В частном доме

Потолок из гипсокартона в прихожей бюджетный вариант. Потолки из гипсокартона в прихожей своими руками

Потолок из гипсокартона в прихожей бюджетный вариант. Потолки из гипсокартона в прихожей своими руками

К механическим приборам для непосредственного измерения расстояний отно-

сят стальные землемерные ленты и рулетки.

Землемерные ленты изготавливают из стальной полосы шириной 15–20 мм,

толщиной 0,4–0,5 мм. Их обозначают ЛЗ-20, ЛЗ-24, ЛЗ-50 в соответствии с длиной

20, 24 или 50 м между концевыми штрихами ленты при натяжении 98 Н. Концы

ленты (рис. 11.1) снабжены ручками, напротив концевых штрихов в ленте сделаны

вырезы для закрепления ленты шпильками в натянутом состоянии на поверхности

земли. Метровые деления ленты закреплены оцифрованными пластинками, полу-

метры обозначены заклепками, дециметровые деления отмечены круглыми отвер-

стиями. Точность отсчета t ≈ 1 см.

В нерабочем состоянии лента должна быть намотана на каркас в виде кольца. В

комплекте с лентой типа ЛЗ применяется набор из 6 или 11 металлических шпилек.

Рулетки изготавливают многие зарубежные фирмы под различными наимено-

ваниями. В России выпускаются рулетки 2-го класса точности ОПК2-20 АНТ/1,

ОПК2-30 АНТ/1, ОПК2-50 АНТ/1. Их изготавливают из стальной ленты шириной 1

см, длиной соответственно 20, 30 и 50 м. Ленту покрывают защитной пленкой, на

нее наносят линейную шкалу с ценой деления 1 мм. Точность отсчета по такой

шкале t ≈ 0,2–0,5 мм.

Рулетка 3-го класса точности ОПК3-20 АНТ/10 длиной 20 м характеризуется

шкалой с ценой деления 10 мм (точность отсчета по шкале t ≈ 2–5 мм). В рулетках

ОПК2 и ОПК3 ленты намотаны на каркас. В комплект рулеток шпильки не по-

ставляются.

Примечание. В шифрах рулеток буквами и цифрами обозначены: О – откры-

тый корпус (вилка или крестовина); З – закрытый корпус; П – плоская лента (сече-

ние не в форме желоба); К – кольцо вытяжное; 2 или 3 – класс точности; А – удале-

ние шкалы от начала ленты; Н или У – нержавеющая или углеродистая сталь; Т –

штрихи шкалы нанесены травлением; /1 или /10 – в знаменателе дроби цена деле-

ния шкалы 1 или 10 мм.


Рис. 11.1. Лента землемерная ЛЗ-20:

а – метровые и дециметровые деления; б – на каркасе; в – шпильки

Рабочее натяжение всех лент ЛЗ и рулеток – 98 Н.

Поскольку землемерные ленты и рулетки принципиально не различаются, в

дальнейшем будем использовать их обобщающее наименование – мерные ленты.

Компарирование мерных лент – это сравнение рабочей длины ленты с длиной

рабочего эталона. Ленты, находящиеся в эксплуатации, ежегодно аттестуют (вы-

полняют их компарирование с выдачей документа на допуск к использованию) в

лаборатории метрологического надзора. Фактическая длины рабочей ленты выра-

жается уравнением, например l р = 20,000 + 0,005 м, или


l р = l 0 + ∆ l к,



где l 0 – номинальное значение длины; ∆ l к – поправка за компарирование, ука-

занная для температуры компарирования t к (обычно t к = 18 − 20°С).

В процессе эксплуатации мерных лент производят их рабочее компарирование

в метрологической лаборатории предприятия. Применяют также сравнение длины

l р рабочей ленты с длиной l а однотипной аттестованной ленты, хранящейся в каче-

стве рабочего эталона (рис. 11.2).

При рабочей проверке аттестованную и проверяемую ленты помещают на

ровной горизонтальной поверхности рядом, растягивают силой 98 Н (можно при-

менить пружинные динамометры для натяжения силой 10 кгс ± 0,3 кгс), совмеща-

ют нулевые штрихи лент, проверяют величины несовпадения шкал через каждые 1


– 3 м и находят разницу ∆lар длин лент рабочей и аттестованной ∆ l ар = l





(см. рис. 11.2).


Для аттестованной ленты 2 известна метрологически выявленная поправка ∆ l э

= l 0 – l а, где l 0 – номинальное значение длины; l а – фактическая длина аттестован-

ной ленты. Тогда поправка в длину рабочей ленты (приближенная поправка на


компарирование) ∆ l" к = ∆ l кр + ∆ l э.


Если численное значение ∆ l" к отличается от


метрологически выявленной поправки ∆ l к больше чем на 1 / 10 000 от длины l, то

рабочую ленту направляют на поверку метрологической службой.

l э





l ар


l к


Рис. 11.2. Сравнение рабочей ленты

с рабочей поверенной лентой:

1, 2 – ленты рабочая и контрольная


Измерение лентой длины линий на земной поверхности. Полосу местности

между конечными точками А и В измеряемой линии расчищают от высокой травы,

кустов и предметов, препятствующих выравниванию ленты при измерениях. Для

устранения чрезмерных боковых отклонений ленты от направления АВ (рис. 11.3,

а) вехами обозначают створ – вертикальную плоскость, проходящую через две

точки на местности, в данном примере через точки А и В. Кроме основных вех А и

В в створе выставляют дополнительные вехи через 50 – 150 м соответственно ус-

ловиям их видимости. Вешение протяженных линий производят различными спо-

Для установки промежуточных вех способом ”на себя“ наблюдатель распола-

гается в 2–3 м позади вехи В (см. рис. 11.3, а), по его сигналам помощник в створе

А-В выставляет вехи 1, 2, 3. Первой укрепляют дальнюю веху. При отсутствии за

возвышенностью прямой видимости между вехами Е и К (рис.11.3,б) промежуточ-

ную веху 1 ставят на глаз вблизи створа в точке 1". Затем по указанию наблюдате-

ля в точке 1" помощник выставляет веху 2 в точке 2" створа 1"–К . После этого веху

1 выставляют в точке 1" створа 2"–Е и аналогичными действиями быстро прихо-

дят к обозначению створа Е–К.


В случае вешения через овраг или балку (рис. 11.3, в) в створе М–N ставят вехи

1 и 5, в створе N–1 – веху 2, в створе М–5 – вехи 3 и 4.

При прямой видимости в створе более точное вешение достигается с помощью

зрительной трубы теодолита, установленного над одной из точек створа. Сначала

устанавливают дальнюю веху, затем ставят промежуточные вехи, приближаясь к

теодолиту.

Рис. 11.3. Вешение створа:

а – на мало пересеченной местности; б – через возвышенность;

в – через глубокий овраг

Измерения линий лентой ЛЗ-20 выполняют два замерщика. Передний берет 5

или 10 шпилек, задний – одну и этой шпилькой, поставленной вертикально, закре-

пляет задний конец ленты у начальной точки, убедившись, что подписи метровых

делений возрастают в направлении переднего ее конца. Затем задний замерщик

прижимает ногой ленту к земле с упором к шпильке и направляет переднего за-

мерщика в створ, т. е. по направлению на переднюю веху. Передний замерщик на-

тягивает ленту и передний ее конец закрепляет в земле шпилькой, при этом лента

не должна сдвигаться относительно задней шпильки. Затем задний замерщик вы-

нимает свою шпильку, а передний снимает ленту со шпильки, которая остается в

земле и от которой измерение продолжается после продвижения ленты вперед на

ее длину l.

Когда передний замерщик поставит последнюю шпильку, у заднего их будет 5

или 10, это значит, что измерен отрезок, равный 5 l = 100 м или 10 l = 200 м при l

20 м.. Задний замерщик передает переднему 5 или 10 шпилек. Каждая такая пе-

редача отмечается в журнале измерений.

При достижении конечной точки В линии АВ измеряют так называемый остаток

r – расстояние от заднего нулевого штриха ленты до центра знака В. Полевой ре-

зультат измерения вычисляется по формуле



D = n l + r,



где n – число отложений ленты до остатка r.

Расстояние измеряется дважды («прямо» и «обратно»). Допустимое расхожде-

ние ∆D первого и второго результатов D" и D" определяется по их допустимой от-

носительной погрешности, например (∆D /D) доп = 1: 2000, при этом ∆Dдоп = D

Если линия или ее часть расположены на наклонной поверхности, то измеряют

угол наклона ν и длину D ν соответствующего отрезка. Определяют температуру t

ленты во время измерений, если она отличается от температуры компарирования

более чем на 8 – 10°С.

Техника измерения линий с помощью рулеток практически не отличается от

рассмотренной для ленты ЛЗ.

Вычисление горизонтального проложения d измеренного отрезка D произво-

дится с учетом поправок на компарирование ленты, на приведение наклонных уча-

стков к горизонту и на температуру.

Поправка на компарирование вычисляется с учетом формулы (11.2), т. е.


∆D к = ∆lк (n + r / l ),



она прибавляется к расстоянию D , если лента длиннее номинального значения l 0 ,

и вычитается, если лента короче. Такая поправка не принимается во внимание, если

ее величина равна или меньше 1: 10 000 длины l, т.е. для ленты длиной l = 20 м

не учитываются поправки ∆lк ≤ 2 мм.

Поправка на наклон отрезка длиной D учитывается в неявном виде при вычис-

лении горизонтального проложения d (рис. 11.4) по формуле


d = D cos ν,



где ν – угол наклона отрезка.

Поправка за наклон ∆Dν – отрицательное число, которое равно разности d – D


∆D ν = d – D = D cos ν – D = D (cos ν 1).



Рис. 11.4. Наклонное положение и провес мерной ленты:

а – наклон и горизонтальное проложение линии; б – провисание;

в – определение стрелы провисания

Если известно превышение h между конечными точками А и В прямого отрезка

(см. рис. 11.4), то поправка на наклон


∆D ν ≈ h 2 / 2 D.



Приближенная формула (11.6) выводится из рис. 5.4: h 2 = D 2 – d 2 = (D + d)

(D – d). При ограниченных значениях h принимаем D + d ≈ 2D, а согласно фор-

муле (5.5) D – d = ∆D ν. С учетом этих преобразований получена формула (11.6).

Поправка ∆D ν учитывается при углах наклона ν ≥ 1,5° или при превышениях h

≥ 2,6 м на 100 м расстояния D.

Температурная поправка в измеренное расстояние


∆D t = α D (t – t к),



где α – коэффициент температурной деформации ленты на 1°С (для стали α =

0,0000125; для нержавеющей стали α = 0,0000205);

t и t к – температура ленты во время измерений и при компарировании соответст-

Поправка на провес мерной ленты. На земной поверхности и между строитель-

ными конструкциями нередко мерной лентой измеряют расстояния «на весу» под

постоянным натяжением динамометром (рис. 11.4, б). Лента получает провисание



или прогиб, стрела прогиба равна f, при этом расстояние lf между точками М и К

отсчитывается по шкале ленты преувеличенным, а поправка на провисание теоре-

тически вычисляется по формуле


Δlп = 8 f 2 / 3l,



но практически поправку ∆lп определяют опытным путем.

Для определения поправки ∆lп колья М и К забивают на одной высоте с кон-

тролем по горизонтальному вирному лучу теодолита или нивелира. Через верх ко-

лышков натягивают мерную ленту с помощью динамометра, с постоянной силой,

которая будет применяться на объекте (в геодезии сила натяжения принята вели-

чиной 98Н или 10 кгс). Рядом с точкой максимального провисания забивают ко-

лышек Е, совмещая его верх с уровнем ленты. Стрелу провеса измеряют с помо-

щью линейки относительно горизонтального луча теодолита. Или колышки ниве-

лируют с помощью нивелира и рейки, берут отсчеты по рейке, соответственно m,

е, к – расстояния от горизонтального визирного луча то точек ленты. Стрелу прове-

са вычисляют по формуле


f = (m + к )/ 2 – е.



Стрелу провеса следует определить для ряда длин провисания рулетки: 10, 15,

20, 25, 30, … м и, пользуясь формулой (11.8), рассчитать для данного типа мерной

ленты таблицу или график поправок –∆lп на провисание участков различной дли-

Горизонтальное проложения вычисляется по формуле


d = D + ∆D к + ∆D ν + ∆D t + ∑∆lп.



Пример. 1. Определить горизонтальное проложение d линии АС при условии,

что рабочая лента характеризуется уравнением l = l 0 + ∆ l к = 20 м + 0,008 м

при t к = + 20°С; результат первого измерения линии АС представлен числом от-

ложений ленты n = 15, остатком r 1 = 15,38 м, тогда D" = 315,38 м, а результат вто-

рого измерения: n = 15, r 2 = 15,48 м, поэтому D " = 315,38 м. На отрезке АВ = 100 м


линии АС угол наклона ν = 4° 30". Температура стальной ленты при измерении t =

–10°С, при компарировании t к = + 20°С.

Р е ш е н и е. 1. Оценка качества полевого измерения линии АС : абсолютное


расхождение результатов ∆D = D" – D " = 0,10 м;


относительная погрешность


расхождения ∆D / D = 0,10 / 315 = 1/ 3150 ≤ 1/ 2000, т.е. расхождение ∆D = 0,10 м

допустимо, а среднее значения расстояния D = (D" + D ") / 2 = 315, 43 м.

2. Поправки: ∆D к = + 0,008 (15 + 0,77) = + 0,126 м;

∆D ν = АВ cos ν – АВ = 100 · 0,996917 – 100 = – 0,308 м;

∆D t = 1,25 · 10–5 · 315 [–10 (+20)] = – 0,118 м.

3. Результат: dАС = 315, 43 + 0,126 – 0,308 – 0,118 = 315,13 м.

Внешние факторы ограничения точности измерения линий лентами. При

измерениях лентами на местности возникают систематические и случайные по-

грешности. Систематическая погрешность складывается из ряда односторонне дей-

ствующих факторов: остаточной погрешности компарирования ленты, погрешно-

стей за счет искривлений ленты на вертикальных неровностях земной поверхности

и отклонений ленты от створа, ее неверного натяжения и смещений шпилек, вслед-

ствие пренебрежения поправками за наклон при ν < 1,5°, а также температурными

поправками.

Случайная погрешность обусловлена случайными влияниями неточного учета

поправок на наклон и температуру, колебаниями силы натяжения ленты.

Внешние условия сильно влияют на точность измерений линий лентами. В бла-

гоприятных условиях (ровная поверхность связного грунта) относительная по-

грешность длины линии составляет в среднем 1/ Т = 1 / 3000, в средних условиях

измерений (небольшие неровности, низкая трава) 1/ Т = = 1 / 2000, в неблагопри-

ятных условиях (резко пересеченная или заболоченная местность, кочковатость,

пашня, высокие травы и др.) относительная погрешность 1/ Т = 1 / 1000 (или 0,1 м

на 100 м расстояния).

Оптические дальномеры

Оптические дальномеры служат для определения расстояний величиной до 100-

300 м с относительной погрешностью от 1/200 до 1/3000 в зависимости от конст-

рукции прибора. Принцип измерения расстояний оптическими дальномерами гео-

метрического типа основан на решении сильно вытянутого прямоугольника или

равнобедренного треугольника, называемого параллактическим (рис. 11.5, а), ма-


лая сторона которого b = MN называется базисом дальномера, а противолежащий

малый угол φ – параллактическим. Из прямоугольного треугольника FWM, где WM

= b / 2 находим измеряемое расстояние


D = (1/2) b ctg (φ /2).



Различают оптические дальномеры с постоянным базисом и с постоянным па-

раллактическим углом. В дальномерах с постоянным базисом используется специ-

альная рейка с визирными марками М и N , расстояние между которыми принима-

ется от 1,5 до 3 м и определяется с относительной погрешностью около 1: 50 000

(не грубее 0,03 – 0,05 мм). Рейку устанавливают на штативе горизонтально и пер-

пендикулярно линии FW, параллактический угол φ измеряют высокоточным тео-

долитом с погрешностью m φ ≤ 3". Расстояние D вычисляют по формуле (11.10) с

учетом температурной поправки в длину базиса. Относительная погрешность рас-

стояния длиной 100 – 200 м составляет около 1/1500 – 1/3000.

Рис. 11.5. Оптический дальномер геометрического типа:

а – геометрическая схема; б – поле зрения трубы; в – схема измерений

В дальномерах с постоянным параллактичесим углом (φ = const) измеряют ба-

зис b, при этом в формуле (11.10) произведение (1/2) ctg(φ /2) = К является посто-

янной величиной, которая называется коэффициентом дальномера, поэтому


D = К b.



Нитяной дальномер. Такие дальномеры конструктивно входят в устройство

теодолитов и нивелиров. В зрительной трубе теодолита и нивелира верхний и ниж-

ний горизонтальные штрихи n и m визирной сетки (рис. 11.5, б) образуют нитяной

дальномер с вертикальным постоянным параллактическим углом φ. Вершина F

этого угла (передний фокус оптической системы зрительной трубы – рис. 11.5, в)



расположена либо вне, либо внутри зрительной трубы. Визирные лучи, проходя-

щие через дальномерные нити и передний фокус F, пересекаются с вертикально

расположенной дальномерной шкалой в точках N и M . Наблюдатель через окуляр

трубы отсчитывает по шкале величину базиса b – число делений между нитями n и

m. Измеренное расстояние FW равно D 1 = К b. Полное расстояние JW = D между

вертикальной осью прибора ZZ и плоскостью шкалы вычисляются по формуле ни-

тяного дальномера


D = К b + с,



D = D 1 + с,



где с – постоянное слагаемое дальномера (расстояние между осью вращения ZZ

прибора и передним фокусом F.

В современных зрительных трубах К = 100; с ≈ 0, а соответствующий параллак-

тический угол φ = 34,38"

Дальномерные рейки к нитяному дальномеру могут быть специальными, шкала

которых нанесена с ценой деления 2 или 5 см для измерения расстояний до 200–

300 м. Но при топографических съемках масштаба 1: 1000 и крупнее обычно

используют рейки для технического нивелирования с сантиметровыми шашечными

делениями, при этом максимальное измеряемое расстояние близко к 150 м. На рис.

11.6, а по сантиметровым делениям между нитями t и m отсчитан отрезок шкалы b

17,6 см = 0,176 м. Здесь при К = 100 и с = 0 искомое расстояние D = 17,6 м.

П р и м е ч а н и е. При К = 100 наблюдатель принимает сантиметровые деле-

ния как условно метровые и в метрах отсчитывает по рейке искомое расстояние D,

в нашем примере D = 17,6 м и при с = 0 формула (11.12) принимает вид D = D 1.

Горизонтальное проложение. При измерениях расстояний дальномером зри-

тельной трубы теодолита дальномерную рейку устанавливают вертикально. Визи-

рование на рейку сопровождается наклоном визирной оси зрительной трубы на

угол ν (рис. 11.6, б).

Между проекциями дальномерных нитей на шкалу рейки в точки М и N берет-

ся отсчет базиса b, но его значение получается преувеличенным в сравнении с

величиной b" = М"N ", которая получается при наклоне рейки в положение, перпен-

дикулярное лучу ОW. Треугольник WMM " практически прямоугольный, так как


угол при вершине M " отличается от прямого на φ/2 = 17,2 " = 0,3°, поэтому b" / 2 =

WM " = WM cos ν = (b / 2) cos ν. Отсюда и b" = М " N " = b cosν. Тогда для треуголь-

ника F 1М"N" высота F 1W = К b", а наклонное расстояние D = ОW = К b" + с = К b

cos ν + с. Тогда горизонтальное проложение d = ОВ" = ОW cos ν = (D + с) cos ν ,


d = К b cos2 ν + с cos ν,



а при с = 0


d = К b cos2 ν = D cos2 ν.



Рис. 11.6. Определение расстояния по штриховому дальномеру:

а – отсчет по дальномерным штрихам; б – горизонтальное проложение

Горизонтальное проложение вычисляется также по формуле


d = D – ∆D ν ,



где ∆D ν = 2D sin 2ν – поправка на наклон в расстояние, измеренное нитяным

дальномером.

Для определения в полевых условиях величин d пользуются инженерными

калькуляторами или специальными тахеометрическими таблицами.

Определение постоянных нитяного дальномера. Для каждого теодолита не-

обходимо определить фактические значения поправки с и коэффициента дальноме-

ра К, поскольку его погрешность может достигать 0,5% (т. е. 1/200 от измеряемого

расстояния). Для проверки на ровном горизонтальном участке местности через 30–

35 м забивают колышки, над начальным колышком центрируют теодолит, на ос-

тальных последовательно ставят рейку и по дальномеру отсчитывают значения b 1,



b 2,…,bn , затем рулеткой измеряют расстояние каждого колышка от начального. В

соответствии с формулой (11.11) составляют несколько уравнений:


D 1 = К b 1 + с; D 2 = К b 2 + с; …, D n = К b n + с,



где D 1, D 1, …, D n – расстояния, измеренные рулеткой с точностью 0,01-0,02 м.

Вычитая одно уравнение из другого, находим, например,


D 2 – D 1


D 3 – D 1


D 3 – D 2



b 2 – b 1



b 3 – b 1



b 3 – b 2



и получаем среднее значение коэффициента дальномера


К = (К1 + К 2 + …, К n ) / n.



Подставив значение К в каждое из уравнений (11.16) получаем величины с 1, с 2,

…, с n и среднее с. В современных теодолитах с ≈ 0.


Постоянную дальномеров удобно определять


путем измерения комбинаций


расстояний. Для этого на горизонтальной поверхности в одном створе откладывают


несколько (не менее трех) расстояний: D 1, D 2, D


. Измеряют эти расстояния, а


также расстояния:


D 4 = D 1 + D 2 ; D 5 = D 3 + D 2 ; D 6 = D 1 + D 2 + D 3





В каждом результате измерений будет присутствовать постоянная поправка

дальномера сi , поэтому можно записать: Di = Di / + c , где Di ‒ результат измере-

ний. Тогда можно записать систему уравнений:

D 4 + c = D 1 + D

расстояния вычисляют при помощи инженерного калькулятора или исправляют по-

правками, которые выбирают из специально составленной таблички.

Точность нитяного дальномера. При помощи нитяного дальномера техниче-

ских теодолитов в комплекте с нивелирной рейкой с сантиметровыми делениями

расстояния измеряются с погрешностями, которые зависят от ряда факторов: точ-

ности учета коэффициента дальномера К и постоянной с; вертикальности рейки;

состояния приземного слоя воздуха (величины рефракционных колебаний изобра-

жения). При точном учете величин К и с, старательной работе и благоприятных по-

годных условиях (облачность) на расстояниях D до 50–60 м погрешность ∆D равна

приблизительно 0,05–0,1 м (относительная погрешность расстояния составляет

около ∆D / D = 1/500), на расстояниях от 80 до 120 м ∆D ≈ 0,2 м (или в относи-

тельной мере тоже 1/500), на расстояниях D ≈ 130–150 м ∆D ≈ 0,3–0,5 м (∆D / D

1/400 – 1/300). Однако при менее благоприятных условиях и недостаточной стара-

тельности наведения штрихов дальномера погрешности ∆D значительно возраста-

Рассмотренные погрешности нитяного дальномера учитываются в инструкциях

по наземным крупномасштабным топографическим съемкам: расстояния от теодо-

лита до рейки ограничивают до 80 – 100 м.

Дальномер – один из самых необходимых инструментов в арсенале строителя – без него невозможно определить размеры габаритных предметов, расстояния, параметры сооружений. Но это не единственная область применения измерительного прибора – устройства задействуют в различных сферах науки и хозяйственной деятельности. Сегодня используют различные виды электронных рулеток. Прежде чем выбрать инструмент, изучите их особенности, принципы работы, возможности и познакомьтесь с популярными моделями.

Узнав о всех преимуществах, не спешите бежать в магазин за покупкой первого, попавшегося на глаза. Первым делом нужно выяснить, для чего нужен дальномер, где его применяют и каковы его разновидности по типу действия.

Лазерная рулетка в действии

Область применения и основные преимущества

Для начала стоит свериться с толковым словарем и уточнить, что же собой представляет это устройство. Дальномер – измерительный прибор, который применяют для определения расстояния до выбранной цели, то есть, насколько далеко находится объект.

Область применения достаточно широка. Дальномер используют:

  • в геодезических работах;
  • разметке на стройплощадке;
  • военном деле;
  • мореходстве;
  • фотографии;
  • астрономии;
  • и других областях.

В строительстве чаще всего применяют простой в работе дальномер – лазерный. Этот прибор постепенно переходит из разряда сугубо профессиональных в обязательный набор инструментов строителя. Несмотря на довольно высокий ценник, преимущества этого устройства полностью его оправдывают:

  • точность показаний;
  • скорость измерения;
  • удобство работы.

Быстрые замеры на расстоянии

Классификация по типу работы

По типу работы разделяют две категории дальномеров: активного и пассивного типов. Активный оснащен излучателем и приемником звуковых или световых волн (в зависимости от модели). Устройство подает сигнал, он отражается от объекта и возвращается обратно. Учитывая время, которое было затрачено на путь сигнала туда и обратно, а также его характеристики, прибор вычисляет расстояние до цели.

К приборам измерения расстояния активного типа относят:

  • звуковые;
  • световые;
  • лазерные дальномеры.

Пассивный тип определения дальности присущ:

  • оптическому;
  • нитяному дальномеру.

Применение в ремонтных работах

Здесь все построено на геометрии. Прибор производит вычисление высоты им самим построенного равнобедренного треугольника и на основании этого значения выдает данные о расстоянии до объекта.

Виды и принцип работы инструмента

Несмотря на объединяющее понятие «дальномер», каждый отдельный тип вычисляет расстояние разными методами. Выделяют:

  • ультразвуковой;
  • фазовый лазерный;
  • импульсный лазерный;
  • оптический;
  • оптический нитяной типы.

Измеритель на основе ультразвука

Самым грубым для измерения расстояния активного типа является ультразвуковой прибор. В основе его работы лежит принцип эхо-локации, которым пользуются даже некоторые животные, например, дельфины. Устройство создает звуковой импульс и улавливает эхо – звуковые волны, которые отражаются от объекта.

Для точности измерения используется звук высокого диапазона частот – 40 кГц. Поскольку скорость звука известна, а время его движения несложно измерить, остается вычислить только расстояние, что и делает ультразвуковой дальномер.

Простая модель на основе ультразвукового датчика

Измерение при помощи лазерного импульса

Если тот же метод применить со световым импульсом, получится точный лазерный дальномер импульсного типа. Дело в том, что скорость света настолько высока (300 000 км/с), что для небольших расстояний, которые измеряются в строительстве (20, 30, 50 м), речь идет о долях наносекунд. Измерить время с такой точностью очень сложно.

Главное преимущество такого устройства – оно посылает короткие световые импульсы, а не постоянный луч. Это значит, что можно использовать лазер высокой мощности. Такой мощный импульс может без особых сложностей «слетать» туда и обратно на расстояние 100 км за доли секунд. Это свойство применяется чаще всего в военной отрасли, а сам прибор стоит гораздо дороже аналогов.

Как работает лазерный импульс

Измерение по сдвигу фазы инфракрасного луча

Принцип работы лазерного дальномера фазового типа основан на сравнении и определении сдвига фазы световой волны. Устройство генерирует световой луч инфракрасного спектра. Луч движется с известной скоростью до цели измерения, отражается и возвращается. Инструмент сравнивает фазу световой волны в начале движения и в конце. Замер производится дважды, после чего устройство выдает результат в метрах.

Одно из преимуществ такого вида измерителей расстояния – цена. Они значительно дешевле импульсных, ведь нет необходимости оборудовать лазерную рулетку сверхточным и дорогостоящим секундомером. Кроме того, при фазовом методе погрешность составляет не больше половины фазы, то есть меньше миллиметра. Это поразительный результат, однако есть у этого устройства и недостатки.

Фазовая лазерная модель

Так как светить приходится не короткими импульсами, а постоянно на протяжении всего измерения, установить мощный лазер не получится. А это значит, что на дальние расстояния устройство не применяется. Однако для строительства дальности его действия более чем достаточно.

Измерение оптическим способом

Оптический дальномер применяется по большей части в геодезии, топографических работах, навигации, фотографии. Он работает по пассивному типу, основываясь на теореме Пифагора. Принцип работы такого прибора тяжело описать на пальцах.

Военный дальномер

Он основан на построении равнобедренного (для стереоскопичечских устройств с двумя окулярами) или прямоугольного (для монокулярных) треугольника и вычислении математическим путем его высоты. Вершиной треугольника является точка, расстояние до которой нужно измерить. Наводка осуществляется вручную.

В некоторых дальномерах нужно сопоставить две части изображения для настройки, в других – устранить двоение картинки. Так или иначе, главным датчиком является человеческий глаз, поэтому погрешность неизбежна.

Схема прибора

Измерение при помощи натянутых нитей

Нитяной дальномер – еще один оптический прибор для измерения расстояния до объекта. Он тоже работает, основываясь на геометрических вычислениях. Для измерения дальности нужна специальная дальномерная рейка – длинная «линейка» с нанесенной разметкой. Расстояние между делениями 2 см. Рейка устанавливается в точке, до которой нужно измерить расстояние.

Внутри зрительной трубы натянуты тонкие нити. Дальномер и рейка выставляются строго по уровню, так, чтобы нулевая отметка обоих была на одной высоте. Далее в линзу смотрит геодезист и считает, сколько делений по 2 см помещаются между натянутыми нитями. Таким образом, строится треугольник с вершиной в фокусе линз прибора.

Длина высоты этого треугольника + фокусное расстояние будут равняться расстоянию между выбранными точками. Такой тип дальномера часто встречается в теодолитах разных моделей.

То, что видит геодезист в глазок

Как пользоваться электронной рулеткой

Чаще всего в продаже встречаются лазерные рулетки или ультразвуковые измерительные приборы с лазерной указкой. Существенной разницы в правилах эксплуатации нет. Если вам нужно получить точные данные о результатах замеров, все измерения нужно производить в строго установленном порядке, придерживаясь инструкции. Если вам предстоит работать с дальномером в помещении, то сложности это не представляет.

  1. Включите прибор.
  2. Выберите нужные настройки: режим работы (простые измерения, вычисления площади, формулы Пифагора, непрерывное измерение, минимальное/максимальное значение или другое), единицы измерения.
  3. Установите дальномер по уровню в точке отсчета.
  4. Проведите замеры, результаты получите на дисплее.

Принцип измерения

Немного сложнее работать с лазерной рулеткой в условиях стройплощадки. На солнце инфракрасный луч плохо видно. Многие используют специальные очки, которые улучшают видимость в инфракрасном спектре.

Если измерения проводятся на больших расстояниях, в солнечный день, да и сам объект выполнен из светопоглощающих материалов, не обойтись без отражающей пластины. Хорошо, когда она есть в комплекте, но это случается редко, чаще ее приходится докупать отдельно.

У пластины две стороны, и они разные по назначению. Светлая служит отражателем при дальности замеров до 30 м, красная – на больших расстояниях.

Опять же, при большой дальности не рекомендуется работать на весу. Лучше, а иногда просто обязательно, пользоваться штативом. Следует соблюдать меры предосторожности при работе с лазерными приборами. Никогда не светите лазером в глаза себе или другим людям, это может вызвать серьезную травму сетчатки глаза.

Правила выбора лазерной рулетки

Чтобы не прогадать с выбором, нужно ознакомиться с главными параметрами и узнать, какими функциями могут быть оснащены такие устройства.

Лазерная рулетка удобнее обычной

Какие параметры важно учитывать

Выбрать электронный дальномер не так просто, как может показаться. Есть ряд параметров, которые должны вас устраивать. Эти критерии являются основополагающими при выборе устройства для измерения дальности:

  • Класс. Выделяют два класса электронных рулеток: бытовые или профессиональные. Разница между ними заключается в расширенном функционале у профессиональных моделей, надежности и, разумеется, стоимости.
  • Точность. Самый главный критерий, на который стоит обратить внимание в магазине – точность. Допускается небольшая погрешность в пределах 2-3 мм на каждый метр.
  • Дальность. В зависимости от мощности лазера допустимая дальность измерения меняется. Инструменты маленькой дальности (от 20 м) пригодны для использования в помещении, для ремонтных работ и замеров небольших предметов. Для работы на стройплощадке желательно обзавестись рулеткой от 40 м.
  • Надежность. Стройплощадка – не самое безопасное место. Пыль, грязь, вода – все это в избытке присутствует на стройке. Чтобы не повредить дорогую технику, желательно не только следить и ухаживать за ней, но и выбрать такой прибор, который будет оснащен пыле- и водозащитой корпуса. В технических характеристиках этот показатель обозначается аббревиатурой IP. Значение IP не должно быть ниже 54.
  • Время автономной работы. Поскольку прибор электронный, то ему требуется питание. Нужно учитывать, от какого элемента питания работает устройство, какая его емкость и как долго рулетка сможет непрерывно действовать без замены батареек или зарядки аккумуляторов.

Принцип косвенных вычислений

Дополнительный функционал – полезные опции

Помимо основных параметров, от которых напрямую зависит качество электронного измерения расстояния, существует ряд дополнительных функций, которые делаю работу проще и комфортнее:

  • Многие дальномеры могут производить несложные вычисления: площадь прямоугольника, объем помещения, сложение и вычитание площадей и другие. Для этого нужно сделать замер в нескольких контрольных точках.
  • Хорошо, когда модель умеет запоминать несколько последних значений, это избавит от необходимости записывать.
  • Более продвинутый электронный дальномер имеет функцию вычисления по теореме Пифагора. Это очень пригодится, если вам нужно измерить, например, высоту здания, не приближаясь к нему. Замер производится по двум точкам – верхней и нижней.
  • Откидная скоба или пятка дает возможность замерять расстояние в труднодоступных местах. Скобу можно выставить в одно из двух положений: перпендикулярно или параллельно. Некоторые модели автоматически переключаются в режим скобы, когда она откинута. Другие нужно переключать вручную.
  • Иногда на глаз сложно определить, какая точка является наиболее удаленной или максимально приближенной, электронная рулетка сможет определить соответственно максимальное или минимальное значение из полученных. Пригодится для вычисления диагонали помещения или для вычислений по формулам Пифагора.
  • В условиях хорошей освещенности на улице точку, куда указывает рулетка, не всегда видно невооруженным глазом. Профессиональные электронные дальномеры оснащены специальным оптическим визиром, который позволяет рассмотреть лазер издалека. Дорогие модели имеют цифровой визир с дисплеем, на котором изображено, куда указывает рулетка.

Панель управления лазерной рулетки

Популярные бренды на рынке измерительных приборов

Выбирая электронный дальномер для работы, стоит обратить внимание и на репутацию фирмы-производителя. Уважаемые бренды, такие как Bosch, Leica, Makita дают хорошие гарантии, у них развито сервисное обслуживание в случае поломки. Однако за имя бренда часто приходится переплачивать. Как правило, переплата полностью оправдывается высоким качеством. Ниже представлен рейтинг популярных моделей.

Лазерную рулетку освоить просто

Ультразвуковая рулетка CAPITAL CP-3009

Бюджетные модели электронных дальномеров представляют собой ультразвуковые устройства с лазерной указкой для удобства замеров. Хороший пример – CAPITAL CP-3009. Она не подходит для дальних расстояний, пользоваться целесообразно только внутри помещения. Питается от 9В батареи. Цена 60$

Дальность измерения ограничивается 18 метрами, минимальная длина, которая может быть измерена, – 0,55 м. Точность составляет 0,5%, то есть на каждом метре измеритель врет на 5 мм в ту или другую сторону. Для точных работ – непростительная погрешность, но для быстрого замера площади помещения и объема работ вполне пригодный экземпляр. Девайс имеет ряд дополнительных функций: память трех последних замеров, вычисление площади и объема.

Точный и прочный DeWalt DW040P

DeWalt DW040P – полупрофессиональный лазерный дальномер, который пользуется большой популярностью среди строителей. Прибор очень точный –1 мм погрешности на метр измерений. Такая точность устроит даже самого дотошного контроллера.

Дальность работы DeWalt DW040P – 40 м, этого более чем достаточно для работы внутри помещения и вполне хватит для наружных работ. Работает от двух полуторавольтовых батареек ААА. Класс защиты, заявленный производителем – IP 54. Цена 235$

Оснащен суперпрочным корпусом с противоударным покрытием. Падения с высоты до 2 м ему не страшны. Корпус не пропускает пыль и влагу. Может вычислить площадь в двухмерном пространстве и объем помещения. Приятное дополнение – подсветка дисплея. В комплекте идет чехол.

Лидер продаж среди бытовых рулеток – Bosch PLR 50 C

Известная фирма Bosch выпускает как бытовые модели дальномеров, так и профессиональные. Bosch PLR 50 C – бытовой вариант. Он справляется с замерами на расстоянии до 50 м. Точность замеров – до 2 мм на каждый метр.

Из дополнительных функций эта модель может похвастаться сложением, вычитанием, расчётом площади, объема, косвенным вычислением по формулам Пифагора, памятью последних 10 замеров и непрерывным измерением (треккингом). Все управление осуществляется не кнопками, а посредством сенсорного экрана.

Также есть специальное приложение для смартфона, которое синхронизируется с лазерной рулеткой и делает работу еще более комфортной. Все данные переносятся на Андроид-устройство и никуда не потеряются. Цена 150 $

Швейцарская точность – Leica Disto X310

Швейцарская фирма Leica считается одним из лучших производителей измерительных и оптических приборов в мире. Конкретно эта модель – Leica Disto X310 – профессиональный лазерный дальномер, который готов потягаться с конкурентами практически во всех категориях.

Дополнительный функционал очень широкий, начиная стандартными функциями вычисления площади и объема, заканчивая очень полезным дополнением – измерением наклона. Про формулы Пифагора и косвенные вычисления не нужно даже упоминать, они здесь, разумеется, присутствуют.

Корпус с повышенной защитой от грязи и воды – IP 65. Дальность работы – 120 м. Точность – 1 мм/м. Питание от батареек ААА. Цена 260 $

Leica Disto X310

Цены на профессиональные и бытовые измерители существенно разнятся. Выбирать нужно, ориентируясь не только на громкое имя и ценовую категорию, но и внимательно изучив все технические характеристики. Если не хочется тратить деньги ради проведения небольших работ, то можно сделать дальномер своими руками, установив на смартфон специальное приложение.

Измерение расстояний производится при создании опорных сетей, выполнении топографических съемок и инженерных изысканий, на всех этапах строительства, при эксплуатации зданий и сооружений.

ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ РАССТОЯНИЙ

Измерения расстояний подразделяются на прямые и непрямые (например, с помощью дальномеров). Прямые измерения расстояний состоят в откладывании мерного прибора на измеряемых расстояниях и осуществляются с помощью мерных лент, рулеток, раньше с этой целью использовались также мерные проволоки и длинно-меры. Косвенные измерения заключаются в измерении других величин, связанных с измеряемым расстоянием некоторой функциональной зависимостью, и вычислении по ним значения расстояния.

Использовавшиеся ранее мерные инварные проволоки позволяли измерять расстояния с максимальной точностью до 1:1 500 000, но по причине чрезвычайно высокой трудоемкости подобного измерения расстояний в настоящее время они не применяются. Мерные ленты являются стальными, имеют длину 20 или 24 м и могут быть штриховыми и шкаловыми (рис. 6.1).

Рис. 6.1. Мерная лента [а) и шпильки (б)

На концах лент имеются вырезы для шпилек. Метровые деления на лентах оцифрованы, полуметровые деления отмечены заклепками, а дециметровые - отверстиями, сантиметровые деления при измерении линий оцениваются на глаз. Шкаловые ленты на своих концах имеют шкалы с миллиметровыми делениями.

Рулетки могут иметь различную длину (от 2 до 100 м) и могут быть инварными, стальными или тесмяными, использование последних при производстве геодезических измерений не допускается.

Перед измерением линий ленты и рулетки обязательно должны быть прокомпарированы. Компарирование - сравнение длины мерного прибора с эталоном, длина которого известна с высокой точностью. В качестве эталонов используются компараторы или базисы. Компаратор - специальное устройство для сравнения длин мерных приборов. Компараторы могут быть лабораторные (на полу, на бетонных столбах, на полках вдоль стен) и полевые {базисы). На концах компараторов устраиваются шкалы с миллиметровыми делениями. Компарирование мерных приборов сводится к нескольким измерениям длины компаратора. В результате компари-рования должно быть получено уравнение мерного прибора (ленты или рулетки), имеющее вид

где / 0 - номинальная длина прибора ; А/ - поправка мерного прибора за компарирование ; / - фактическая длина прибора. Вычисление поправки мерного прибора за компарирование из нескольких измерений осуществляется по формуле

где О к - фактическое расстояние (длина компаратора); /) ср - среднее значение измеренного расстояния; п - число уложений мерного прибора по длине компаратора.

При компарировании мерных приборов обязательно осуществляется измерение температуры окружающего воздуха; результаты измерения длины компаратора и значения температуры фиксируются в специальном журнале. При отсутствии лабораторных или полевых компараторов компарирование может осуществляться сравнением с компарированным ранее мерным прибором.

Особенность ремонта коридора и прихожей состоит в том, что в случае проведения работ во всей квартире этим этапом он завершается. До окончания ремонтных работ в других помещениях заниматься прихожей и коридором просто нет смысла - через них выносится мусор и заносятся строительные материалы. Материалы, которые будут использоваться для отделки прихожей и коридора, не только должны иметь привлекательный внешний вид и по цветовой гамме не диссонировать с интерьером квартиры. Необходимо, чтобы они были износостойкими и практичными при дальнейшей эксплуатации. Это правило касается в первую очередь пола и стен, но относится и к материалам, из которых будет устроен потолок.

Особенности и способы ремонта потолка в прихожей

Перед началом ремонта прихожей следует хорошо обдумать все детали. Прихожие и коридоры в наших квартирах в большинстве случаев размерами не радуют, а ошибка в выборе варианта отделки визуально сделает узкое и длинное помещение еще меньше.

Принято называть прихожую местом, где «встречаются» квартира и улица. И чтобы была именно частью квартиры, причем уютной частью, надо не только на небольшой площади разместить места хранения обуви и верхней одежды, но и обеспечить оптимальное освещение прихожей. Более того, с помощью правильно подобранного освещения постараться визуально расширить ее площадь.

На железобетонное перекрытие встроенные светильники не смонтируешь, для этого потребуется подвесная конструкция. А несколько потолочных люстр в небольшой прихожей будут смотреться странно.

Важно! «Плоские» варианты устройства потолка (покраска, обои, плитки, декоративная штукатурка) будут уменьшать возможность добиться оптимального освещения в прихожей, а подвесные конструкции - эти возможности будут расширять.

Обычно для отделки потолка в прихожей используют:

Покраску. Подобрать качественную и доступную краску вы сможете без проблем, однако перед покраской поверхность должна быть выровнена, отштукатурена и прогрунтована. На неровном потолке краска «выпятит» все дефекты поверхности.

Плитами ПВХ. Дешевый, быстрый и проверенный способ отделки.

Устройство потолка зеркальными плитками. Это могут быть полистирольные плитки, покрытые зеркальной пленкой, дающей размытое изображение, или традиционные зеркальные. Крепят их на специальный клей или шурупы. Следует помнить, что зеркальный потолок - своеобразный, даже экстравагантный вариант отделки, и применять его надо осторожно. Чтобы не превратить прихожую и коридор в своеобразную «комнату смеха». Такой способ отделки очень хорошо подходит для маленьких темных помещений, где надо усилить свет. Отражаясь в зеркальных плитках, свет даже от одного осветительного прибора будет хорошо освещать прихожую.

Оклейку обоями. Для такого ремонта отлично подойдут стеклообои под покраску, или плотные обои (виниловые, флизелиновые). Кто-то может сказать, что это устаревший способ отделки потолка. Но ведь мода в одежде имеет обыкновение возвращаться через 25-30 лет, то же самое происходит в ремонтных работах. Ведь новое - это не что иное, как хорошо забытое старое. Отделочные материалы только стали более качественными.

Декоративную штукатурку . Такой прием поможет скрыть все дефекты поверхности, и не потребует от вас значительных средств для достижения прекрасного результата.

(кассетные и реечные). Обладают прекрасными эксплуатационными характеристиками, привлекательным внешним видом. Проблема в том, что у большинства людей такие конструкции ассоциируются с офисными или производственными помещениями, а реечные потолки - с ванными комнатами.

Подвесные конструкции из гипсокартона. Универсальный способ, при котором отпадает необходимость в предварительной штукатурке поверхности потолка. Важно, чтобы не было протечек. «Ограничителем» будет служить высота в вашей квартире, ведь такая подвесная конструкция «съест» порядка 100 мм. Согласитесь, при высоте 2,20-2,30 м такая потеря будет довольно ощутимой.

Очень популярный, хотя достаточно дорогой, способ. Прекрасный внешний вид, надежность, практичность, долговечность - вот его положительные стороны. Оптимален для помещений с большим количеством углов и неправильной формы.

Устройство гипсокартонной подвесной конструкции

Очень популярный способ устройства потолка. Сочетает в себе красивый внешний вид и практичность, позволяет скрыть неровности поверхности железобетонной плиты перекрытия без необходимости ее выравнивать и штукатурить, провести любые коммуникации и организовать многоточечное освещение. В совсем маленьких прихожих устраивать многоуровневый гипсокартонный потолок вряд ли целесообразно (можно ограничиться простым одноуровневым для организации комбинированного освещения), а вот для помещений большей площади он будет оптимальным решением.

Важно! В небольших прихожих целесообразно применять двухуровневую конструкцию с простыми геометрическими формами. Такая конструкция не будет казаться вычурной, и даст возможность устроить скрытую подсветку по контуру, которая визуально «поднимет» потолок. Монтаж поворачивающихся встроенных светильников позволит сделать световой акцент на нужных зонах прихожей или предметах интерьера.

При выборе цвета можно уйти от традиционного белого, и использовать другие светлые цвета. Но не надо увлекаться, не стоит окрашивать конструкцию более, чем в три цвета. Глянцевые цвета будут «работать» на увеличение объема помещения, и их целесообразно использовать для покраски потолка в небольших прихожих. Матовые будут создавать атмосферу уюта, поэтому они отлично подойдут для гипсокартонных конструкций в больших прихожих. Прекрасно зарекомендовало себя сочетание подвесной гипсокартонной конструкции, окрашенной матовой краской, с глянцевым натяжным потолком.

Подвесной потолок из гипсокартона прослужит долгую службу, его легко обновить покраской. Материалы конструкции экологически чистые. Только вот с водой гипс «не дружит» и протечку не перенесет. Даже влагостойкий гипсокартон от протечки пострадает.

Натяжной потолок

Такой способ отделки, помимо декорирования поверхности потолка, решает и целый ряд практических задач. Подготовка поверхности не требуется, важно лишь, чтобы не было значительных протечек. А существующие дефекты и неровности потолка будут надежно скрыты. «От этой картины очень большая польза - она дырку на обоях загораживает». Лучше, чем сказала мама мальчика по прозвищу «дядя Федор», сформулировать трудно.

Другая задача, которая успешно решается с помощью натяжного потолка - организация оптимального освещения в прихожей, помещении без естественного освещения и малой площади. С помощью осветительных систем в натяжном потолке можно обеспечить комфортное освещение, которое сделает прихожую уютной. Регулируемая яркость освещения и акцентирование определенных зон сделают дизайн интерьера прихожей оригинальным.

В помещениях с неправильной геометрией использование натяжных потолков позволит сделать визуальное восприятие такой прихожей лучше, потому что внимание человека будет привлечено к привлекательному потолку, а не к угловатости помещения.

Важно! Влагостойкость и износостойкость натяжных потолков избавят вас от проблем с протеками у соседей, обезопасят мебель и сделанный в прихожей ремонт.

Разновидности натяжных потолков

Натяжные потолки различаются по типу поверхности (матовые, сатиновые, глянцевые), цвету (одноцветные, с нанесенным рисунком) и материалу, из которого они изготовлены.

Наибольшей популярностью пользуются натяжные потолки из пленки ПВХ в силу своей универсальности и ценовой доступности. Сварные швы, которые делают на таких конструкциях (ширина полотна обычно бывает 1,3-2,0 метра), практически незаметны. Вариантов оттенков полотна производителями выпускается множество, так что подобрать нужный именно вам проблем не составит. И еще одно важное достоинство таких конструкций из ПВХ-пленки - даже значительная протечка не принесет ей вреда. Пленка под весом воды провисает, а после выпуска через специальный клапан восстанавливает свою форму без последствий для внешнего вида. Такие натяжные потолки монтируют с помощью тепловых пушек.