Электрооборудование

Определение модуля отрицательного числа. Внеклассный урок - модуль числа

Определение модуля отрицательного числа. Внеклассный урок - модуль числа

Определение модуля может быть дано следующим образом: Абсолютной величиной числа a (модулем) называется расстояние от точки, изображающей данное число a на координатной прямой, до начала координат. Из определения следует, что:

Таким образом, для того чтобы раскрыть модуль необходимо определить знак подмодульного выражения. Если оно положительно, то можно просто убирать знак модуля. Если же подмодульное выражение отрицательно, то его нужно умножить на "минус", и знак модуля, опять-таки, больше не писать.

Основные свойства модуля:

Некоторые методы решения уравнений с модулями

Существует несколько типов уравнений с модулем, для которых имеется предпочтительный способ решения. При этом данный способ не является единственным. Например, для уравнения вида:

Предпочтительным способом решения будет переход к совокупности:

А для уравнений вида:

Также можно переходить к почти аналогичной совокупности, но так как модуль принимает только положительные значения, то и правая часть уравнения должна быть положительной. Это условие нужно дописать в качестве общего ограничения для всего примера. Тогда получим систему:

Оба этих типа уравнений можно решать и другим способом: раскрывая соответствующим образом модуль на промежутках где подмодульное выражение имеет определённый знак. В этом случае будем получать совокупность двух систем. Приведем общий вид решений получающихся для обоих типов уравнений приведённых выше:

Для решения уравнений в которых содержится более чем один модуль применяется метод интервалов , который состоит в следующем:

  • Сначала находим точки на числовой оси, в которых обращается в ноль каждое из выражений, стоящих под модулем.
  • Далее делим всю числовую ось на интервалы между полученными точками и исследуем знак каждого из подмодульных выражений на каждом интервале. Заметьте, что для определения знака выражения надо подставить в него любое значение x из интервала, кроме граничных точек. Выбирайте те значения x , которые легко подставлять.
  • Далее на каждом полученном интервале раскрываем все модули в исходном уравнении в соответствии с их знаками на данном интервале и решаем полученное обычное уравнение. В итоговый ответ выписываем только те корни этого уравнения, которые попадают в исследуемый промежуток. Еще раз: такую процедуру проводим для каждого из полученных интервалов.
  • Назад
  • Вперёд

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Уравнения с модулями, методы решений. Часть 1.

Прежде чем приступать к непосредственному изучению техник решения таких уравнений, важно понять суть модуля, его геометрическое значение. Именно в понимании определения модуля и его геометрическом смысле, заложены основные методы решения таких уравнений. Так называемый, метод интервалов при раскрытии модульных скобок, настолько эффективен, что используя его возможно решить абсолютно любое уравнение или неравенство с модулями. В этой части мы подробно изучим два стандартных метода: метод интервалов и метод замены уравнения совокупностью.

Однако, как мы убедимся, эти методы, всегда эффективные, но не всегда удобные и могут приводить к долгим и даже не очень удобным вычислениям, которые естественно потребуют большего времени на их решение. Поэтому важно знать и те методы, которые решение определенных структур уравнений значительно упрощают. Возведение обеих частей уравнения в квадрат, метод введения новой переменной, графический метод, решение уравнений, содержащих модуль под знаком модуля. Эти методы мы рассмотрим в следующей части.

Определение модуля числа. Геометрический смысл модуля.

Первым делом познакомимся с геометрическим смыслом модуля:

Модулем числа а (|а|) называют расстояние на числовой прямой от начала координат (точки 0) до точки А(а) .

Исходя из этого определения рассмотрим некоторые примеры:

|7| - это расстояние от 0 до точки 7, конечно оно равно 7. → | 7 |=7

|-5|- это расстояние от 0 до точки -5 и оно равно: 5. → |-5| = 5

Все мы понимаем расстояние не может быть отрицательным! Поэтому |х| ≥ 0 всегда!

Решим уравнение: |х |=4

Это уравнение можно прочитать так: расстояние от точки 0 до точки x равно 4. Ага, получается, от 0 мы можем двигаться как влево так и вправо, значит двигаясь влево на расстояние равное 4 мы окажемся в точке: -4, а двигаясь вправо окажемся в точке: 4. Действительно, |-4 |=4 и |4 |=4.

Отсюда ответ х=±4.

При внимательном изучении предыдущего уравнения можно заметить, что: расстояние вправо по числовой прямой от 0 до точки равно самой точке, а расстояние влево от 0 до числа равно противоположному числу! Понимая, что вправо от 0 положительные числа, а влево от 0 отрицательные, сформулируем определения модуля числа: модулем (абсолютной величиной) числа х (|х|) называется само число х , если х ≥0, и число –х , если х <0.

Здесь нам надо найти множество точек на числовой прямой расстояние от 0 до которых будет меньше 3, давайте представим числовую прямую, на ней точка 0, идем влево и считаем один (-1), два (-2) и три (-3), стоп. Дальше пойдут точки, которые лежат дальше 3 или расстояние до которых от 0 больше чем 3, теперь идем вправо: один, два, три, опять стоп. Теперь выделяем все наши точки и получаем промежуток х:(-3;3).

Важно, чтобы вы это четко видели, если пока не получается, нарисуйте на бумаге и посмотрите, чтобы эта иллюстрация была вам полностью понятна, не поленитесь и попробуйте в уме увидеть решения следующих заданий:

|х |=11, х=? |х|=-5, х=?

|х | <8, х-? |х| <-6, х-?

|x |>2, х-? |x|> -3, х-?

|π-3|=? |-х²-10|=?

|√5-2|=? |2х-х²-3|=?

|х²+2|=? |х²+4|=0

|х²+3х+4|=? |-х²+9| ≤0

Обратили внимание на странные задания во втором столбце? Действительно, расстояние не может быть отрицательным поэтому: |х|=-5- не имеет решений, конечно же оно не может быть и меньше 0, поэтому: |х| <-6 тоже не имеет решений, ну и естественно, что любое расстояние будет больше отрицательного числа, значит решением |x|> -3 являются все числа.

После того как вы научитесь быстро видеть рисунки с решениями читайте дальше.

Инструкция

Если модуль представлен в виде непрерывной функции, то значение ее аргумента может быть как положительным, так и отрицательным: |х| = х, х ≥ 0; |х| = - х, х

z1 + z2 = (x1 + x2) + i(y1 + y2);
z1 - z2 = (x1 - x2) + i(y1 - y2);

Легко заметить, что сложение и вычитание комплексных чисел подчиняется тому же правилу, что сложение и .

Произведение двух комплексных чисел равно:

z1*z2 = (x1 + iy1)*(x2 + iy2) = x1*x2 + i*y1*x2 + i*x1*y2 + (i^2)*y1*y2.

Поскольку i^2 = -1, то конечный результат равен:

(x1*x2 - y1*y2) + i(x1*y2 + x2*y1).

Операции возведения в степень и извлечения корня для комплексных чисел определяются так же, как и для действительных. Однако в комплексной области для любого числа существует ровно n таких чисел b, что b^n = a, то есть n корней n-ой степени.

В частности, это значит, что любое алгебраическое уравнение n-ой степени с одной переменной имеет ровно n комплексных корней, некоторые из которых могут быть и .

Видео по теме

Источники:

  • Лекция "Комплексные числа" в 2019

Корнем называют значок, обозначающий математическую операцию нахождения такого числа, возведение которого в указанную перед знаком корня степень должно дать число, указанное под этим самым знаком. Часто для решения задач, в которых присутствуют корни, недостаточно только рассчитать значение. Приходится осуществлять и дополнительные операции, одной из которых является внесение числа, переменной или выражения под знак корня.

Инструкция

Определите показатель степени корня. Показателем называют целое число, указывающее степень, в которую надо возвести результат вычисления корня, чтобы получить подкоренное выражение (то число, из которого извлекается этот корень). Показатель степени корня в виде верхнего индекса перед значком корня. Если этот не указан, это квадратный корень, степень которого равна двойке. Например, показатель корня √3 двум, показатель ³√3 равен трем, показатель корня ⁴√3 равен четырем и т.д.

Возведите число, которое требуется внести под знак корня, в степень, равную показателю этого корня, определенную вами на предыдущем шаге. Например, если нужно внести число 5 под знак корня ⁴√3, то показателем степени корня является четверка и вам надо результат возведения 5 в четвертую степень 5⁴=625. Сделать это можно любым удобным вам способом - в уме, с помощью калькулятора или соответствующих -сервисов, размещенных .

Внесите полученное на предыдущем шаге значение под знак корня в качестве множителя подкоренного выражения. Для использованного в предыдущем шаге примера с внесением под корень ⁴√3 5 (5*⁴√3), это действие можно так: 5*⁴√3=⁴√(625*3).

Упростите полученное подкоренное выражение, если это возможно. Для примера из предыдущих шагов это , что нужно просто перемножить числа, стоящие под знаком корня: 5*⁴√3=⁴√(625*3)=⁴√1875. На этом операция внесения числа под корень будет завершена.

Если в задаче присутствуют неизвестные переменные, то описанные выше шаги можно проделать в общем виде. Например, если требуется внести под корень четвертой степени неизвестную переменную x, а подкоренное выражение равно 5/x³, то вся последовательность действий может быть записана так: x*⁴√(5/x³)=⁴√(x⁴*5/x³)=⁴√(x*5).

Источники:

  • как называется знак корня

Действительных чисел недостаточно для того, чтобы решить любое квадратное уравнение. Простейшее из квадратных уравнений, не имеющих корней среди действительных чисел - это x^2+1=0. При его решении получается, что x=±sqrt(-1), а согласно законам элементарной алгебры, извлечь корень четной степени из отрицательного числа нельзя.

Цели урока

Познакомить школьников с таким математическим понятием, как модуль числа;
Научить школьников навыкам нахождения модулей чисел;
Закрепить изученный материал с помощью выполнения различных заданий;

Задачи

Закрепить знания детей о модуле числа;
С помощью решения тестовых заданий проверить, как усвоили ученики изученный материал;
Продолжать прививать интерес к урокам математики;
Воспитывать у школьников логическое мышление, любознательность и усидчивость.

План урока

1. Общие понятия и определение модуля числа.
2. Геометрический смысл модуля.
3. Модуль числа его свойства.
4. Решение уравнений и неравенств, которые содержат модуль числа.
5. Историческая справка о термине «модуль числа».
6. Задание на закрепление знаний пройденной темы.
7. Домашнее задание.

Общие понятия о модуле числа

Модулем числа принято называть само число, если оно не имеет отрицательного значения, или это же число отрицательное, но с противоположным знаком.

То есть, модулем неотрицательного действительного числа a является само это число:

А, модулем отрицательного действительного числа х будет противоположное число:

В записи это будет выглядеть так:

Для более доступного понимания приведем пример. Так, например, модулем числа 3 будет 3, и также модулем числа -3, является 3.

Из этого следует, что под модулем числа подразумевается абсолютная величина, то есть, ее абсолютное значение, но без учета его знака. Если говорить еще более просто, то необходимо от числа отбросить знак.

Обозначаться и выглядеть модуль числа может так: |3|, |х|, |а| и т.д.

Так, например, модуль числа 3 обозначается |3|.

Также, следует помнить, что модуль числа никогда не бывает отрицательным: |a|≥ 0.

|5| = 5, |-6| = 6, |-12,45| = 12,45 и т.д.

Геометрический смысл модуля

Модулем числа называют расстояние, которое измеряется в единичных отрезках от начала координат до точки. В этом определении раскрывается модуль с геометрической точки зрения.

Возьмем координатную прямую и обозначим на ней две точки. Пускай этим точкам будут соответствовать такие числа, как −4 и 2.



Теперь давайте обратим внимание на данный рисунок. Мы видим, что обозначенная на координатной прямой точка А соответствует числу -4 и если вы внимательно посмотрите, то увидите, что эта точка находится от точки отсчета 0 на расстоянии 4 единичных отрезков. Отсюда следует, что длина отрезка OA равняется четырем единицам. В этом случае, длина отрезка ОА, то есть число 4 будет модулем числа -4.

Обозначается и записывается в данном случае модуль числа таким образом: |−4| = 4.

Теперь возьмем, и на координатной прямой обозначим точку В.

Эта точка В будет соответствовать числу +2, и находится она, как мы видим, от начала отсчета на расстоянии двух единичных отрезков. Из этого следует, что длина отрезка OB равняется двум единицам. В этом случае число 2 будет модулем числа +2.

В записи это будет выглядеть так: |+2| = 2 или |2| = 2.

А теперь подведем итог. Если мы с вами возьмем какое-то неизвестное число а и обозначим его на координатной прямой точкой А, то в этом случае расстояние от точки A до начала отсчёта, то есть длинна отрезка ОА, как раз и является модулем числа «a».

В записи это будет выглядеть так: |a| = OA.

Модуль числа его свойства

А теперь давайте попробуем выделить свойства модуля, рассмотреть всевозможные случаи и записать их с помощью буквенных выражений:

Во-первых, модулем числа является число неотрицательное, а значит модуль положительного числа, равен самому числу: |a| = a, если a > 0;

Во-вторых, модули, которые состоят из противоположных чисел, равны: |а| = |–а|. То есть это свойство говорит нам о том, что противоположные числа всегда имеют равные модули, та как на координатной прямой, хотя они и имеют противоположные числа, но они находятся на одинаковом расстоянии от точки отсчета. Из этого следует, что и модули этих противоположных чисел равны.

В-третьих, модуль нуля равняется нулю в том случае, если это число является нулем: |0| = 0, если a = 0. Здесь можно с уверенностью сказать, что модулем нуля является ноль по определению, так как ему соответствует начало отсчета координатной прямой.

Четвертым свойством модуля является то, что модуль произведения двух чисел равен произведению модулей этих чисел. Теперь подробнее рассмотрим, что это значит. Если следовать определению, то мы с вами знаем, что модуль произведения чисел a и b будет равен a b, или −(a b), если, а в ≥ 0, или же – (а в), если, а в больше 0. В записи это будет выглядеть так: |а b| = |а| |b|.

Пятым свойством является то, что модуль частного от деления чисел равен отношению модулей этих чисел: |а: b| = |а| : |b|.

И следующие свойства модуля числа:



Решение уравнений и неравенств, которые содержат модуль числа

Приступив к решению задач, которые имеют модуль числа, следует помнить, что чтобы решить такое задание, необходимо раскрыть знак модуля, используя знания свойств, которым эта задача соответствует.

Задание 1

Так, к примеру, если под знаком модуля стоит выражение, которое зависит от переменной, то раскрывать модуль следует в соответствии с определением:


Конечно же, при решении задач бывают случаи, когда модуль раскрывается однозначно. Если, например, взять

, здесь мы видим, что такое выражение под знаком модуля неотрицательно при любых значениях х и у.

Или, же для примера берем

, мы видим, что это выражение под модулем не положительно при любых значениях z.

Задание 2

Перед вами изображена координатная прямая. На этой прямой необходимо отметить числа, модуль которых будет равен 2.



Решение

В первую очередь, мы должны начертить координатную прямую. Вам уже известно, что для этого, вначале на прямой необходимо выбрать начало отсчета, направление и единичный отрезок. Далее, нам нужно от начала отсчета поставить точки, которые равны расстоянию двух единичных отрезков.

Как видим, таких точек на координатной прямой две, одна из которых соответствует числу -2, а другая числу 2.

Историческая справка о модуле числа

Термин «модуль» произошел от латинского названия modulus, что в переводе обозначает слово «мера». Ввел в обращение этот термин английский математик Роджер Котес. А вот знак модуля был введен благодаря немецкому математику Карлу Вейерштрассу. При написании модуль обозначается с помощью такого символа: | |.

Вопросы на закрепление знаний материала

На сегодняшнем уроке мы с вами познакомились с таким понятием, как модуль числа, а теперь давайте проверим, как вы усвоили эту тему, ответив на поставленные вопросы:

1. Как называется число, которое противоположно положительному числу?
2. Какое название носит число, которое противоположно отрицательному числу?
3. Назовите число, которое является противоположным нулю. Существует ли такое число?
4. Назовите то число, которое не может являться модулем числа.
5. Дайте определение модулю числа.

Домашнее задание

1. Перед вами изображены числа, которые вам нужно расположить в порядке убывания модулей. Если вы правильно выполните задание, то узнаете фамилию человека, который впервые ввел в математику термин «модуль».



2. Начертите координатную прямую и найдите расстояние от М(-5) и К (8) до начала отсчета.

Предмети > Математика > Математика 6 класс

Модулем рационального числа называют расстояние от начала отсчёта до точки координатной прямой, соответствующей этому числу.

Так как расстояние (длина отрезка) может выражаться только положительным числом или нулём, можно сказать, что модуль числа не может быть отрицательным.

Свойства модуля:

Модуль положительного числа равен самому числу.
|a| = a, если a > 0;

Модуль отрицательного числа равен противоположному числу.
|-a| = a, если a < 0;

Модуль нуля равен нулю.
|0| = 0, если a = 0;

Противоположные числа имеют равные модули.
|-a| = |a|;

Примеры модулей рациональных чисел:

4.Основные методы решения иррациональных уравнений и неравенств.

Мы называем уравнение или неравенство иррациональным, если оно содержит переменную под радикалами, то есть под знаками квадратного, кубического и т. д. корня. Иррациональные урав- нения и неравенства обладают определённой спецификой.

Напомним, что область допустимых значений (сокращённо ОДЗ) уравнения или неравенства есть множество значений переменной, при которых обе части данного уравнения или неравенства имеют смысл. В любой задаче можно обойтись без поиска (и без упоминания) ОДЗ, так что особой необходимости в этом понятии нет. Но и вреда в нём тоже нет2 ; более того, в отдельных ситуациях нахождение ОДЗ оказывается весьма полезным. Так, в некоторых иррациональных уравнениях и неравенствах дело не доходит до каких-либо специфических приёмов - достаточно пристального взгляда и учёта ОДЗ.

Равносильные преобразования

Мы переходим к рассмотрению стандартных видов иррациональных уравнений и неравенств. Здесь предварительный поиск ОДЗ оказывается, как правило, ненужным шагом; наиболее эффективно эти задачи решаются с помощью соответствующих равносильных переходов. Уравнения вида √ A = √ B

Начнём с примера.

Пусть надо решить уравнение √ x = √ 2x + 1. В силу монотонности функции √ x подкоренные выражения должны быть равны: x = 2x+1, откуда x = −1. Однако подстановка этого значения x в уравнение даёт отрицательные числа под радикалами; следовательно, x = −1 не является корнем данного уравнения, и потому оно не имеет решений. Теперь рассмотрим общую ситуацию. Пусть имеется уравнение √ A = √ B, где A и B - некоторые выражения, содержащие переменную. Тогда, во-первых, подкоренные выражения должны быть равны: A = B. Во-вторых, оба подкоренных выражения должны быть неотрицательными; но в силу их равенства достаточно потребовать неотрицательности одного из них. Таким образом, имеем: √ A = √ B ⇔ (A = B, A > 0 или √ A = √ B ⇔ (A = B, B > 0. При этом естественно требовать не отрицательности того выражения, которое устроено проще.

5.Посторение графиков функции, аналитические выражения которого содержат модуль.:

Модуль числа – это расстояние от точки отсчёта до точки соответсвующей этой точке.

Алгоритм построения графика y=|f(x)|.

1.Строим график y=f(x)

2.Участки графика, лежащие выше оси абсцисс, оставить без изменения.

3.Участки, лежащие ниже оси абсцисс, зеркально отобразить относительно этой оси.

Алгоритм построения графика y=f(|x|).

1.Построим график y=f(x).

2.удалим все точки находящиеся слева оси OY.

3.Все точки, лежащие на оси ОУ и справа от неё ,отразим симметрично относительно оси ОУ.

Алгоритм построения графика |y|=|f(x)|

1.Строим график y=f(x).

2.строим график y=|f(x)|.

3.Осуществить его зеркальное отображение относительно оси Ох.

6.Cвойства и график квадратной функции y=ax+bx+c

Функция, которую можно задать формулой y=ax2+bx+c, где a,b,c∈R и a≠0,

называется квадратичной функцией.

Областью определения функции y=ax2+bx+c (допустимыми значениями аргумента x) являются все действительные числа (R).

Графиком квадратичной функции является парабола.

абсциссу вершины параболы (xo;yo) можно вычислить по формуле:

Чтобы построить график квадратичной функции необходимо:

1) вычислить координаты вершины параболы: x0=−b/2a и y0, которую находят, подставив значение x0 в формулу функции,

2) отметить вершину параболы на координатной плоскости, провести ось симметрии параболы,

3) определить направление ветвей параболы,

4) отметить точку пересечения параболы с осью Oy,

5) составить таблицу значений, выбрав необходимые значения аргумента x.

Решив квадратичное уравнение ax2+bx+c=0, получаем точки пересечения параболы с осью Ox или корни функции (если дискриминант D>0)

если D<0, то точек пересечения параболы с осью Ox не существует,