие трубы отопительной системы? Возможно, кого-то может ввести в заблуждение своеобразная «игра слов». В рассматриваемом случае, конечно, корректнее будет вести разговор, оперируя понятием «термоизоляция».

Термоизоляционные работы на любых трубопроводах преследуют две основные цели:

  • Если трубы используются в системах отопления или горячего водоснабжения, то на первый план выходит снижение тепловых потерь, поддержание требуемой температуры перекачиваемой жидкости. Этот же принцип справедлив и для производственных или лабораторных установок, где по технологии требуется поддержание определенной температуры передаваемого по трубам вещества.
  • Для трубопроводов холодного водоснабжения или канализационных коммуникаций главным фактором становится именно утепление, то ест недопущения падения в трубах температуры ниже критической отметки, предотвращения промерзания, ведущего к выходу системы из строя и деформации труб.

Кстати, такая мера предосторожности требуется и для теплотрасс, и для труб ГВС – никто полностью не застрахован от аварийных ситуаций на котельном оборудовании.

Сама цилиндрическая форма труб предопределяет весьма немалую площадь постоянного теплообмена с окружающей средой, а значит – значительные теплопотери. И они, естественно, растут по мере повышения диаметров трубопровода. Приведенная ниже таблица наглядно показывает, как изменяется величина теплопотерь в зависимости от разницы температур внутри и снаружи трубы (столбец Δt°), от диаметра труб и от толщины термоизоляционного слоя (приведены данные с учетом использования утеплительного материала со средним коэффициентом теплопроводности λ = 0,04 Вт/м×°С).

Толщина слоя теплоизоляции. мм Δt.°С Внешний диаметр трубопровода (мм)
15 20 25 32 40 50 65 80 100 150
Величина тепловых потерь (на 1 погонный метр трубопровода. Вт).
10 20 7.2 8.4 10 12 13.4 16.2 19 23 29 41
30 10.7 12.6 15 18 20.2 24.4 29 34 43 61
40 14.3 16.8 20 24 26.8 32.5 38 45 57 81
60 21.5 25.2 30 36 40.2 48.7 58 68 86 122
20 20 4.6 5.3 6.1 7.2 7.9 9.4 11 13 16 22
30 6.8 7.9 9.1 10.8 11.9 14.2 16 19 24 33
40 9.1 10.6 12.2 14.4 15.8 18.8 22 25 32 44
60 13.6 15.7 18.2 21.6 23.9 28.2 33 38 48 67
30 20 3.6 4.1 4.7 5.5 6 7 8 9 11 16
30 5.4 6.1 7.1 8.2 9 10.6 12 14 17 24
40 7.3 8.31 9.5 10.9 12 14 16 19 23 31
60 10.9 12.4 14.2 16.4 18 21 24 28 34 47
40 20 3.1 3.5 4 4.6 4.9 5.8 7 8 9 12
30 4.7 5.3 6 6.8 7.4 8.6 10 11 14 19
40 6.2 7.1 7.9 9.1 10 11.5 13 15 18 25
60 9.4 10.6 12 13.7 14.9 17.3 20 22 27 37

По мере роста толщины слоя изоляции общий показатель теплопотерь снижается. Однако, обратите внимание, что даже достаточно толстый слой в 40 мм не исключает теплопотерь полностью. Вывод один – необходимо стремиться к тому, чтобы использовать утеплительные материалы с минимально возможным коэффициентом теплопроводности – это одно из главных требований к термоизоляции трубопроводов.

Иногда требуется и система подогрева трубопроводов!

При прокладке водопроводных или канализационных коммуникаций случается, что в силу особенностей местного климата или конкретных условий монтажа одной термоизоляции явно недостаточно. Приходится прибегать к принудительному , к установке греющих кабелей – подробнее эта тема рассмотрена в специальной публикации нашего портала.

  • Материал, который используется для термоизоляции труб, по возможности, должен обладать гидрофобными качествами. Мало току будет от утеплителя, пропитавшегося водой – он и теплопотерь не предотвратит, и сам вскоре разрушится под действием отрицательных температур.
  • Термоизоляционная конструкция должна иметь надежную внешнюю защиту. Во-первых, она нуждается в защите от атмосферной влаги, особенно если применен утеплитель, способный активно впитывать воду. Во-вторых, материалы следует закрыть от воздействия ультрафиолетового спектра солнечного света, действующего на них губительно. В-третьих, не следует забывать про ветровую нагрузку, способную нарушить целостность термоизоляции. И, в-четвертых, остается фактор внешнего механического воздействия, ненамеренного, в том числе со стороны животных, или из-за банальных проявлений вандализма.

Кроме того, для любого хозяина частного дома, наверняка, небезразличны и моменты эстетичного внешнего вида проложенной теплотрассы.

  • Любой применяемы на теплотрассах термоизоляционный материал должен иметь диапазон рабочих температур, соответствующий реальным условиям применения.
  • Важное требование к утеплительному материалу и внешней его облицовке – это долговечность использования. Никому не захочется возвращаться к проблемам термоизоляции труб даже раз в несколько лет.
  • С практической точки зрения одним из основных требований выступает простота монтажа термоизоляции, причем в любом положении и на любом сложном участке. Благо, в этом плане производители не устают радовать удобными в применении разработками.
  • Важное требование к термоизоляции – ее материалы должны и сами быть химически инертными, и не вступать ни в какие реакции с поверхностью труб. Подобная совместимость – залог длительности безаварийной эксплуатации.

Вопрос стоимости бывает тоже очень важен. Но в этом плане разброс цен у специализированных утеплителей для труб – очень большой.

Какие материалы используются для утепления надземных теплотрасс

Выбор термоизоляционных материалов для труб отопления при их наружной прокладке – достаточно велик. Они бывают рулонного типа или в виде матов, им может придаваться удобная для монтажа цилиндрическая или иная фигурная форма, есть утеплители, которые наносятся в жидком виде и приобретают свои свойства лишь после застывания.

Утепление с помощью вспененного полиэтилена

Вспененный полиэтилен справедливо относят к очень эффективным термоизоляторам. И что еще очень важно, стоимость этого материала – одна из самых низких.

Коэффициент теплопроводности вспененного полиэтилена обычно в области 0,035 Вт/м×°С – это очень хороший показатель. Мельчайшие изолированные друг от друга пузырьки, заполненные газом, создают эластичную структуру, и с таким материалом, если приобретена его рулонная разновидность, очень удобно работать на сложных по конфигурации участках труб.

Такая структура становится надежной преградой для влаги – при правильном монтаже ни вода, ни водяные пары через нее проникнуть к стенкам трубы не смогут.

Плотность пенополиэтилена невысока (около 30 – 35 кг/м³), и термоизоляция никак не утяжелит трубы.

Материал с некоторым допущением можно отнести к категории малоопасных с точки зрения возгораемости – он обычно относится к классу Г-2, то есть его очень непросто воспламенить, а без внешнего пламени он быстро затухает. Причем продукты горения, в отличие от многих других термоизоляторов, не представляют сколь-нибудь серьезной токсической опасности для человека.

Рулонный вспененный полиэтилен для утепления наружных теплотрасс будет и неудобен, и нерентабелен – придется наматывать несколько слоем, чтобы добиться требуемой толщины термоизоляции. Гораздо удобнее в работе материал в виде гильз (цилиндров), в которых предусмотрен внутренний канал, соответствующий диаметру утепляемой трубы. Для надевания на трубы обычно по длине цилиндра на стенке сделан надрез, который после монтажа можно заклеить надежным скотчем.

Надеть изоляцию на трубу — труда не составляет

Более эффективная разновидность пенополиэтилена – пенофол, у которого с одной стороны имеется фольгированный слой. Это блестящее покрытие становится своеобразным термоотражателем, что существенно повышает утеплительные качества материала. Кроме того – это дополнительный барьер от проникновения влаги.

Пенофол также может быть рулонного типа или в виде профильных цилиндрических элементов – специально для термоизоляции труб различного предназначения.

И все вспененный полиэтилен для термоизоляции именно теплотрасс используется нечасто. Он, скорее, подойдет для других коммуникаций. Причина тому – довольно невысокий температурный диапазон эксплуатации. Так. если взглянуть на физические характеристики, то верхний предел балансирует где-то на грани 75 ÷ 85 градусов — выше возможны нарушения структуры и появление деформаций. Для автономного отопления, чаще всего, этакой температуры бывает достаточно, правда, на грани, а для центральной – термоустойчивости явно маловато.

Утеплительные элементы из пенополистирола

Всем известный пенополистирол (в обиходе его чаще называют пенопластом) очень широко применяется для самых разных видов термоизоляционных работ. Не является исключением и утепление труб – для этого из пенопласта изготавливаются специальные детали.

Обычно это полуцилиндры (для труб больших диаметров могут быть сегменты в треть длины окружности, по 120°), которые для сборки в единую конструкцию оснащаются замковым соединением по типу «шип-паз». Такая конфигурация позволяет полностью, по всей поверхности трубы, обеспечить надёжную термоизоляцию, без остающихся «мостиков холода».

В повседневной речи такие детали получили название «скорлупы» — за явное сходство с ней. Выпускается множество ее типов, под различный внешний диаметр утепляемых труб и разную толщину термоизоляционного слоя. Обычно длина деталей 1000 или 2000 мм.

Для изготовления используется пенополистирол типа ПСБ–С различных марок – от ПСБ–С-15 до ПСБ–С-35. Основные параметры этого материала приведены в таблице ниже:

Оцениваемые параметры материала Марка пенополистирола
ПСБ-С-15У ПСБ-С-15 ПСБ-С-25 ПСБ-С-35 ПСБ-С-50
Плотность (кг/м³) до 10 до 15 15,1 ÷ 25 25,1 ÷ 35 35,1 ÷ 50
Прочность на сжатие при 10% линейной деформации (МПа, не менее) 0.05 0.06 0.08 0.16 0.2
Предел прочности при изгибе (МПа, не менее) 0.08 0.12 0.17 0.36 0.35
Теплопроводность в сухом состоянии при температуре 25°С (Вт /(м×°К)) 0,043 0,042 0,039 0,037 0,036
Водопоглощение за 24 часа (% по объему, не более) 3 2 2 2 2
Влажность (%, не более) 2.4 2.4 2.4 2.4 2.4

Достоинства пенопласта, как утеплительного материала известны давно:

  • Он обладает низким коэффициентом теплопроводности.
  • Малый вес материала существенно упрощает утеплительные работы, для которых не требуется никаких специальных механизмов или приспособлений.
  • Материал биологически инертен – он не будет питательной средой для образования плесени или грибка.
  • Влагопоглощение – незначительно.
  • Материал легко поддается резке, подгонке под нужный размер.
  • Пенопласт химически инертен, абсолютно безопасен для стенок труб, из какого материала они ни были бы изготовлены.
  • Одно из ключевых достоинств – пенопласт относится к наиболее недорогим утеплителям.

Однако, немало у него и недостатков:

  • Прежде всего — это низкий уровень пожарной безопасности. Материал нельзя назвать негорючим и не распространяющим пламя. Именно поэтому при его использовании для утепления наземных трубопроводов обязательно следует оставлять пожарные разрывы.
  • Материал не обладает эластичность, и его удобно применять лишь на прямых участках трубы. Правда, можно подыскать и специальные фигурные детали.

  • Пенопласт не относится к прочным материалам – он легко поддается разрушению под внешним воздействием. Негативно на него действует и ультрафиолетовое излучение. Одним словом, надземные участки трубы, утепленные пенополистирольной скорлупой, обязательно потребуют дополнительной защиты в виде металлического кожуха.

Обычно в магазинах, где продается пенопластовая скорлупа, предлагают и листы оцинковки, нарезанные в нужный размер, соответствующий диаметру утеплителя. Можно использовать и алюминиевую оболочку, хотя она, безусловно, намного дороже. Листы могут закрепляться саморезами или хомутами – получающийся кожух создаст одновременно антивандальную, противоветровую, гидроизоляционную защиту и преграду от солнечного света.

  • И все же даже не это главное. Верхний предел нормальных для эксплуатации температур – всего в районе 75°С, после чего может начаться линейная и пространственная деформация деталей. Как ни крути, для отопления этого значения может и не хватить. Наверное, есть смысл поискать более надежный вариант.

Утепление труб минеральной ватой или изделиями на ее основе

Самый «древний» способ термоизоляции внешних трубопроводов – с использованием минеральной ваты. Он, кстати, и самый бюджетный, если нет возможности приобрети пенопластовую скорлупу.

Для термоизоляции трубопроводов используют различные виды минеральной ваты – стекловату, каменную (базальтовую) и шлаковую. Шлаковата – наименее предпочтительна: она, во-первых, наиболее активно впитывает влагу, а во-вторых, ее остаточная кислотность весьма разрушительно может действовать на стальные трубы. Даже дешевизна этой ваты нисколько не оправдывает рисков ее применения.

А вот минеральная вата на основе базальтовых или стеклянных волокон подойдет в полной мере. У нее хорошие показатели термического сопротивления теплопередаче, высокая химическая устойчивость, материал эластичен, и его легко укладывать даже на сложные участки трубопроводов. Еще одно достоинство – можно быть, в принципе, совершенно спокойным в плане пожаробезопасности. Разогреть минеральную вату до степени воспламенения в условиях наружной теплотрассы – практически нереально. Даже воздействие открытого пламени не станет причиной распространения возгорания. Именно поэтому минвату и применяют для заполнения пожарных разрывов при использовании других утеплителей труб.

Главный недостаток минеральной ваты – высокая впитываемость воды (базальтовая в меньшей степени подвержена этому «недугу»). Значит, любой трубопровод потребует обязательной защиты от воздействия влаги. Кроме того, структура ваты нестойка к механическим воздействиям, легко разрушается, и ее следует защитить прочным кожухом.

Обычно используют прочную полиэтиленовую пленку, которой надёжно укутывают слой утепления, с обязательным перехлестом полос на 400 ÷ 500 мм, а затем сверху все это закрывается металлическими листами – точно по аналогии с пенополистирольной скорлупой. В качестве гидроизоляции также может использоваться рубероид – при этом будет достаточно 100 ÷ 150 мм нахлеста одной полосы на другую.

Существующими ГОСТами определена толщина защитных металлических покрытий для открытых участков трубопроводов при любом типе используемых термоизоляционных материалов:

Материал защитного покровного слоя Минимальная толщина металла, при внешнем диаметре изоляции
350 и менее Свыше 350 и до 600 Свыше 600 и до 1600
Ленты и листы из нержавейки 0.5 0.5 0.8
Листы из тонколистовой стали, оцинкованные или с полимерным покрытием 0.5 0.8 0.8
Листы алюминиевые или из алюминиевых сплавов 0.3 0.5 0.8
Ленты алюминиевые или из алюминиевых сплавов 0.25 - -

Таким образом, несмотря на кажущуюся недорогую цену самого утеплителя, его полноценная укладка потребует немалых дополнительных затрат.

Минеральная вата для утепления трубопроводов может выступать и в ином качестве – она служит материалом для изготовления готовых термоизоляционных деталей, по аналогии с цилиндрами из пенополиэтилена. Причем такие изделия выпускаются как для прямых участков трубопроводов, так и для поворотов, тройников и т.п.

Обычно такие утеплительные детали изготавливаются из наиболее плотной – базальтовой минеральной ваты, имеют внешнее фольгированное покрытие, которое сразу снимает проблему гидроизоляции и повышает эффективность утепления. Но вот от внешнего кожуха все равно уйти не удастся – тонкий слой фольги от случайного или намеренного механического воздействия не защитит.

Утепление теплотрассы пенополиуретаном

Один из самых эффективных и безопасных в эксплуатации современных утеплительных материалов – это пенополиуретан. У него – масса всевозможных достоинств, поэтому материал используют практически на любых конструкциях, требующих надежного утепления.

Каковы особенности пенополиуретана — утеплителя?

Пенополиуретан для утепления трубопроводов может быть применен в различных видах.

  • Широко используется ППУ-скорлупа, обычно имеющая внешнее фольгированное покрытие. Она может быть разборная, состоящая из полуцилиндров с пазо-гребневыми замками, либо, для труб небольшого диаметра – с разрезом по длине и специальным клапаном с самоклеящейся тыльной поверхностью, который существенно упрощает монтаж изоляции.

  • Еще один способ термоизоляции теплотрассы пенополиуретаном – это напыление его в жидком виде с помощью специального оборудования. Создающийся слой пены после полного отвердевания становится отменным утеплителем. Особенно удобна подобная технология на сложных развязках, поворотах труб, в узлах с запорно-регулировочной арматурой и т.п.

Достоинство подобной технологии еще и в том, что благодаря отменной адгезии пенополиуретанового напыления с поверхностью труб, создается отличная гидроизоляция и антикоррозионная защита. Правда, сам пенополиуретан также требует обязательной защиты – от ультрафиолетовых лучей, поэтому без кожуха опять обойтись не удастся.

  • Ну а если требуется прокладка достаточно длинной теплотрассы, то, наверное, самым оптимальным выбором станет использование предизолированных (предварительно изолированных) труб.

По сути, такие трубы представляют собой многослойную конструкцию, собранную в заводских условиях:

Внутренний слой – это, собственно, сама стальная труба требуемого диаметра, по которой и осуществляется перекачка теплоносителя.

— Внешнее покрытие – защитное. Оно может быть полимерным (для прокладки теплотрассы в толще грунта) либо металлическим оцинкованным – то, что требуется для открытых участков трубопровода.

— Между трубой и кожухом залит монолитный, бесшовный слой пенополиуретана, выполняющего функцию эффективной термоизоляции.

С обеих оконечностей трубы оставлен монтажный участок для проведения сварочных работ при сборке теплотрассы. Его длина рассчитана таким образом, что тепловой поток от сварочной дуги не повредит пенополиуретановой прослойки.

После проведения монтажа оставшиеся не заизолированными участки грунтуют, закрывают пенополиуретановой скорлупой, а затем – металлическими поясами, сравнивая покрытие с общим внешним кожухом трубы. Нередко именно на таких участках организуют пожарные разрывы – их плотно заполняют минватой, затем гидроизолируют рубероидом и все так же закрывают сверху стальным или алюминиевым кожухом.

Стандартами установлен определенный сортамент таких сэндвич-труб, то есть имеется возможность приобрести изделия нужного условного диаметра с оптимальной (обычной или усиленной) термоизоляцией.

Наружный диаметр стальной трубы и минимальная толщина ее стенки (мм) Размеры оболочки из тонколистовой оцинкованной стали Расчетная толщина термоизоляционного слоя пенополиуретана (мм)
номинальный внешний диаметр (мм) минимальная толщина стального листа (мм)
32 × 3,0 100; 125; 140 0.55 46,0; 53,5
38 × 3,0 125; 140 0.55 43,0; 50,5
45 × 3,0 125; 140 0.55 39,5; 47,0
57 × 3,0 140 0.55 40.9
76 × 3,0 160 0.55 41.4
89 × 4,0 180 0.6 44.9
108 × 4,0 200 0.6 45.4
133 × 4,0 225 0.6 45.4
159 × 4,5 250 0.7 44.8
219 × 6,0 315 0.7 47.3
273 × 7,0 400 0.8 62.7
325 × 7,0 450 0.8 61.7

Производители предлагают такие сэндвич-трубы не только для прямых участков, но и для тройников, поворотов, компенсаторов и т.п.

Стоимость подобных предизолированных труб – достаточно высока, но зато с их приобретением и монтажом решается сразу целый комплекс проблем. Так что такие затраты видятся вполне оправданными.

Видео: процесс производства предизолированных труб

Утеплитель – вспененный каучук

Очень популярными в последнее время становятся термоизоляционные материалы и изделия из синтетического вспененного каучука. Этот материал имеет целый ряд достоинств, которые выводят его на лидерские позиции в вопросах утепления трубопроводов, в том числе не только теплотрасс, но и более ответственных – на сложных технологических линиях, в машино-, авиа- и судостроении:

  • Вспененный каучук – очень эластичен, но в то же время обладает большим запасом прочности на разрыв.
  • Плотность материала – всего от 40 до 80 кг/м³.
  • Низкий коэффициент теплопроводности обеспечивает очень эффективную термоизоляцию.
  • Материал со временем не дает усадки, полностью сохраняя свою первоначальную форму и объем.
  • Вспененный каучук трудновоспламеняем и обладает свойством быстрого самозатухания.
  • Материал химически и биологически инертен, в нем никогда не появляется ни очагов плесени или грибка, ни гнезд насекомых или грызунов.
  • Важнейшее качество – практически абсолютная водо- и паронепроницаемость. Таким образом, утеплительный слой сразу становится и отличной гидроизоляцией для поверхности трубы.

Такая термоизоляция может выпускаться в виде полых трубок с внутренним диаметром от 6 и до 160 мм и толщиной слоя утепления от 6 до 32 мм, или же в форме листов, которым зачастую с одной из сторон придаётся функция «самоклейки».

Наименование показателей Значения
Длина готовых трубок, мм: 1000 или 2000
Цвет черный или серебристый, в зависмости от типа защитного покрытия
Температурный диапазон применения: от - 50 до + 110 °С
Теплопроводность, Вт/(м ×°С): λ≤0,036 при температуре 0°С
λ≤0,039 при температуре +40°С
Коэффициент сопротивления паропроницанию: μ≥7000
Степень пожароопасности Группа Г1
Допустимое изменение длины: ±1,5%

Но для расположенных на открытом воздухе теплотрасс особо удобны готовые утеплительные элементы, изготовленные по технологии «Armaflex ACE», имеющие специальное защитное покрытие «ArmaChek».

Покрытие «ArmaChek» может быть нескольких типов, например:

  • «Arma-Chek Silver» — представляет собой многослойную оболочку на основе ПВХ, имеющую серебристое отражающее напыление. Такое покрытие обеспечивает отличную защиту изоляции и от механических воздействий, и от ультрафиолетовых лучей.
  • Черное покрытие «Arma-Chek D» имеет стекловолоконную высокопрочную, но сохраняющую отличную гибкость основу. Это – отличная защита от всех возможных химических, погодных, механических воздействий, которая сохранит трубу отопления в неприкосновенности.

Обычно такие изделия по технологии «ArmaChek» имеют самоклеящиеся клапаны, герметично «запечатывающие» утеплительный цилиндр на теле трубы. Выпускаются и фигурные элементы, позволяющие проводить монтаж на сложных участках теплотрассы. Умелое использование такой термоизоляции позволяет быстро и надежно ее смонтировать, не прибегая к созданию дополнительного внешнего защитного кожуха — в нем просто нет необходимости.

Единственное, наверное, что тормозит широкое применение таких термоизоляционных изделий для трубопроводов – пока еще запредельно высокая цена на настоящую, «брендовую» продукцию.

Новое направление в утеплении – теплоизоляционная краска

Нельзя пропустить и еще одну современную технологию утепления. И о ней тем более приятно говорить, так как она является разработкой российских ученых. Речь идет о керамическом жидком утеплителе, который еще известен, как теплоизоляционная краска.

Это, безо всякого сомнения, «пришелец» из сферы космических технологий. Именно в этой научно-технической отрасли вопросы термоизоляции от критически низких (в открытом космосе) или высоких (при запуске кораблей и приземлении спускаемых аппаратов) стоят особенно остро.

Термоизоляционные качества сверхтонких покрытий кажутся просто фантастическими. Одновременно такое покрытие становится отменно гидро- и пароизоляцией, защитой трубы от всех возможных внешних воздействия. Ну а сама теплотрасса принимает ухоженный, приятный глазу вид.

Сама краска представляет собой суспензию из микроскопических, заполненных вакуумом силиконовых и керамических капсул, взвешенных в жидком состоянии в специальном составе, включающем акриловые, каучуковые и иные компоненты. После нанесения и высыхания состава на поверхности трубы образуется тонкая эластичная пленка, обладающая выдающимися термоизоляционными качествами.

Наименования показателей Единица измерения Величина
Цвет краски белый (может быть изменен под заказ)
Внешний вид после нанесения и полного застывания матовая, ровная, однородная поверхность
Эластичность плёнки при изгибе мм 1
Адгезия покрытия по силе отрыва от окрашенной поверхности
- к бетонной поверхности МПа 1.28
- к кирпичной поверхности МПа 2
- к стали МПа 1.2
Стойкость покрытия к воздействию перепада температур от -40 °С до + 80 °С без изменений
Стойкость покрытия к воздействию температуры +200 °С за 1 ,5 часа пожелтения, трещин, отслоений и пузырей нет
Долговечность для бетонных и металлических поверхностей в умеренно-холодном климатическом районе (Москва) лет не менее 10
Теплопроводность Вт/м °С 0,0012
Паропроницаемость мг/м × ч × Па 0.03
Водопоглощение за 24 часа % по объёму 2
Температурный диапазон эксплуатации °С от - 60 до + 260

Такое покрытие не потребует дополнительных защитных слоев – оно достаточно прочное, чтобы самостоятельно справиться со всеми воздействиями.

Реализуется такой жидкий утеплитель в пластиковых банках (вёдрах), как и обычная краска. Есть несколько производителей, и среди отечественных можно особо отметить марки «Броня» и «Корунд».

Наносить такую термокраску можно путем аэрозольного напыления или же привычным способом – валиком и кистью. Количество слоев зависит от условий эксплуатации теплотрассы, климатического региона, диаметра труб, средней температуры перекачиваемого теплоносителя.

Многие специалисты полагают, что подобные утеплители со временем заменять привычные термоизоляционные материалы на минеральной или органической основе.

Видео: презентация сверхтонкой термоизоляции марки «Корунд»

Какая толщина утепления теплотрассы необходима

Подводя итог по обзору использующихся для термоизоляции труб отопления материалов, можно эксплуатационные показатели наиболее популярных из них свети в таблицу – для наглядности сравнения:

Термоизоляционный материал или изделие Средняя плотность в готовой конструкции, кг/м3 Теплопроводность теплоизоляционного материала (Вт/(м×°С)) для поверхностей с температурой (°С) Диапазонт рабочих температур, °С Группа горючести
20 и выше 19 и ниже
Плиты минераловатные прошивные 120 0,045 0,044 ÷ 0,035 От - 180 до + 450 для матов, на ткани, сетке, холсте из стекловолокна; до + 700 - на металлической сетке Негорючие
150 0,05 0,048 ÷ 0,037
Плиты теплоизоляционные из минеральной ваты на синтетическом связующем 65 0.04 0,039 ÷ 0,03 От - 60 до + 400 Негорючие
95 0,043 0,042 ÷ 0,031
120 0,044 0,043 ÷ 0,032 От - 180 + 400
180 0,052 0,051 ÷ 0,038
Теплоизоляционные изделия из вспененного этиленполипропиленового каучука «Аэрофлекс» 60 0,034 0,033 От - 55 до + 125 Слабогорючие
Полуцилиндры и цилиндры минераловатные 50 0,04 0,039 ÷ 0,029 От - 180 до + 400 Негорючие
80 0,044 0,043 ÷ 0,032
100 0,049 0,048 ÷ 0,036
150 0,05 0,049 ÷ 0,035
200 0,053 0,052 ÷ 0,038
Шнур теплоизоляционный из минеральной ваты 200 0,056 0,055 ÷ 0,04 От - 180 до + 600 в зависимости от материала сетчатой трубки В сетчатых трубках из металлической проволоки и нити стеклянной - негорючие, остальные слабогорючие
Маты из стеклянного штапельного волокна на синтетическом связующем 50 0,04 0,039 ÷ 0,029 От - 60 до + 180 Негорючие
70 0,042 0,041 ÷ 0,03
Маты и вата из супертонкого стеклянного волокна без связующего 70 0,033 0,032 ÷ 0,024 От - 180 до + 400 Негорючие
Маты и вата из супертонкого базальтового волокна без связующего 80 0,032 0,031 ÷ 0,024 От - 180 до + 600 Негорючее
Песок перлитовый, вспученный, мелкий 110 0,052 0,051 ÷ 0,038 От - 180 до + 875 Негорючие
150 0,055 0,054 ÷ 0,04
225 0,058 0,057 ÷ 0,042
Теплоизоляционные изделия из пенополистирола 30 0,033 0,032 ÷ 0,024 От - 180 до + 70 Горючие
50 0,036 0,035 ÷ 0,026
100 0,041 0,04 ÷ 0,03
Теплоизоляционные изделия из пенополиуретана 40 0,030 0,029 ÷ 0,024 От - 180 до + 130 Горючие
50 0,032 0,031 ÷ 0,025
70 0,037 0,036 ÷ 0,027
Теплоизоляционные изделия из пенополиэтилена 50 0,035 0,033 От - 70 до + 70 Горючие

Но наверняка пытливый читатель спросит: а где ответ на один из основных возникающих вопросов – какая же должна быть толщина утеплителя?

Вопрос этот – достаточно сложный, и однозначного ответа на него нет. При желании можно воспользоваться громоздкими формулами расчетов, но они, наверное, понятны только квалифицированным специалистам-теплотехникам. Однако, не все так страшно.

Производители готовых термоизоляционных изделий (скорлуп, цилиндров и т.п.) обычно закладывают необходимую толщину, рассчитанную для конкретного региона. А если применяется минераловатный утеплитель, то можно воспользоваться данными таблиц, которые приведены в специальном Своде Правил, который разработан именно для термоизоляции трубопроводов и технологического оборудования. Этот документ несложно найти в сети, задав поисковый запрос «СП 41-103-2000».

Вот, к примеру, таблица из этого справочника, касающаяся надземного размещения трубопровода в Центральном регионе России, при использовании матов из стеклянного штапельного волокна марки М-35, 50:

Наружный
диаметр
трубопровода,
мм
Тип труборовода отопления
подача обратка подача обратка подача обратка
Усредненный температурный режим теплоносителя, °С
65 50 90 50 110 50
Требуемая толщина изоляции, мм
45 50 50 45 45 40 40
57 58 58 48 48 45 45
76 67 67 51 51 50 50
89 66 66 53 53 50 50
108 62 62 58 58 55 55
133 68 68 65 65 61 61
159 74 74 64 64 68 68
219 78 78 76 76 82 82
273 82 82 84 84 92 92
325 80 80 87 87 93 93

Аналогичным образом можно найти нужные параметры и для других материалов. Кстати, существенно превышать указанную толщину тот же Свод Правил не рекомендует. Мало того, определены и максимальные значения утеплительного слоя для трубопроводов:

Наружный диаметр трубопровода, мм Предельная толщина слоя термоизоляции, мм
температура 19 ° С и ниже температура 20 ° С и более
18 80 80
25 120 120
32 140 140
45 140 140
57 150 150
76 160 160
89 180 170
108 180 180
133 200 200
159 220 220
219 230 230
273 240 230
325 240 240

Однако, не стоит забывать об одном важном нюансе. Дело в том, что любой утеплитель с волокнистой структурой со временем неизбежно дает усадку. А это значит, что по прошествии какого-то срока его толщины может стать недостаточно для надёжной термоизоляции теплотрассы. Выход один – еще при монтаже утепления сразу учитывать эту поправку на усадку.

Для расчета можно применить такую формулу:

Н = ((D + h ) : (D + 2 h )) × h × Kc

Н – толщина слойя минваты с учетом поправки на уплотнение.

D – внешний диаметр трубы, подлежащей утеплению;

h –требуемая толщина утепления по данным таблицы Свода Правил.

Кс – коэффициент усадки (уплотнения) волокнистого утеплителя. Является рассчитанной константой, значение которой можно взять из расположенной ниже таблицы:

Теплоизоляционные материалы и изделия Коэффициент уплотнения Kc.
Маты минераловатные прошивные 1.2
Маты теплоизоляционные «ТЕХМАТ» 1,35 ÷ 1,2
Маты и холсты из супертонкого базальтового волокна при укладке на трубопроводы и оборудование условным проходом, мм:
Ду 3
1,5
Ду ≥ 800 при средней плотности 23 кг/м3 2
̶ то же, при средней плотности 50-60 кг/м3 1,5
Маты из стеклянного штапельного волокна на синтетическом связующем марки:
М-45, 35, 25 1.6
М-15 2.6
Маты из стеклянного штапельного волокна «URSA» марки:
М-11:
̶ для труб с Ду до 40 мм 4,0
̶ для труб с Ду от 50 мм и выше 3,6
М-15, М-17 2.6
М-25:
̶ для труб с Ду до 100 мм 1,8
̶ для труб с Ду от 100 до 250 мм 1,6
̶ для труб с Ду свше 250 мм 1,5
Плиты минераловатные на синтетическом связующем марки:
35, 50 1.5
75 1.2
100 1.10
125 1.05
Плиты из стеклянного штапельного волокна марки:
П-30 1.1
П-15, П-17 и П-20 1.2

В помощь заинтересованному читателю, ниже размещен специальный калькулятор, в котором уже заложено указанное соотношение. Стоит ввести запрашиваемые параметры – и сразу получить требуемую толщину минераловатного утепления с учетом поправки.

Для сокращения уровня теплопотерь в системах отопления, которые происходят в холодный период, производится утепление труб. Теплоизоляционные материалы способствуют сбережению необходимой температуры в сети, исключая возникновение конденсата на трубопроводной поверхности и утеплителе. Применение данных типов средств, предотвращает обледенение воды при застое, и замедляет процесс коррозии, которая со временем образуется на компонентах трубопровода, что изготовлены из металла, продлевая срок их службы.

При выборе утеплителя необходимо изначально определится с местом, где он будет использоваться, снаружи или внутри дома. На избрание теплоизоляционного материала влияет:

  • диаметр расположенных труб;
  • температура нагрева носителя тепла;
  • условия, при которых совершается эксплуатирование системы отопления.

Разновидности используемых утеплителей отличаются в зависимости от диаметра имеющихся труб. Компании изготовители предлагают полуцилиндры, мягкие рулонные утеплители и цилиндры с определенной формой жесткого выполнения.

Для трубопроводов с мелким диаметром подходят полуцилиндры и цилиндры с характерной жесткостью. Данный вид выполнения обладает пазами, которые значительно упрощают монтажные работы. Этот материал имеет превосходный уровень устойчивость относительно высоких температур, располагая минимальным поглощением воды. Жесткий теплоизолятор постоянно удерживает свою первичную форму, обеспечивая дополнительно сохранность от возможных механических повреждений.

При выборе необходимо обратить внимание на следующие характеристики теплоизолятора:

  • класс возгораемости, особенно следует учитывать при дальнейшем размещении внутри жилых и промышленных сооружений;
  • уровень водопоглощения, от которого напрямую зависит срок эксплуатации материала, ведь при высоком уровне впитывания влаги утеплитель поддается гниению, начиная разлагаться, впоследствии не представляя никакой эффективности;
  • степень устойчивости к воздействию ультрафиолетом, ведь материал с низким показателем, что располагается за пределами дома, начнет поддаваться разрушениям посредством солнечных лучей;
  • уровень теплопроводимости должен быть как можно меньше, ведь при низком показателе теплоизолятор лучше сберегает тепло, позволяя использовать утеплитель с меньшей толщиной слоя.

Разновидности утеплительных материалов

Теплоизоляция труб отопления осуществляется после приобретения материала, но до этого момента необходимо узнать о характеристиках и преимуществах утеплителя, а также области его применения. После этих данных удастся подобрать наиболее подходящий и эффективный вариант.

Данный утеплитель состоит из ребер и стенок, которые образуют цельную конструкцию твердой формы. Он создает теплоизоляционную скорлупу, которая обладает высоким уровнем прочности, при этом достаточно эффективно удерживая тепло внутри отопительной сети. Пенополиуретан обладает такими положительными качествами:

  • не имеет запаха и не является токсичным;
  • не поддается гниению;
  • он экологически безвреден для организма человека;
  • имеет превосходные диэлектрические качества;
  • материал устойчив к разному роду климатических воздействий, благоприятно подходя для использования вне помещения;
  • достаточно крепкий утеплитель, исключающий возможность поломок трубопровода под воздействия механических нагрузок снаружи.

Его единственным ощутимым недостатком является высокая стоимость.

Минвата

Обладая существенным уровнем эффективности, является довольно востребованной среди теплоизоляторов. Она состоит из минеральной ваты, и имеет ряд своих особенностей:

  • вата обладает низким поглощением влаги, благодаря обработке специальными составами в процессе изготовления;
  • высокая степень термоустойчивости, что при нагреве обеспечивает сохранение теплоизоляционных и механических параметров на первичном уровне;
  • является экологически безвредной, не содержа в составе токсических веществ;
  • ей не страшны воздействия со стороны кислот, растворителей и других химических растворов.

Минеральная вата отлично подходит для использования в качестве теплоизолятора для труб отопительных сетей. Она довольно часто устанавливается на трубопроводах, что подвергаются беспрерывному нагреву большой силы.

Вспененный полиэтилен

Не наносит вреда человеческому организму. Он не боится существенных перепадов температур и является устойчивым к воздействию влаги. Утеплитель достаточно популярен среди покупателей. Имеет форму трубки с конкретной толщиной, в которой проделан надрез. Используется в качестве теплоизоляционного материала для труб отопительной сети, а еще при утеплении теплого и холодного водопровода.

Он сберегает свои свойства при использовании совместно с другими стройматериалы, среди которых бетон, известь и прочие.

Этот утеплитель для труб отопления появился на рынке совсем недавно, являясь отражающим теплоизолятором, который состоит из фольги из алюминия и ячеистого полиэтилена. Благодаря 2-м слоям материал обладает превосходными тепловыми показателями, из-за чего он довольно востребован среди покупателей. Фольгоизол имеет ряд особенностей:

  • довольно легкий монтаж, не требующий специальных средств защиты;
  • он экологически безвредный, не выделяющий токсичных веществ;
  • обладает продолжительным сроком службы;
  • имеет широкую сферу использования, подходя для применения как внутри помещения, так и снаружи.

Пенофол распространяется в рулонах с разнообразным уровнем плотности полиэтиленового слоя. При выборе толщины следует отталкиваться от будущих условий использования теплоизолятора. Двойной слой способствует удерживанию тепла в закрытом пространстве, достигая максимально допустимой эффективности.

Этапы теплоизоляции труб отопления

Минеральной ватой

Процессы по утеплению отопительного трубопровода минватой необходимо производить в одетых перчатках.

  1. В первую очередь материал режется в соответствии с нужными размерами.
  2. Производиться наматывание на трубу, при этом не нужно ее сильно затягивать.
  3. Через промежутки времени следуют останавливаться, совершая фиксирование посредством изоленты, проволоки или твердой веревки.
  4. Окончив покрытие трубопровода минеральной ватой необходимо приготовить защитную обшивку, которая изготовляется из рубероида или гофрированной фольги, что предварительно нарезается кусками.
  5. Установив оболочку из фольги или рубероида, производится ее закрепление при помощи пластиковых стяжек или веревок.

Пенополиуретановой скорлупой

При небольшом диаметре можно использовать цилиндрическую или полуцилиндрическую форму скорлупы.

  1. На трубопровод одевается теплоизоляционный материал.
  2. Производится его фиксирование посредством клея, скотча, проволоки или самоклеящейся ленты.

Если трубы имеет большой диаметр, то необходимо подобрать скорлупу, которая состоит из нескольких частей. Такая разновидность материала закрепляется по принципу паз-шип.

Произведя качественное утепление отопительных сетей, удастся сохранить значительное количество тепла внутри помещения. По этому, к выбору утеплителя следует подойти ответственно, взвесив все преимущества имеющихся на рынке теплоизоляционных стройматериалов до совершения покупки.

Важное значение в устройстве тепло­провода имеет тепловая изоляция. От каче­ства изоляционной конструкции теплопро­вода зависят не только тепловые потери, но, что не менее важно, его долговечность. При соответствующем качестве материалов и технологии изготовления тепловая изоляция может одновременно выполнять роль антикоррозионной защиты наружной поверхности стального трубопровода. К таким материалам, в частности, относятся полиуретан и производные на его основе – полимербетон и бион.

Тепловая изоля­ция устраивается на трубопроводах, арматуре, фланцевых соедине­ниях, компенсаторах и опорах для следующих целей:

уменьшения потерь тепла при его транспортировании, что снижает установленную мощность источника тепла и расход топлива;

уменьшения падения температуры теплоносителя, подаваемого к потребителям, что снижает требуемый расход теплоносителя и по­вышает качество теплоснабжения;

понижения температуры на поверхности теплопровода и воз­духа в местах обслуживания (камерах, каналах), что устраняет-опасность ожогов и облегчает обслуживание теплопроводов.

Основные требования к теплоизоляционным конструкциям заключаются в следующем:

1) низкая теплопроводность как в сухом состоянии, так и в состоянии естественной влажности;

2) малое водопоглощение и небольшая высота капиллярного подъема жидкой влаги;

3) малая коррозионная активность;

4) высокое электрическое сопротивление;

5) щелочная реакция среды (рН > 8,5);

6) достаточная механическая прочность!

Не допускается использовать материалы, подверженные горению и гниению, а также содержащие вещества, способные выделять кислоты, крепкие щелочи, вредные газы и серу.

Наиболее тяжелые условия для работы теплопроводов возникают при подземной канальной и особенно бесканальной прокладке вслед­ствие увлажнения тепловой изоляции грунтовыми и поверхностными водами и наличия в грунте блуждающих токов. В связи с этим к важ­нейшим требованиям к теплоизоляционным материалам относятся малое водопоглощение, высокое электросопротивление, а при беска­нальной прокладке высокая механическая прочность.



В качестве тепловой изоляции в тепловых сетях в настоящее вре­мя применяют в основном изделия из неорганических материалов (минеральной и стеклянной ваты), известково-кремнеземистые, совелитовые, вулканитовые, а также составы, изготовляемые "из ас­беста, бетона, асфальта, битума, цемента, песка или других компо­нентов для бесканальной прокладки: битумоперлит, асфальтоизол, армопенобетон, асфальтокерамзитобетон и др.

В зависимости от вида используемых изделий тепловую изоляцию подразделяют на оберточную (маты, полосы, шнуры, жгуты), штуч­ную (плиты, блоки, кирпичи, цилиндры, полуцилиндры, сегменты, скорлупы), заливочную (монолитную и литую), мастичную и засып­ную.

Оберточные и штучные изделия применяют для всех элементов тепловых сетей и могут быть как съемными - Для оборудования, требующего обслуживания (сальниковые компенсаторы, фланцевые соединения), так и несъемными. Крепят их при помощи бандажей, проволоки, винтов и т. п., выполненных из оцинкованных, кадмиро-ванных или коррозионно-стойких материалов, и покровного слоя. Заливочную и засыпную изоляцию применяют обычно для элементов тепловых сетей, не требующих обслуживания. Мастичную изоляцию допускается использовать для запорной и дренажной арматуры и сальниковых компенсаторов при условии выполнения съемных кон­струкций для патрубков сальниковых компенсаторов и сальников уплотнений арматуры.

Теплоизоляционные конструкции стальных трубопроводов при надземной и подземной канальной прокладке, а также при беска­нальной прокладке в монолитной оболочке состоят обычно из трех основных слоев: противокоррозионного, теплоизоляционного и покровного. Противокоррозионный слой накладывается на наружную; поверхность стальной трубы и выполняется из обмазочных и оберточ­ных материалов в несколько слоев (изола или бризола на изольной мастике, эпоксидных или органосиликатных эмалей и красок, стекло-эмали и др.). Поверх него укладывается основной теплоизоляцион­ный слой из оберточных, штучных или монолитных изделий. За ним идет покровный слой, защищающий теплоизоляционный слой от воз­действия влаги и воздуха и от механических повреждений. Выпол­няется он при подземной прокладке из двух-трех слоев изола или бризола на изольной мастике, асбестоцементной штукатурки по ме­таллической сетке, лакостеклоткани с различными пропитками, фоль­гоизола, а при надземной прокладке - из листов оцинкованной ста­ли, алюминия, сплавов алюминия, стеклоцемента, стеклорубероида, стеклопластика и т. п.

Канальные теплопроводы. В каналах с воздушным зазором изоля­ционный слой может выполняться в виде подвесной или монолитной конструкции. На рис. 8.25. показан пример выполнения подвесной изоляционной конструкции. Она состоит из трех основных элементов:

а) антикоррозийного защитного слоя 2 в виде наложенных в заводских условиях на стальной трубопровод 1 нескольких слоев эмали или изола, имеющих достаточную механическую прочность и обладающих высоким электросопротивлением и необхо­димой температуростойкостью;

б) теплоизоляционного слоя 3, выпол­ненного из материала с низким коэффици­ентом теплопроводности, например мине­ральной ваты или пеностекла, в виде мягких матов или твердых блоков, укладываемых поверх защитного антикоррозионного слоя;

в) защитного механического покрытия 4 в виде металлической сетки, выполняю­щей роль несущей конструкции для тепло­изоляционного слоя.

Для увеличения долговечности теплопровода несущая конструкция подвесной изоляции (вязальная проволока или металлическая сетка) покрывается сверху оболочкой из некорродирующих материалов или асбоцементной штукатуркой.

Рис. 8.25. Теплопровод в непроходном канале с воздушным зазором

1 – трубопровод; 2 – антикоррозионное покрытие; 3 – теплоизоляционный слой; 4 – защитное механическое покрытие

Бесканальные теплопроводы . Они находят оправданное применение в том случае, когда по надежности и долговечности не уступают теплопроводам в непроходных каналах и даже превосходят их, являясь более экономичными по сравнению с последними по начальной стоимости и трудозатратам на сооружение и эксплуатацию.

Требования к изоляционным конструкциям бесканальных теплопроводов такие же, как и к изоляционной конструкции теп­лопроводов в каналах, а именно высокое и устойчивое в эксплуатационных услови­ях тепло–, влаго–, воздухо– и электросопро­тивление.

Бесканальные теплопроводы в монолитных оболочках . Применение бесканальных теплопроводов в монолитных обо­лочках – один из основных путей индустриализации строительства тепловых сетей. В этих теплопроводах на стальной трубопровод наложена в заводских условиях обо­лочка, совмещающая тепло– и гидроизоля­ционные конструкции. Звенья таких эле­ментов теплопровода длиной до 12 м дос­тавляются с завода на место строительства, где выполняется их укладка в подготовленную траншею, стыковая сварка отдельных звеньев между собой и накладка изоляцион­ных слоев на стыковое соединение. Принципиально теплопроводы с монолитной изоляцией могут применяться не только бесканально, но и в каналах.

Современным требованиям к надежности и долговечности достаточно полно удовлетворяют теплопроводы с монолитной теплоизоляцией из ячеистого полимерного материала типа пенополиуретана с замкнутыми порами и интегральной структурой, выполненной методом формования на стальной трубе в полиэтиленовой оболочке (типа «труба в трубе»).

При этом предварительно теплоизолированные трубопроводы выполняются с оболочкой из полиэтилена высокого давления. Пространство между оболочкой и трубой заполняется жестким пенополиуретаном. В пенополиуретане заложены медные проводники для контроля наличия влаги в теплоизоляции трубопровода.

Благодаря хорошей адгезии периферийных слоев изоляции к поверхности контакта, т.е. к наружной поверхности стальной трубы и внутренней поверхности полиэтиленовой оболочки, существенно повышает­ся долговременная прочность изоляцион­ной конструкции, так как при тепловой де­формации стальной трубопровод переме­щается в грунте совместно с изоляционной конструкцией и не возникает торцевых за­зоров между трубой и изоляцией, через ко­торые влага может проникнуть к поверхно­сти стальной трубы.

Средняя теплопроводность пенополиуретановой теплоизоляции составляет в за­висимости от плотности материала 0,03 – 0,05 Вт/(м ∙ К), что примерно втрое ниже теплопроводности большинства широко при­меняемых теплоизоляционных материалов для тепловых сетей (минеральная вата, армопенобетон, битумоперлит и др.).

Благодаря высокому тепло– и электросопротивлению и низким воздухопроницаем мости и влагопоглощению наружной поли­этиленовой оболочки, создающей дополни­тельную гидроизоляционную защиту, теплогидроизоляционная конструкция за­щищает теплопровод не только от тепловых потерь, но, что не менее важно, и от наруж­ной коррозии. Поэтому при применении этой конструкции изоляции отпадает необходимость в специальной антикоррозийной защите поверхности стального трубопровода.

Использование трубопроводов с пенополиуретановой изоляцией позволяет снизить потери тепловой энергии в 3-5 раз по сравнению с существующими видами тепловой изоляции (битумперлит, битумкерамзит, пенобетон и др.) и получить годовую экономию около 700,0 Гкал/год в расчете на 1 км.

Строительство тепловых сетей с пенополдиуретановой теплоизоляцией осуществляется в несколько раз быстрее по сравнению с канальными и стоимость в 1,3-2 раза ниже, а срок службы составляет 30 лет при долговечности обычно применяемых конструкций 5-12 лет.

Битумоперлит, битумокерамзит и другие аналогичные изоляционные материалы на битумном вяжущем обладают сущест­венными технологическими преимущества­ми, позволяющими сравнительно просто индустриализировать изготовление моно­литных оболочек на трубопроводах. Но на­ряду с этим указанная технология изготов­ления оболочек нуждается в улучшении для обеспечения равномерной плотности и гомогенности битумоперлитной массы как по периметру трубы, так и по ее длине.

Кроме того, битумоперлитная изоляция, как и многие другие материалы на битум­ном вяжущем, при длительном прогреве при температуре 150°С теряет водостой­кость из–за потери легких фракций, что приводит к снижению антикоррозионной стойкости этих теплопроводов. Для повы­шения антикоррозионной стойкости битумоперлита в процессе изготовления горячей формовочной массы вводят полимерные добавки в портландцемент, что повышает температуростойкость, влагостойкость, прочность и долговечность конструкции.

Бесканальные теплопроводы в засыпных порошках . Эти теплопроводы находят примене­ние главным образом при трубопроводах малого диаметра – до 300 мм.

Преимущество бесканальных теплопроводов в засыпных порошках по сравнению с теплопро­водами с монолитными оболочками заключается в простоте изготовления изоляционного слоя. Для сооружения таких теплопроводов не требу­ется наличия в районе строительства тепловых сетей завода, на который должны предваритель­но поступать стальные трубы для наложения мо­нолитной изоляционной оболочки. Изоляцион­ный засыпной порошок в соответствующей упа­ковке, например в полиэтиленовых мешках, лег­ко транспортируется на большие расстояния железнодорожным или автотранспортом.

В качестве таких порошков применяют самоспекающийся пенобетон, перлитобетон, асфальт или асфальтобетон.

Как известно, в двухтрубных тепловых сетях температурные режимы, а следовательно, и температурные деформации подающего и обратного трубопроводов неоди­наковы. В этих условиях адгезия слоя теплоизоляции к наружной поверхности стальных трубопроводов недопустима. Для за­щиты наружной поверхности стальных трубо­проводов от адгезии с изоляционным массивом они покрываются снаружи слоем антикоррозионного мастичного материала, например асфальтовой мастикой, до заливки жидким пеноцементным раствором.

Литые конструкции теплоизоляции бесканальных трубопроводов. Из литых конструкций бесканальных теплопроводов некоторое применение получили теплопроводы в пенобетонном массиве в качестве материала для сооружения таких теплопроводов может быть использован перлитобетон. Смонтированные в траншеи стальные трубопроводы заливаются жидкой композицией, приготовленной непосредственно на трассе или доставленной в контейнере с производственной базы. После схватывания бетобетонный или перлитобетонный массив засыпается грунтом.

Контрольные вопросы

1. В чем заключаются основные требования к конструкциям современных теплопроводов? Назовите сортамент трубопроводов тепловой сети и типы применяемой арматуры.

2. Сравните подземные теплопроводы в проходных каналах, непроходных и бесканальных. Назовите преимущества и недостатки каждого типа прокладки и основные области их целесообразного применения.

3. Назовите конструкции современных компенсаторов температурных деформаций трубопроводов тепловых сетей. Как производится расчет и подбор П - образных компенсаторов?

4. Охарактеризуйте конструкции опор трубопроводов тепловых сетей. Приведите расчетную формулу для определения результирующего усилия, действующего на неподвижную опору теплопровода.

5. Каковы основные особенности и требования к теплоизоляционным конструкциям теплопроводов?