Бытовые электроприборы

Абсорбционный тепловой насос принцип работы. Анализ эффективности различных типов тепловых насосов

Абсорбционный тепловой насос принцип работы. Анализ эффективности различных типов тепловых насосов

Опасности окружающей среды и способы их преодоления

контрольная работа

2. Понятие о вибрации, параметры, характеризующие вибрацию, единицы измерения вибрации, допустимые уровни вибрации

безопасность жизнедеятельность вибрация утопающий

Вибрация представляет собой механические колебания твердого тела вокруг положения равновесия (ГОСТ 12.1.012-90 «Вибрационная безопасность. Общие требования»).

Действие вибрации определяется передачей человеку механической энергии от источника колебаний. Вибрация с физической точки зрения относится к колебательным процессам, происходящим в механических системах, при которых материальное тело через определенные промежутки времени проходит одно и тоже устойчивое положение.

Как правило, причиной возбуждения вибрации являются, возникающие при работе машин и агрегатов, неуравновешенные силовые воздействия:

Неуравновешенные возвратно-поступательные движения элементов машин (перфораторы, отбойные молотки);

Неуравновешенные вращающиеся массы машин, когда есть несовпадение центра массы тела и оси вращения (шлифовальные машины, дрели);

Удары деталей (сваебойные машины, перфораторы).

Таким образом, источником вибрации является практически всякая машина, агрегат, транспортирующее устройство или транспортное средство, так сотрясение ковшового погрузчика на дороге, тряску палубы на судне из-за работающего двигателя и т.п. - это тоже вибрация.

Вибрация в рабочей среде разделяется на общую и местную вибрацию.

Об общей вибрации идет речь, когда человек опирается о вибрирующую поверхность всей тяжестью тела, например, стоя, сидя или лежа на ней. Выполняя работу около стационарных машин и станков и специальных виброустановок, рабочие подвергаются воздействию вибрации рабочего места, т.е. общей вибрации, когда вибрация действует на весь организм (вибростолы, виброплощадки ДСК). С общей вибрацией наиболее часто сталкиваются транспортные работники (трактористы, водители, операторы погрузчиков, горнодобывающего оборудования), судовые команды, а также операторы различных движущихся или просто больших машин и т.п.

Местной вибрацией называют вибрацию, при которой вибрация входит через одну конечность и преимущественно этой конечностью ограничена. Как правило, это означает, что работник держится за вибрирующий объект рукой или вибрирующая установка закреплена на нем. Т.е. при пользовании вибрационным инструментом (дрели, перфораторы, горные сверла, гайковерты, электро-бензиномоторные пилы) вибрация передается на руки рабочего.

С местной вибрацией сталкиваются преимущественно работники строительной, металло- и деревообрабатывающей отраслей при использовании разнообразных ручных инструментов, а также операторы более крупных машин, которые держатся за вибрирующие детали (рули, рукоятки и пр.).

Однако, такое разделение вибрации - условно. При локальной вибрации она передается так же на весь организм человека. Этому способствует относительно хорошая проводимость механических колебаний тканями тела, особенно костной системой.

Результатом вибрационного воздействия является снижение производительности труда и качества работы, возникновение вибрационной болезни.

Основные параметры, характеризующие вибрацию:

1) Амплитуда (А), т.е. на какое расстояние отклоняется вибрирующая поверхность или ручной инструмент от положения равновесия (максимальное перемещение колеблющейся точки), м;

2) Скорость перемещения (колебательная скорость) (V), м/с;

3) Ускорение перемещения (колебаний) (w), м/с2;

4) Период колебаний Т, с;

5) Частота колебаний f, Гц.

При гармонических колебаниях скорость и ускорение могут быть вычислены по формуле (6.1), как первая и вторая производная по времени и в конечном виде их максимальные значения соответственно равны

Учитывая, что абсолютные значения параметров, характеризующих вибрацию, изменяются в широких пределах, на практике указанные величины выражаются также в:

Уровнях виброскорости:

Lv=20*lgV/V0, дБ,

где V - текущее значение скорости, м/с;

V0=5*10-8 м/с - пороговое значение скорости.

Порог болевого ощущения при вибрации с V=0,01 м/с.

Уровнях виброускорения:

Lа=20*lgа/а0, дБ,

где а - текущее значение ускорения, м/с2;

а0=1*10-6 м/с2 - пороговое значение ускорения.

Lv и Lа являются энергетическими характеристиками вибрации, причем основной характеристикой вибрации, в соответствии с международными документами является уровень виброускорения.

Для исследования вибраций весь диапазон их частот разбивается на октавные полосы.

F общ = 1 80 Гц.

F лок = 5 1400 Гц.

Для общей вибрации F сг = 1,2,4,16,31.5,63 Гц.

Для локальной вибрации F сг = 8,16,31.5,63,126,250,500,1000 Гц.

Общая вибрация имеет достаточно узкий частотный диапазон. Локальная вибрация имеет более широкий диапазон частот.

Для оценки станков и механизмов общая вибрация выражается в треть октавных полосах частот: 1/3 f cг = 0.8,1.0,1.25,1.6,2.0,2.5,3.15,4.0,5.0,6.3,8.0, 10.0,12.5,16.0,20.0, 25.0,31.5,40.0,50.0,63.0 Гц.

Допустимые уровни вибрации. Различают гигиеническое и техническое нормирование вибраций.

Гигиенические - ограничивают параметры вибрации рабочих мест и поверхности контакта с руками работающих исходя из физиологических требований, исключающих возможность возникновения вибрационной болезни.

Технические - ограничивают параметры вибрации не только с учетом указанных требований, но и исходя из достижимого на сегодняшний день для данного типа оборудования уровня вибрации.

Санитарные нормы устанавливают предельно допустимые величины вибрации в производственных помещениях предприятий:

Амплитуда колебаний вибрации, мм

Частота вибрации, Гц

Скорость колебательных движений, см/с

Ускорение колебательных движений, см/с2

* При таких параметрах вибрации даже сверхпрочные клепочные конструкции до полного своего разрушения выдерживают не более 30 минут.

Приведенные нормы одинаковы для горизонтальных и вертикальных вибраций. Непрерывность их воздействия не должна превышать 10~15% рабочего времени.

Анализ вибраций на повреждение системы органов машинистов железной дороги

Одним из наиболее опасных для человеческого организма производственных факторов является вибрация. Под вибрацией понимается колебание твёрдых тел. Производственные воздействия вибрации, проходящей через все тело, наблюдаются на транспорте...

Безопасность жизнедеятельности

Допустимые шумовые характеристики рабочих мест в на-шей стране регламентируются ГОСТ 12.1.003-83 «Шум. Общие требования безопасности» и СН 9-86 РБ 98 «Шум на рабочих местах. Предельно допустимые уровни»...

Вибрация на рабочих местах. Оценка травмобезопасности рабочих мест

Общая вибрация -- это колебание всего тела, передающееся с рабочего места. Локальная вибрация (местная вибрация) -- это приложение колебаний только к ограниченному участку поверхности организма...

Психологической значимости вибрации и движению мышц в живых организмах уделял особое внимание выдающийся русский физиолог И.М. Сеченов. Он утверждал, что «все внешние проявления мозговой деятельности могут быть сведены на мышечное движение»...

Влияние вибраций и шума на человеческий организм

Нормирование технологической вибрации как общей, так и локальной производится в зависимости от ее направления в каждой октавной полосе(1,6 -- 1000 Гц) со среднеквадратическими виброскоростями (1,4 -- 0,28)10?2м/сек...

Влияние шума и вибрации на организм человека

Профилактика травм и заболевания, вызываемых вибрацией, передаваемой через руки, требует внедрения административных, технических и медицинских процедур...

Обеспечение безопасности труда на ОАО "Северные магистральные нефтепроводы"

Вибрация неблагоприятно воздействует на организм человека, она может быть причиной функциональных расстройств нервной и сердечно-сосудистой систем, а также опорно-двигательного аппарата...

Организация рабочего места водителя

2.1 Уровни звука в кабине грузовых автомобилей не должны превышать 70 дБА (ПС 65). 2.2 Уровни инфразвука в кабине автомобиля не должны превышать 110 длин в соответствии с «Гигиеническими нормами инфразвука на рабочих местах» № 2274-80 от 12.12.80 г...

Шум ухудшает условия труда, оказывает вредное действие на организм человека. При длительном воздействии шума на организм происходят нежелательные явления: снижается острота зрения и слуха, повышается кровяное давление, снижается внимание. Сильный продолжительный шум может быть причиной функциональных изменений сердечно-сосудистой и нервной систем. Требования к уровням шумов устанавливаются стандартом ГОСТ 12.1.003-83 Шум. Общие требования безопасности (с изменением №1), СН 2.2.4/2.1.8.562 - 96. Шум на рабочих местах, в помещениях жилых и общественных зданий и на территории жилой застройки.

Звук как физический процесс представляет собой волновое движение упругой среды. Ощущает человек механические колебания с частотами от 20 до 20000 Гц.

Шум - это беспорядочное сочетание звуков различной частоты и интенсивности.

Основными характеристиками звука являются:

частота колебаний (Гц); звуковое давление (Па); интенсивность звука (Вт/м2).V звука =344 м/c.

Звуковое давление - переменная составляющая давления воздуха, возникающая вследствие колебаний источника звука, накладывающаяся на атмосферное давление.

Количественная оценка звукового давления оценивается среднеквадратичным значением.

где Т = 30-100 мс.

При распространении звуковых волн имеет место перенос звуковой энергии, величина которого определяется интенсивностью звука.

Интенсивность звука - звуковая мощность на единицу площади, передаваемая в направлении распространения звуковой волны.

Интенсивность звука связана с звуковым давлением выражением

где P - среднеквадратичное давление звуковое;

V - среднеквадратичное значение колебательной скорости частиц в звуковой волне.

В свободном звуковом поле интенсивность звука может быть выражена формулой

гдеr - плотность среды, с -скорость звука в среде;

r с - акустическое сопротивление среды.

Минимальное звуковое давление и минимальная интенсивность звуков, едва различимых слуховым аппаратом человека, называется пороговым .

Чувствительность слухового аппарата человека наибольшая в диапазоне 2000-5000 Гц. За эталонный - звук частотой 1000 Гц. При этой частоте порог слышимости по интенсивностиI 0 = 10-12 Bт/м2, а соответствующее ему звуковое давление р0 = 2·10-5 Па. Порог болевого ощущенияI max =10 Вт/м2. Различие в 1013 раз.

Принято измерять и оценивать относительные уровни интенсивности звука и звукового давления по отношению к пороговым значениям, выраженное в логарифмической форме.

Уровень интенсивности: LI = 10 lg I/I0 ;

Уровень звукового давления: Lp = 20 lg P/P0-

Слышимый диапазон составляет 0 - 140 дБ.

Характеристикой непосредственно источника шума является его звуковая мощность Р - общее количество звуковой энергии, излучаемой в окружающее пространство в секунду.

Уровень звуковой мощности источника шума

LP = 10 lg P/P0,

где Р 0 - пороговая величина = 10-12Вт.

Общие требования безопасности предусматривает классификацию шумов, допустимые уровни шума на рабочих местах, общие требования к шумовым характеристикам машин и методы измерения шума.

Суммарный уровень звукового давления при одновременном действии двух одинаковых источников с уровнями L 1 и L 2 в дБ можно определить по формуле

L общ = L 1 + L ,

гдеL 1 - больший из двух суммарных уравнений,

L - поправка для суммарного уравнения шума.

Если источников N одинаковых, то L общ = L 1 + 10 lg L .

Шум, в котором звуковая энергия распределена по всему спектру, называется широкополосным . Если прослушивается звук определенной частоты, то шум называется тональным . Шум, воспринимаемый как отдельные импульсы (удары), называется импульсным .

Звуковую мощность и звуковое давление как величины переменные можно представить в виде суммы синусоидальных колебаний различной частоты.

Зависимость среднеквадратичных значений этих составляющих (или их уровней) от частоты называется частотным спектром шума .

Обычно частотный спектр определяется опытным путем, находя звуковые давления не для каждой отдельной частоты, а для октавных (или третьоктавных) полос частот.

Среднегеометрическая октавная полоса частотf ср определяется как:

причем для октавных полос f b/ f k = 2,

для третьоктавных f b/ f k = 1,26.

Частотные спектры шума получает с помощью анализаторов шума, представляющих собой набор электрических фильтров, которые пропускают электрический звуковой сигнал в определенной полосе частот (полосе пропускания).

По временным характеристикам шумы подразделяются на постоянные и непостоянные .

Непостоянные бывают:

- колеблющиеся по времени , уровень звука которых непрерывно изменяется во времени;

- прерывистые , уровень звука которых резко падает до уровня фонового шума;

- импульсные , состоящие из сигналов менее 1с.

Нормирование шума

Для оценки шума используют частотный спектр измеренного уровня звукового давления, выраженный в дБ, в октавных полосах частот, который сравнивается с предельным спектром, нормированным в ГОСТ 12.1.003-83 ССБТ. Шум. Общие требования безопасности (c изм. №1).

Для ориентировочной оценки шумовой обстановки допускается использовать одночисловую характеристику - так называемый уровень звука, дБА, измеряемый без частотного анализа по шкале А шумометра, которая приблизительно соответствует числовой характеристике слуха человека. Слуховой аппарат человека более чувствителен к звукам высоких частот, поэтому нормируемые значения звукового давления уменьшаются с увеличением f. Для постоянного шума нормируемыми параметрами являются - допустимые уровни звукового давления и уровни звука на рабочих местах (по ГОСТ 12.1.003-83).

Для непостоянного шума нормируемым параметром является эквивалентный уровень звука LА единиц в дБ по шкале А.

Эквивалентным уровнем звука называется значение уровня звука постоянного шума, который в пределах регламентируемого интервала времени Т=t2 - t1 имеет тоже самое среднеквадратичное значение уровня звука, что и рассматриваемый шум.

Уровни непосредственного шума измеряются специальными интегрирующими шумометрами-дозиметрами.

Если шум тональный или импульсный, то допустимые уровни должны приниматься на 5 дБА меньше значений, указанных в ГОСТ.

Классификация средств и методов защиты от шума приведена в ГОСТ 12.1.029 - 80.Средства и методы защиты от шума. Классификация.

Методы защиты от шума основаны на:

1. снижении шума в источнике;

2. снижении шума на пути его распространения от источника;

3. применении СИЗ от шума (СИЗ - средство индивидуальной защиты).

Методы снижения шума на пути распространения:- достигается путем проведения строительно-акустических мероприятий. Методы снижения шума на пути его распространения - кожухи, экраны, звукоизолирующие перегородки между помещениями, звукопоглощающие облицовки, глушители шума. Под акустической обработкой помещений понимается облицовка части внутренних поверхностей ограждений звукопоглощающими материалами, а также размещения в помещениях штучных поглотителей.

Наибольший эффект - в зоне отраженного звука (60 % от общей площади). Эффективность - 6-8 дБ.

Снижение шума методом звукопоглoщения основано на переходе звуковых колебаний частиц воздуха в теплоту вследствие потерь на трение в порах звукопоглощающего материала. Чем больше звуковая энергия поглощается, тем меньше отражает. Поэтому, для снижения шума в помещении проводят его акустическую обработку, нанося звукопоглощающие материалы на внутренние поверхности, а также размещая в помещении штучные звукопоглотители.

Эффективность звукопоглощающего устройства характеризуется коэффициентом звукопоглощения a , который представляет собой отношение поглощенной звуковой энергии Е погл. к падающей Е пад.,

a = Е погл. /Е пад.

Звукопоглощающие устройства бывают пористыми, пористо-волокнистыми, мембранные, слоистые, объемные, и т.п.

Звукоизоляция является одним из наиболее эффективных и распространенных методов снижения производственного шума на пути его распространения.

С помощью звукоизолирующих преград можно снизить уровень шума на 30-40 дБ.

Метод основан на отражении звуковой волны, падающей на ограждение. Однако звуковая волна не только отражается от ограждения, но и проникает через него, что вызывает колебание ограждения, которое само становится источником шума. Чем выше поверхностная площадь ограждения, тем труднее привести его в колебательное состояние, следовательно, тем выше его звукоизолирующая способность. Поэтому эффективными звукоизолирующими материалами являются металлы, бетон, дерево, плотные пластмассы и т.п.

Для оценки звукоизолирующей способности ограждения введено понятие звукопроницаемостиt , под которой понимают отношение звуковой энергии, прошедшей через ограждение, к падающей на него.

Величина, обратная звукопроницаемости, называется звукоизоляцией (дБ), она связана с звукопроницаемостью следующей формулой

R = 10 lg (1/ t ) .

Вибрация

1. Вибрация может быть причиной функциональных расстройств нервной и сердечно-сосудистой систем, а также опорно-двигательного аппарата.

В соответствии с ГОСТ 24346-80 (СТСЭВ 1926-79) Вибрация. Термины и определения. под вибрацией понимается движение точки или механической системы, при которой происходит поочередное возрастание и убывание во времени значений, по крайней мере, одной координаты.

Принято различать общую и локальную вибрацию. Общая вибрация действует на весь организм человека через опорные поверхности - сиденье, пол; локальная вибрация оказывает действие на отдельные части тела.

Вибрация может измеряться с помощью как абсолютных, так и относительных параметров.

Абсолютными параметрами для измерения вибрации являются вибросмещение, виброскорость и виброускорение.

Основной относительный параметр вибрации - уровень виброскорости, который определяется по формуле

LV = 10 lg V2 / V02 = 20 lg V / V0,

где V - амплитуда виброскорости, м/c ;

V 0 = 5*10-8 м/с- пороговое значение виброскорости.

При частотном (спектральном) анализе нормируемыми являются кинематические параметры: средние квадратичные значения виброскорости V (и их логарифмические уровни LV ) или виброускорения а - для локальных вибраций в октавных полосах частот; для общий вибрации в октавных и 1/3 октавных полосах частот.

В соответствии с ГОСТ 12.1.012-90 ССБТ. Вибрационная безопасность. Общие требования безопасности существуют следующие виды общей вибрации - три категории:

1- транспортная вибрация;

2- транспортно-технологическая вибрация;

3- технологическая вибрация.

Технологическая вибрация в свою очередь подразделяется на четыре типа:

3а- на постоянных рабочих местах в производственных помещениях, центральных постах управления и др.;

3б- на рабочих местах в служебных помещениях на судах;

3в- на рабочих местах на складах, бытовых и других производственных помещениях;

3г- на рабочих местах в заводоуправлениях, КБ, лабораториях, учебных пунктах, ВЦ, конторских помещениях и др. помещениях умственного труда.

Общая вибрация нормируется в активных полосах со среднегеометрическими частотами 1, 2, 4, 8, 16, 32, 63 Гц и в 1/3 октавных полосах со среднегеометрическими частотами 0,8; 1,0; 1,25; 1,6;... 40; 50; 63; 80 Гц.

Локальная вибрация нормируется в активных полосах со среднегеометрическими частотами 8, 16, 32, 63, 120, 250, 500, 1000 Гц.

Нормируется вибрация в направлении трех ортогональных осей координат X, Y, Z для общей вибрации, где Z - вертикальная ось, а Y, X - горизонтальные; и XP , YP, ZP - для локальной вибрации, где XP cовпадает с осью мест охвата источника вибрации, а ось ZP лежит в плоскости, образованной осью XP и направлением подачи или приложения силы.

Допустимыми значениями параметров транспортной, транспортно-технологической и технологической вибрации приведены в ГОСТ 12.1.012-90 .

При интегральной оценке вибрации по частоте нормируемым параметром является корректированное значение контролируемого параметра V (виброскорости или виброускорения), измеряемое с помощью специальных фильтров или вычисляемое по формулам, приведенным в ГОСТ 12.1.012-90.

Дозовый подход позволяет оценивать кумуляцию воздействия фактора на работе и вне рабочего времени.

При оценке вибрации дозой нормируемым параметром является эквивалентное корректированное значение V ЭКВ , определяемое по формуле

VЭКВ =,

где доза вибрации, которая вычисляется по выражению

где V(t) - мгновенное корректированное значение параметра вибрации в момент времени t , получаемое с помощью корректирующего фильтра с характеристикой в соответствии с таблицей приведенной в стандарте, t - время воздействия вибрации за рабочую смену.

Техническим требованиям и средствам измерения соответствуют измеритель шума и вибрации ВШВ - 001; а также зарубежные виброакустические комплекты фирмы "Брюль и Кьер" (Дания).

Точки измерений общей вибрации выбираются на рабочих местах (или в рабочих зонах обслуживания), а для самоходных и транспортно-технологических машин - на рабочих площадях и сиденьях водителей и персонала. Измерения проводятся в типовом технологическом режиме работы оборудования (машины).

Суммарное время работы в контакте с ручными машинами, вызывающими вибрацию не должно превышать 2/3 смены. При этом продолжительность одноразового воздействия вибрации, включая микропаузы, которые входят в данную операцию, не должна превышать 15-20 минут.

Суммарное время работы с виброинструментом про 8-час. рабочем дне и 5-дневной неделе не должно превышать для слесаря-сборщика 30 % сменного рабочего времени, для электромонтажника 22 % ; для наладчика 15 %.

При работе с виброиструментом масса оборудования, удерживаемого руками не должна превышать 10 кг, а сила нажатия -196 Н.

Основными методами борьбы с вибрациями машин и оборудования являются:

Снижение вибрации воздействием на источник возбуждения (посредством снижения или ликвидации вынуждающих сил);

Отстройка от режима резонанса путем рационального выбора массы и жесткости колеблющейся системы; (либо изменением массы или жесткости системы, либо на стадии проектирования - нового режима w).

Вибродемпфирование - увеличение механического активного импеданса колеблющихся конструктивных элементов путем увеличения диссипативных сил при колебаниях с частотами, близкими к резонансными.

Диссипативные силы - это силы, возникающие в механических системах, полная энергия которых (сумма кинетической и потенциальной энергии) при движении убывает, переходя в другие виды энергии.

Диссипативная система, например, - это тело движущееся по поверхности другого тела при наличии трения (вибропокрытия - вязкость материалов).

Динамическое гашение колебаний - (дополнительные реактивные импедансы) - присоединение к защищенному объекту систем, реакции которой уменьшает размах вибрации в точках присоединения системы;

Изменение конструктивных элементов и строительных конструкций (увеличение жесткости системы - введение ребер жесткости).

Виброизоляция - этот способ заключается в уменьшении передачи колебаний от источника возбуждения защищаемому объекту при помощи устройств, помещенных между ними. (Резиновые, пружинные виброизоляторы).

Активная виброзащита.

Общие требования к СИЗ от вибраций определены в ГОСТ 12.4.002-97 ССБТ. Средства индивидуальной защиты рук от вибрации. Общие технические требования и ГОСТ 12.4.024 - 76. Обувь специальная виброзащитная.

Требования к освещению производственных помещений и рабочих мест. Характеристика естественного и искусственного освещения. Нормы освещенности. Выбор источников света, светильников. Организация эксплуатации осветительных установок.

Правильно спроектированное и выполненное освещение обеспечивает возможность нормальной производственной деятельности.

Из общего объема информации человек получает через зрительный канал около 80 %. Качество поступающей информации во многом зависит от освещения: неудовлетворительное количественно или качественно оно не только утомляет зрение, но и вызывает утомление организма в целом. Нерациональное освещение может, кроме того, являться причиной травматизма: плохо освещенные опасные зоны, слепящие источники света и блики от них, резкие тени ухудшают видимость настолько, что вызывает полную потерю ориентировки работающих.

При неудовлетворительном освещении, кроме того, снижается производительность труда и увеличивается брак продукции.

Освещение характеризуется количественными и качественными показателями.

К количественным показателям относятся: световой поток, сила света, освещенность и яркость.

Часть лучистого потока, которая воспринимается зрением человека как свет, называется световым потоком Ф и измеряется в люменах (лм).

Световой поток Ф - поток лучистой энергии, оцениваемый по зрительному ощущению, характеризует мощность светового излучения.

Единица светового потока - люмен (лм) - световой поток, излучаемый точечным источником с телесным углом в 1 стерадиан при силе света, равной 1 канделе.

Световой поток определяется как величина не только физическая, но и физиологическая, поскольку ее измерение основывается на зрительном восприятии.

Все источники света, в том числе и осветительные приборы, излучают световой поток в пространство неравномерно, поэтому вводится величина пространственной плотности светового потока - сила света I.

Сила света I определяется как отношение светового потока dФ, исходящего от источника и распространяющегося равномерно внутри элементарного телеcного угла, к величине этого угла.

За единицу величины силы света принята кандела (кд).

Одна кандела - сила света, испускаемого с поверхности площадью 1/6·10 5 м 2 полного излучения (государственный эталон света) в перпендикулярном направлении при температуре затвердевания платины (2046,65 К) при давлении 101325 Па.

Освещенность Е - отношение светового потока dФ падающего на элемент поверхности dS, к площади этого элемента

За единицу освещенности принят люкс (лк).

Яркость L элемента поверхности dS под углом относительно нормали этого элемента есть отношение светового потока d2Ф к произведению телесного угла dΩ, β котором он распространяется, площади dS и косинуса угла?

L = d2Ф/(dΩ·dS·cos θ) = dI/(dS·cosθ),

где dI - сила света, излучаемого поверхностью dS в направлении θ.

Коэффициент отражения характеризует способность отражать падающий на него световой поток. Он определяется как отношение отраженного от поверхности светового потока Фотр. к падающему на него потоку Фпад..

К основным качественным показателям освещения относятся коэффициент пульсации, показатель ослепленности и дискомфорта, спектральный состав света.

Для оценки условий зрительной работы существуют такие характеристики, как фон, контраст объекта с фоном.

При освещении производственных помещений используют естественное освещение, создаваемое светом неба, проникающим через световые проемы в наружных ограждающих конструкциях, искусственное, осуществляемое электрическими лампами и совмещенное, при котором недостаточное по нормам естественное освещение дополняется искусственным.

Естественное освещение помещения через световые проемы в наружных стенах называется боковым, а освещение помещения через фонари, световые проемы в стенах в местах перепада высот здания называется верхним. Сочетание верхнего и бокового естественного освещения называется комбинированным естественным освещением.

Качество естественного освещения характеризуют коэффициентом естественной освещенности (КЕО). Он представляет собой отношение естественной освещенности, создаваемой в некоторой точке заданной плоскости внутри помещения светом неба, к значению наружной горизонтальной освещенности, создаваемой светом полностью открытого небосвода; выражается в процентах.

По конструктивному исполнению искусственное освещение может быть двух систем - общее и комбинированное. В системе общего освещения светильники размещаются в верхней зоне помещения равномерно (общее равномерное освещение) или применительно к расположению оборудования (общее локализованное освещение). В системе комбинированного освещения к общему освещению добавляется местное, создаваемое светильниками, концентрирующими световой поток непосредственно на рабочих местах.

Применение одного местного освещения не допускается.

По функциональному назначению искусственное освещение подразделяют на следующие виды: рабочее, безопасности, эвакуационное, охранное и дежурное.

Рабочее освещение - освещение, обеспечивающее нормируемые осветительные условия (освещенность, качество освещения) в помещениях и в местах производства работ вне зданий.

Освещение безопасности - освещение, устраиваемое для продолжения работы при аварийном отключении рабочего освещения. Этот вид освещения должен создавать на рабочих поверхностях в производственных помещениях и на территориях предприятий, требующих обслуживания при отключении рабочего освещения, наименьшую освещенность в размере 5 % освещенности, нормируемой для рабочего освещения от общего освещения, но не менее 2лк внутри здания и не менее 1лк для территорий предприятий.

Эвакуационное освещение следует предусматривать для эвакуации людей из помещений при аварийном отключении рабочего освещения в местах, опасных для прохода людей. Оно должно обеспечивать наименьшую освещенность на полу основных проходов (или на земле) и на ступенях лестниц: в помещениях - 0,5 лк, а на открытых территориях- 0,2 лк.

Освещение безопасности и эвакуационное освещение называют аварийным освещением. Выходные двери общественных помещений общественного назначения, в которых могут находиться более 100 человек, а также выходы из производственных помещений без естественного света, где могут находиться одновременно более 50 человек или имеющих площадь более 150 м2, должны быть отмечены указателями. Указатели выходов могут быть световыми и не световыми, при условии, что обозначение выхода освещается светильниками аварийного освещения.

Осветительные приборы аварийного освещения допускается предусматривать горящими, включаемыми одновременно с основными осветительными приборами нормального освещения и не горящими, автоматически включаемыми при прекращении питания нормального освещения.

Охранное освещение должно предусматриваться вдоль границ территорий, охраняемых в ночное время. Освещенность должна быть не менее 0,5 лк на уровне земли в горизонтальной плоскости или на уровне 0,5 м от земли на одной стороне вертикальной плоскости, перпендикулярной к линии границы.

Дежурное освещение предусматривается для нерабочего времени. Область его применения, величины освещенности, равномерность и требования к качеству не нормируются.

Основная задача освещения на производстве - создание наилучших условий для видения. Эту задачу можно решить только осветительной системой, отвечающим определенным требованиям.

Освещенность на рабочем месте должна соответствовать характеру зрительной работы, который определяется следующими параметрами:

Наименьшим размером объекта различения (рассматриваемого предмета, отдельной его части или дефекта);

Характеристикой фона (поверхности, прилегающей непосредственно к объекту различения, на которой он рассматривается); фон считается светлым - при коэффициенте отражения поверхности более 0,4, средним - при коэффициенте отражения поверхности от 0,2 до 0,4, темным - при при коэффициенте отражения поверхности менее 0,2.

Контрастом объекта различения с фоном К, который равен отношению абсолютной величины разности между яркостью объекта Lо и фона Lф к яркости фона K = |Lо - Lф|/ Lф; контраст считается большим - при К более 0,5(объект и фон резко отличаются по яркости), средним - при К от 0,2 до 0,5, (объект и фон заметно отличаются по яркости), малым - при К менее 0,2(объект и фон мало отличаются по яркости).

Необходимо обеспечить достаточно равномерное распределение яркости на рабочей поверхности, а также в окружающем пространстве. Если в поле зрения находятся поверхности, значительно отличающиеся между собой по яркости, то при переводе взгляда с ярко освещенной на слабо освещенную поверхность глаз вынужден переадаптироваться, что ведет к утомлению зрения.

На рабочем месте должны отсутствовать резкие тени. Наличие резких теней создает неравномерное распределение поверхностей с различной яркостью в поле зрения, искажает размеры и формы объектов различения, в результате повышается утомляемость, снижается призводительность труда. Особенно вредны движущиеся тени, которые могут привести к травмам.

В поле зрения должна отсутствовать прямая и отраженная блескость. Блескость - повышенная яркость светящихся поверхностей, вызывающая нарушение зрительных функций (ослепленность), т.е. ухудшение видимости объектов.

Прямая блескость связана с источниками света, отраженная возникает на поверхности с большим коэффициентом отражения или отражением по направлению глаза.

Критерием оценки слепящего действия, создаваемого осветительной установки, является показатель ослепленности Ро, значение которого определяется по формуле

Ро = (S - 1) ·1000,

где S - коэффициент ослепленности, равный отношению пороговых разностей яркости при наличии и отсутствии слепящих источников в поле зрения.

Критерием оценки дискомфортной блесткости, вызывающей неприятные ощущения при неравномерном распределении яркостей в поле зрения, является показатель дискомфорта.

Величина освещенности должна быть постоянной во времени, чтобы не возникало утомления глаз за счет переадаптации. Характеристикой относительной глубины колебаний освещенности в результате изменения во времени светового потока источников света является коэффициент пульсации освещенности Кп.

Кп (%) = 100· (Еmax - Emin)/2Еср,

где Еmax,Emin и Еср - максимальное, минимальное и среднее значения освещенности за период ее колебания.

Для правильной цветопередачи следует выбирать необходимый спектральный состав света. Правильную цветопередачу обеспечивают естественное освещение и искусственные источники света со спектральной характеристикой, близкой к солнечной.

Требования к освещению помещений устанавливает СниП 23-05-95 Естественное и искусственное освещение. Для помещений промышленных предприятий установлены нормы на КЕО, освещенность, допустимые сочетания показателей ослепленности и коэффициента пульсации. Значения этих норм определяются разрядом и подразрядом зрительной работы. Всего предусмотрено восемь разрядов - от I; где наименьший размер объекта различения составляет менее 0,15мм, до VI, где он превышает 5 мм; VII разряд установлен для работ со светящимися материалами и изделиями в горячих цехах, VIII - для общего наблюдение за ходом производственного процесса. При расстояниях от объекта различения до глаза работающего более 0,5 м разряд работ устанавливается в зависимости от углового размера объекта различения, определяемого отношением минимального размера объекта различения к расстоянию от этого объекта до глаз работающего. Подразряд зрительной работы зависит от характеристики фона и контраста объекта различения с фоном.

Для помещений жилых, общественных административно-бытовых зданий установлены нормы на КЕО, освещенность, показатель дискомфорта и коэффициент пульсации освещенности. В случаях специальных архитектурно-художественных требований регламентируется также цилиндрическая освещенность. Цилиндрическая освещенность характеризует насыщенность помещения светом. Она рассчитывается инженерным методом.

Выбор этих норм зависит от разряда и подразряда зрительной работы. Для таких помещений предусмотрено 5 разрядов зрительной работы - от А - до Д.

Зрительная работа относится к одному из первых трех разрядов (в зависимости от наименьшего размера объекта различения), если она заключается в различении объектов при фиксированной и нефиксированной линии зрения. Подразряд зрительной работы при этом определяется относительной продолжительностью зрительной работы при направлении зрения на рабочую поверхность (%).

Зрительная работа относится к разрядам ГиД, если она заключается в обзоре окружающего пространства при очень кратковременном, эпизодическом различении объектов. Разряд Г устанавливается при высокой насыщенности помещения светом, а разряд Д - при нормальной насыщенности.

Нормы естественного освещения зависят от светового климата, в котором расположен административный район. Требуемое значение КЕО определяется по формуле

КЕО = eн·mN,

Где N - номер группы обеспеченности естественным светом, который зависит от выполнения световых проемов и их ориентации по сторонам горизонта;

eн - значение КЕО, указанное в таблицах СниП 23-05-95;

mN - коэффициент светового климата.

Для освещения производственных помещений и складских зданий следует использовать, как правило, наиболее экономичные разрядные лампы. Использование ламп накаливания для общего освещения допускается только в случае невозможности или технико-экономической нецелесообразности использования разрядных ламп.

Для местного освещения кроме разрядных источников света следует использовать лампы накаливания, в том числе галогенные. Применение ксеноновых ламп внутри помещений не допускается.

Для местного освещения рабочих мест следует использовать светильники с непросвечивающими отражателями. Местное освещение рабочих мест, как правило, должно быть оборудовано регуляторами освещения.

В помещениях, где возможно возникновение стробоскопического эффекта, необходимо включение соседних ламп в 3 фазы питающего напряжения или включение их в сеть с электронными пускорегулирующими аппаратами.

В помещениях общественных, жилых и вспомогательных зданий при невозможности или технико-экономической нецелесообразности использования разрядных ламп, а также для обеспечения архитектурно-художественных требований допускается предусматривать лампы накаливания.

Освещение лестничных клеток жилых зданий высотой более 3 этажей должно иметь автоматическое или дистанционное управление, обеспечивающее отключение части светильников или ламп в ночное время с таким расчетом, чтобы освещенность лестниц была не ниже норм эвакуационного освещения.

На крупных предприятиях должно быть специально выделенное лицо, ведающее эксплуатацией освещения (инженер или техник).

Следует проверять уровень освещенности в контрольных точках производственного помещения после очередной чистки светильников и замены перегоревших ламп.

Чистка стекол световых проемов должна производиться не реже 4 раз в год для помещений со значительными выделениями пыли; для светильников - 4 -12 раз в год, в зависимости от характера запыленности производственного помещения.

Перегоревшие лампы необходимо своевременно заменять. В установках с люминисцентными лампами и лампами ДРЛ необходимо следить за исправностью схем включения, а также пускорегулирующих аппаратов.

Точки измерения вибрации для оценки состояния машин и механизмов выбираются на корпусах подшипников или других элементов конструкции, которые в максимальной степени реагируют на динамические силы и характеризуют общее вибрационное состояние машин.

ГОСТ Р ИСО 10816-1-97 регламентируется проведение измерений вибрации корпусов подшипников в трех взаимно перпендикулярных направлениях, проходящих через ось вращения: вертикальном, горизонтальном и осевом ( а). Измерение общего уровня вибрации в вертикальном направлении проводится в наивысшей точке корпуса ( б). Горизонтальная и осевая составляющие измеряются на уровне разъёма крышки подшипника или горизонтальной плоскости оси вращения ( в, г). Измерения, проведенные на защитных кожухах, металлоконструкциях не позволяют определить техническое состояние механизма из-за нелинейности свойств данных элементов.

(а)

(б)

(в)

(г)


а) на электрических машинах; б) в вертикальном направлении; в, г) на корпусе подшипника

Расстояние от места установки датчика до подшипника должно быть кратчайшим, без контактных поверхностей различных деталей на пути распространения колебаний. Место установки датчиков должно быть достаточно жёстким (нельзя устанавливать датчики на тонкостенном корпусе или кожухе). Необходимо использовать одни и те же точки и направления измерения при проведении мониторинга состояния. Повышению достоверности результатов измерений способствует использование в характерных точках приспособлений для быстрой фиксации датчиков в определенных направлениях.

Крепление вибрационных датчиков регламентируется ГОСТ Р ИСО 5348-99 и рекомендациями изготовителей датчиков. Для крепления преобразователей поверхность, на которую он крепится, должна быть очищена от краски и грязи, а при измерении вибрации в высокочастотном диапазоне – от лакокрасочных покрытий. Контрольные точки, в которых проводится измерение вибрации, оформляются так, чтобы обеспечить повторяемость при установке датчика. Место измерения отмечают краской, кернением, установкой промежуточных элементов.

Масса преобразователя должна быть меньше массы объекта более чем в 10 раз. В магнитной державке, для крепления датчика используют магниты с силой удержания на отрыв 50…70 Н; на сдвиг 15…20 Н. Не закрепленный преобразователь отрывается от поверхности при ускорении более 1g.

Измерения ударных импульсов проводятся непосредственно на корпусе подшипника. При свободном доступе к корпусу подшипника измерения выполняются с помощью датчика (индикаторного щупа) в контрольных точках, указанных на . Стрелками указано направление расположения датчика при измерении ударных импульсов.



1 – индикаторный щуп прибора; 2 – корпус подшипника; 3 – распространение волн напряжения; 4 – подшипник качения; 5 – зона измерения ударных импульсов

Перед измерением ударных импульсов необходимо изучить чертёж конструкции механизма и убедиться в правильности выбора мест измерения, исходя из условий распространения ударных импульсов. Поверхность в месте измерений должна быть ровной. Толстый слой краски, грязи, окалины следует удалить. Датчик устанавливается в районе эмиссионного окна под углом 90 0 к корпусу подшипника, допускаемый угол отклонения не более 5 0 . Усилие прижатия щупа к поверхности контрольной точки должно быть постоянным.

Выбор частотного диапазона и параметров измерения вибрации

В механических системах, частота возмущающей силы совпадает с частотой реакции системы на эту силу. Это позволяет идентифицировать источник вибрации. Поиск возможных повреждений проводится на заранее определенных частотах механических колебаний. Большинство повреждений имеют жёсткую связь с частотой вращения ротора механизма. Кроме того, информативные частоты могут быть связаны с частотами рабочего процесса, частотами элементов механизма и резонансными частотами деталей.

  • нижний частотный диапазон должен включать 1/3…1/4 оборотной частоты;
  • верхний частотный диапазон должен включать 3-ю гармонику информативной частоты контролируемого элемента, например, зубчатого зацепления;
  • резонансные частоты деталей должны находиться внутри выбранного частотного диапазона.

Анализ общего уровня вибрации

Первый этап диагностирования механического оборудования обычно связан с измерением общего уровня вибрационных параметров. Для оценки технического состояния проводится измерение среднеквадратичного значения (СКЗ) виброскорости в частотном диапазоне 10…1000 Гц (для частоты вращения меньше 600 об/мин используется диапазон 2…400 Гц). Для оценки состояния подшипников качения проводится измерение параметров виброускорения (пикового и СКЗ) в частотном диапазоне 10…5000 Гц. Низкочастотные колебания свободно распространяются по металлоконструкциям механизма. Высокочастотные колебания быстро затухают по мере удаления от источника колебаний, что позволяет локализовать место повреждения. Измерение в бесконечном количестве точек механизма ограничиваются измерениями в контрольных точках (подшипниковых узлах) в трех взаимноперпендикулярных направлениях: вертикальном, горизонтальном и осевом ().

Результаты измерения представляются в табличном виде () для последующего анализа, включающего несколько уровней.

Таблица 7 – Значения параметров вибрации для контрольных точек турбокомпрессора

Точка измерения Среднеквадратичное значение виброскорости (мм/с), для направлений измерения, частотный диапазон 10…1000 Гц Виброускорение аскз/апик, м/с 2 , частотный диапазон 10…5000 Гц
вертикальное горизонтальное осевое
1 1,8 1,7 0,4 4,9/18,9
2 2,5 2,5 0,5 5,0/19,2
3 3,3 4,0 1,8 39,9/190,2
4 2,4 3,4 1,5 62,8/238,5

Первый уровень анализа – оценка технического состояния выполняется по максимальному значению виброскорости зафиксированному в контрольных точках. Допустимый уровень определяется из стандартного ряда значений по ГОСТ ИСО 10816-1-97 (0,28; 0,45; 0,71; 1,12; 1,8; 2,8; 4,5; 7,1; 11,2; 18,0; 28,0; 45,0). Увеличение значений в данной последовательности в среднем составляет 1,6. В основе данного ряда положено утверждение – увеличение вибрации в 2 раза не приводит к изменению технического состояния. В стандарте предполагается, что увеличение значений на два уровня приводит к изменению технического состояния (1,6 2 = 2,56). Следующее утверждение – увеличение вибрации в 10 раз приводит к изменению технического состояния от хорошего до аварийного. Отношение вибрации на холостом ходу и под нагрузкой не должно превышать 10-ти кратного увеличения.

Для определения допустимого значения используется минимальное значение виброскорости зафиксированное в режиме холостого хода. Предположим, что во время предварительного обследования на холостом ходу получено минимальное значение виброскорости 0,8 мм/с. Безусловно, в данном случае, должны соблюдаться аксиомы работоспособного состояния. Желательно, границы состояний определять для оборудования, вводимого в эксплуатацию. Принимая ближайшее большее значение, из стандартного ряда 1,12 мм/с как границу хорошего состояния, имеем следующие оценочные значения при работе под нагрузкой:1,12…2,8 мм/с – функционирование без ограничения сроков; 2,8…7,1 мм/с – функционирование в ограниченном периоде времени; свыше 7,1 мм/с – возможны повреждения механизма при работе под нагрузкой.

Длительная эксплуатация механизма возможна при значении виброскорости менее 4,5 мм/с, зафиксированной во время работы механизма под нагрузкой при номинальной частоте вращения приводного двигателя.

Для оценки состояния подшипников качения при частоте вращения до 3000 об/мин рекомендуется использовать следующие соотношения пикового и среднеквадратичного (СКЗ) значений виброускорения в частотном диапазоне 10…5000 Гц: 1) хорошее состояние – пиковое значение не превышает 10,0 м/с 2 ; 2) удовлетворительное состояние – СКЗ не превышает 10,0 м/с 2 ; 3) плохое состояние наступает при превышении 10,0 м/с 2 СКЗ; 4) если пиковое значение превышает 100,0 м/с 2 – состояние становится аварийным.

Второй уровень анализа – локализация точек имеющих максимальную вибрацию. В виброметрии принят тезис о том, что, чем меньше значения параметров вибрации, тем техническое состояние механизма лучше. Не более 5% возможных повреждений связано с повреждениями при низком уровне вибрации. В целом большие значения параметров указывают на большее воздействие разрушительных сил и позволяют локализовать место повреждения. Различают следующие варианты увеличения (более 20%) вибрации:

1) увеличение вибрации по всему механизму наиболее часто связано с повреждениями основания – рамы или фундамента;
2) одновременное увеличение вибрации в точках 1 и 2 или 3 и 4 () свидетельствует о повреждениях, связанных с ротором данного механизма – дисбалансом, изгибом;
3) увеличение вибрации в точках 2 и 3 () является признаком повреждений, потери компенсирующих возможностей соединительного элемента – муфты;
4) увеличение вибрации в локальных точках указывает на повреждения подшипникового узла.

Третий уровень анализа – предварительный диагноз возможных повреждений. Направление большего значения вибрации в контрольной точке с большими значениями наиболее точно определяет характер повреждения. При этом используются следующие правила и аксиомы:

1) значения виброскорости в осевом направлении должны быть минимальны для роторных механизмов, возможная причина увеличения виброскорости в осевом направлении – изгиб ротора, несоосность валов;
2) значения виброскорости в горизонтальном направлении должны быть максимальны и обычно превышают на 20% значения в вертикальном направлении;
3) увеличение виброскорости в вертикальном направлении – признак повышенной податливости основания механизма, ослабление резьбовых соединений;
4) одновременное увеличение виброскорости в вертикальном и горизонтальном направлении указывает на дисбаланс ротора;
5) увеличение виброскорости в одном из направлений – ослабление резьбовых соединений, трещины в элементах корпуса или фундаменте механизма.

При измерении виброускорения достаточны измерения в радиальном направлении – вертикальном и горизонтальном. Желательно, проводить измерения в районе эмиссионного окна – зоны распространения механических колебаний от источника повреждения. Эмиссионное окно неподвижно при местной нагрузке и вращается, если нагрузка имеет циркуляционный характер. Увеличенное значение виброускорения наиболее часто возникает при повреждениях подшипников качения.

Измерения вибрации проводятся для каждого подшипникового узла, поэтому граф причинно-следственных связей () показывает зависимость между увеличением вибрации в определенном направлении и возможными повреждениями подшипников.

При измерении общего уровня вибрации рекомендуется проведений измерений виброскорости по контуру рамы, подшипниковой опоры в продольном или поперечном сечении (). Значения отношения вибрации опоры и фундамента определяющие состояние резьбовых соединений и фундамента:

  • около 2,0 – хорошо;
  • 1,4…1,7 – неустойчивый фундамент;
  • 2,5…3,0 – ослабление резьбовых креплений.

Виброскорость в вертикальном направлении на фундаменте не должна превышать 1,0 мм/с.

Анализ ударных импульсов

Назначение метода ударных импульсов – определение состояния подшипников качения и качества смазки. Приборы для измерения ударных импульсов в некоторых случаях можно использовать для определения мест утечек воздуха или газа в арматуре трубопроводов.

Метод ударных импульсов впервые разработан фирмой «SPM Instrument» и основан на измерении и регистрации механических ударных волн, вызванных столкновением двух тел. Ускорение частиц материала в точке удара, вызывает волну сжатия, в виде ультразвуковых колебаний распространяющуюся во всех направлениях. Ускорение частиц материала в начальной фазе удара зависит только от скорости столкновения и не зависит от соотношения размеров тел.

Для измерения ударных импульсов используется пьезоэлектрический датчик, на который не оказывает влияние вибрации в низко- и среднечастотном диапазоне. Датчик механически и электрически настроен на частоту в 28…32 кГц. Вызванная механическим ударом фронтальная волна возбуждает затухающие колебания в пьезоэлектрическом датчике.

Пиковое значение амплитуды этого затухающего колебания прямо пропорционально скорости удара. Затухающий переходный процесс имеет постоянную величину затухания для данного состояния. Изменение и анализ затухающего переходного процесса позволяют оценить степень повреждения и состояние подшипника качения ().

Причины повышения ударных импульсов

  1. Загрязнение смазки подшипника во время монтажа, во время хранения, в процессе эксплуатации.
  2. Ухудшение эксплуатационных свойств смазочного материала в процессе эксплуатации приводящее к несоответствию применяемой смазки условиям работы подшипника.
  3. Вибрация механизма, создающая повышенную нагрузку на подшипник. Ударные импульсы не реагируют на вибрацию, отражают ухудшение условий работы подшипника.
  4. Отклонение геометрии деталей подшипника от заданной, в результате неудовлетворительного монтажа подшипника.
  5. Неудовлетворительная центровка валов.
  6. Повышенный зазор в подшипнике.
  7. Ослабление посадки подшипника.
  8. Ударные воздействия на подшипник, возникающие в результате работы зубчатого зацепления, соударений деталей.
  9. Неисправности электромагнитной природы электрических машин.
  10. Кавитация перекачиваемой среды в насосе, при которой в результате захлопывания газовых каверн в перекачиваемой среде непосредственно создаются ударные волны.
  11. Вибрацией подсоединенных трубопроводов или арматуры, связанной с нестабильностью потока перекачиваемой среды.
  12. Повреждение подшипника.

Контроль состояния подшипников качения методом ударных импульсов

На поверхности беговых дорожек подшипников всегда имеются неровности. При работе подшипника происходят механические удары и возникают ударные импульсы. Значение ударных импульсов зависит от состояния, поверхностей качения и окружной скорости. Ударные импульсы, генерируемые подшипником качения, увеличивается в 1000 раз, начиная от начала эксплуатации и заканчивая моментом, предшествующим замене. Испытания показали, что даже новый и смазанный подшипник генерирует ударные импульсы.

Для измерения таких больших величин применяется логарифмическая шкала. Увеличение уровня колебаний на 6 дБ соответствует увеличению в 2,0 раза; на 8,7 дБ – увеличению в 2,72 раза; на 10 дБ – увеличению в 3,16 раза; на 20 дБ – увеличению в 10 раз; на 40 дБ – увеличению в 100 раз; на 60 дБ – увеличению в 1000 раз.

Испытания показали, что даже новый и смазанный подшипник генерирует ударные импульсы. Значение этого начального удара выражается как dBi (dBi ‑ исходный уровень). По мере износа подшипника увеличивается значение dBa (величина общего ударного импульса).

Нормированное значение dBn для подшипника можно выразить как

dBn = dBa – dBi .

На приведена зависимость между dBn и ресурсом работы подшипника.

Шкала dBn разделена на три зоны (категории состояния подшипника): dBn < 20 дБ ‑ хорошее состояние; dBn = 20…40 дБ ‑ удовлетворительное состояние; dBn > 40 дБ ‑ неудовлетворительное состояние.

Определение состояния подшипника

Техническое состояние подшипника определяется по уровню и соотношению измеренных величин dB n и dB i . dB n максимальное значение нормированного сигнала. dB i – пороговое значение нормированного сигнала – фон подшипника. Значение нормируемого сигнала определяется диаметром и частотой вращения контролируемого подшипника. Эти данные вносятся в прибор перед проведением измерений.

Во время работы подшипника пиковые удары различаются не только по амплитуде, но и по частоте. На приведены примеры оценки состояния подшипника и условий эксплуатации (монтаж, посадка, центровка, смазка) на основе соотношения амплитуды удара и частоты (количество ударов в минуту).

  1. В хорошем подшипнике удары возникают в основном от качения шариков по неровностям беговой дорожки подшипника и создают нормальный уровень фона с низким значением амплитуды ударов (dB i < 10), на котором имеются случайные удары с амплитудой dB n < 20 дБ.
  2. При появлении повреждений на беговой дорожке или телах качения на общем фоне возникают пиковые значения ударов с большой амплитудой dB n > 40 дБ. Удары возникают беспорядочно. Значения фона лежат в пределах dB i < 20 дБ. При сильном повреждении подшипника возможно увеличение фона. Как правило, наблюдается большая разница dB n и dB i .
  3. При отсутствии смазки, слишком плотной или слабой посадке подшипника увеличивается фон подшипника (dB i > 10), даже если подшипник не имеет повреждений на беговых дорожках. Амплитуда пиковых ударов и фона относительно близки (n = 30 дБ, dB i = 20 дБ).
  4. При кавитации насосов уровни фона характеризуются высоким значением амплитуды. Измерение проводится на корпусе насоса. При этом следует иметь в виду, что криволинейные поверхности демпфируют ударные импульсы от кавитации. Разница пиковых значений и фона весьма мала (например, dB n = 38дБ, dB i = 30 дБ).
  5. Механическое касание вблизи подшипника между вращающейся и неподвижной частями механизма вызывает ритмичные (повторяющиеся) ударные всплески пиковых значений.
  6. Если подшипник подвергается ударной нагрузке, например, от хода поршня в компрессоре, ударные импульсы будут повторяющимися по отношению к рабочему циклу машины, поэтому общий фон (dB i ) и пиковые амплитуды (dB n ) самого подшипника легко определяются.

Вопросы для самостоятельного контроля

  1. Где необходимо расположить контрольный точки для измерения параметов вибрации?
  2. Какой стандарт регламентирует проведение измерений вибрации?
  3. Где нельзя располагать контрольные точки для измерения вибрации?
  4. Для проведения измерений ударных импульсов какие должны быть соблюдены требования?
  5. Какие существуют требования при выборе частотного диапазона и параметров измерения вибрации?

Лекция 10

ПРОИЗВОДСТВЕННАЯ ВИБРАЦИЯ

План лекции:

1. Классификация производственных вибраций.

2. Воздействие вибрации на здоровье человека.

3. Нормирование производственных вибраций.

4. Способы снижения производственно вибрации.

Классификация производственных вибраций

Вибрация – это малые механические колебания, возникающие в упругих телах под воздействием переменных сил. Все виды техники, имеющие движущиеся узлы, транспорт – создают механические колебания. Увеличение быстродействия и мощности техники привело к резкому повышению уровня вибрации.

Человек ощущает вибрацию в диапазоне от долей до 1000 Гц. Вибрация более высокой частоты воспринимается как тепловое ощущение

Воздействие вибрации на человека классифицируется:

По способу передачи вибрации на человека,

По направлению действия вибрации.

По временной характеристике вибрации.

По способу передачи колебаний на человека различают общую, передающуюся через опорные поверхности на все тело, и локальную, передающуюся на руки или ноги человека.

По направлению действия вибрации подразделяют в соответствии с направлением ортогональных осей координатX о, Y о,Z о для общей вибрации и X л, Y л, Z л для локальной вибрации.

По временной характеристике различают постоянную вибрацию (контролируемый параметр за время наблюдения изменяется не более чем в 2 раза) и непостоянную вибрацию.

Основные параметры вибрации: амплитуда колебания (м) – величина наибольшего отклонения колеблющейся точки от положения равновесия, период колебания (с) – время между двумя последовательно одинаковыми состояниями системы, частота (Гц), связанная с периодом известным соотношением, виброскорость (м/с), виброускорение (м­ 2 /с)

Воздействие вибрации на здоровье человека.

Общая вибрация более опасна, чем локальная, так как она вызывает сотрясение всего организма. Вначале появляются головные боли, нарушения сна, утомляемость. При длительном воздействии вибрации развивается вибрационная болезнь: нарушается деятельность нервной системы, сосудов, органов зрения, слуха, вестибулярного аппарата, возникают головокружение, сонливость, заболевания желудка (т.к. под действием вибрации усиливается выделение желудочного сока), идет разрушающее поражение суставов.

Особенно опасна общая вибрация при совпадении частот внешних воздействий с собственными частотами колебаний органов человека (явление резонанса), т.к. амплитуды колебаний резко возрастают и может быть механическое повреждение этих органов. Для органов брюшной полости и грудной клетки собственные частоты лежат в пределах 6-9 Гц, для головы – 25-30 Гц, для глаз – 60-90 Гц.

Общая вибрация с частотой менее 0,7 Гц не приводит к вибрационной болезни. Следствием такой вибрации является морская болезнь, вызванная нарушением нормальной деятельности вестибулярного аппарата.

Общей вибрации подвергаются машинисты электропоездов, водители землеройной и сельскохозяйственной техники, операторы насосных и компрессорных станций, энергетических установок.

Локальная вибрация вызывает ухудшение кровоснабжения рук и, как следствие, отложение солей, деформацию и снижение подвижности суставов. Более всего страдают кистевой, локтевой и плечевой суставы, но, кроме того, воздействие идет на весь организм: появляются боли в области сердца и пояснице. Локальной вибрации подвергаются работающие с ручным механизированным инструментом. При воздействии вибрации низкой частоты заболевание возникает через 8-10 лет, при воздействии высокочастотной вибрации (выше 125 Гц) – через 5 и менее лет.

Нормирование производственных вибраций

Различают гигиеническое и техническое нормирование вибраций. Гигиенические нормативы – ограничивают параметры вибрации рабочих мест и поверхности контакта с руками работающих, исходя из физиологических требований, исключающих возможность возникновения вибрационной болезни. Технические – ограничивают параметры вибрации не только с учетом указанных требований, но и исходя из достижимого на сегодняшний день для данного типа оборудования уровня вибрации.

Гигиенические нормативы вибрационной нагрузки на рабочих местах устанавливаются в ГОСТ 12.1.012-90 «ССБТ. Вибрационная безопасность. Общие требования», санитарные нормы СН 2.2.4/2.1.8.556 – 96 «Производственная вибрация, вибрация в помещениях жилых и общественных зданий». Документы устанавливают классификацию вибраций, методы гигиенической оценки, нормируемые параметры и их допустимые значения, режимы труда лиц виброопасных профессий, требования к обеспечению вибробезопасности и к вибрационным характеристикам машин.

При гигиенической оценке вибраций нормируемыми параметрами являются средние квадратичные значения виброскорости или виброускорения. Но, поскольку абсолютные значения виброскорости изменяются в очень широких пределах, на практике используется логарифмический уровень виброскорости:

L v =20lg V/ V o (дБ)

где V- измеренное значение виброскорости, м/с,

V o =5 *10 -8 м/с – наименьшее значение виброскорости, которое начинает ощущать человек.

Спектр частот вибрации разбивается на октавные полосы со среднегеометрическими частотами:

Для общей вибрации 1,2,4,8,16, 31,5.63.

Для локальной 1,2,4,8,16, 31,5, 63,125,250,500,1000.

Вибрация, воздействующая на человека, нормируется отдельно в каждой октавной полосе отдельно для общей и локальной вибрации.

Общую вибрациюнормируется с учетом свойств источника ее возникновения и делится на категории:

Категория 1 -транспортная вибрация, воздействующая на опера­тора на рабочих местах самоходных и прицепных машин и транспор­тных средств при их движении по местности, агрофону и дорогам, в том числе при их строительстве;

Категория 2 -транспортно-технологическая вибрация, воздейст­вующая на человека-оператора на рабочих местах машин с ограничен­ной подвижностью при перемещении их по специально подготовленным поверхностям производственных помещений, про­мышленных площадок и горных выработок;

Нормируемыми параметрами вибрационной нагрузки являются средние квадратичные значения виброскорости и их логарифмические уровни для локальных вибраций в октавных полосах частот, для общей вибрации в октавных или треть октавных полосах

Гигиенические нормы вибраций по ГОСТ 10.1.012-90

Таблица 8.1.

Вид вибрации Допустимый уровень виброскорости, дБ, в октавных полосах со среднегеометрическими частотами, Гц
31,5
Общая транспортная:
вертикальная - - - -
горизонтальная - - - -
Транспортно-технологическая " - - - -
Технологическая _ - - - -
В производственных помещениях, где нет машин, генерирующих вибрацию _ - - - -
В служебных помещениях, здравпунктах, конструкторских бюро, лабораториях - - - -
Локальная вибрация -

Вибрации - это одна из проблем современных мегаполисов. Причем с каждым годом их интенсивность постоянно возрастает. Почему же современная наука столь активно исследует данную проблему? По какой причине измерения вибрации стали обязательными процедурами во многих организациях и на предприятиях? Дело в том, что вибрации - это явление, вызывающее ряд профессиональных заболеваний, что дает основание медикам поднимать вопросы о мероприятиях по его устранению.

Понятие вибраций

Вибрации - это сложный колебательный процесс, который осуществляется в широком частотном диапазоне. Как он возникает? При передаче колебательной энергии от источника твердому телу. Обычно под вибрацией подразумевают которые оказывают ощутимое влияние на организм человека. При этом имеется в виду частотный диапазон от 1,6 до 1000 Гц. С понятием вибрации тесно связаны звук и шум. Они сопровождают это явление при высоких показателях колебательного движения.

Какой предмет в школе изучает такое понятие, как вибрация? Это - очень важный предмет. Обеспечение охраны труда является одной из основных проблем России, поднятых на уровень национальной безопасности.

Источники возникновения

Механические вибрации - это явления, возникающие практически во всех станках, машинах и инструментах, у которых имеются несбалансированные или неуравновешенные вращающиеся детали, совершающие возвратно-поступательные и ударные движения. В перечень подобного оборудования входят штамповочные и ковочные молоты, пневмо- и электроперфораторы, а также вентиляторы, компрессоры, насосные установки и приводы.

Если колебательные движения механическими телами совершаются с частотой, находящейся в диапазоне до 20 ГЦ, то они воспринимаются только как вибрация. При больших частотах появляется звук. Это вибрация с шумом. При этом восприятие производится не только вестибулярным аппаратом человека, но и его органами слуха.

Классификация вибрации

Колебательные движения могут передаваться различными способами. Так, существует вибрация общая. Это колебательный процесс, передающийся на тело человека через различные опорные поверхности. Общая вибрация неблагоприятно воздействует на сердечно-сосудистую и нервную системы. К тому же она вызывает патологии пищеварительного тракта и органов движения.

В свою очередь, из общей вибрации выделяют:
- транспортную, возникающую при движении автомобилей по дорогам;
- транспортно-техническую, источником которой служат машины и механизмы, вовлеченные в технологический процесс;
- техническую, возникающую во время работы стационарного оборудования или передающуюся в зоны нахождения обслуживающего персонала, где нет никаких источников вибрации.

Существует еще и локальная вибрация. Это колебательные движения, передающиеся через руки. Если с подобной вибрацией человек сталкивается систематически, то у него возможно развитие неврита с одновременной потерей трудоспособности.

При исследованиях рабочих мест выделяется гармоническая, или синусоидальная вибрация. Это такие колебательные движения, при которых значения их основного показателя изменяются по синусоидальному закону. Подобная вибрация встречается на практике особенно часто.

Колебательные движения различают и по временной характеристике. Так, существует постоянная вибрация. Ее параметры по своей частоте за период наблюдения изменяются не более чем в два раза.

Существует еще и непостоянная вибрация. Для нее характерно значительное изменение основных параметров (более чем в два раза).

При изучении какого предмета учащимся предоставляется возможность более подробно ознакомиться с таким явлением, как вибрация? Это БЖД. Его преподают в старших классах средней школы.

Параметры вибрации

Для характеристики используются такие величины:
- амплитуда, показывающая наибольшее отклонение от равновесного положения в метрах;
- частота колебаний, определяемая в Гц;
- число колебательных движений в течение секунды;
- скорость колебаний;
- период колебаний;
- ускорение колебаний.

Производственная вибрация

Вопросы о снижении уровня колебательных движений, негативно влияющих на организм человека, особенно актуальны на стадии разработки технологического процесса, невозможного без эксплуатации станков, машин и т. д. Но, тем не менее, производственная вибрация - это явление, которого на практике избежать невозможно. Возникает она из-за наличия зазоров, а также поверхностных контактов между отдельными механизмами и деталями. Возникает вибрация и при неуравновешенности элементов оборудования. Нередко колебательные движения многократно возрастают из-за резонансных явлений.

Проведение вибромониторингов

Для контроля и дальнейшего снижения уровня вибрации на производствах применяют специальную виброизмерительную контрольно-сигнальную аппаратуру. Она позволяет сохранить работоспособность устаревшего оборудования и увеличить срок эксплуатации новых станков и механизмов.

Всем известно, что технологический процесс любого промышленного предприятия требует участия большого количества вентиляторов, электрических машин и т. д. Для того чтобы оборудование не простаивало, технические службы должны проводить его своевременный текущий или капитальный ремонт. Это возможно при осуществлении контроля над уровнем вибрации, что позволяет своевременно обнаружить:
- разбалансировку ротора;
- износ подшипников;
- несоосность передач и другие неисправности и отклонения.

Аппаратура виброконтроля, установленная на оборудовании, выдает предупреждающие сигналы при аварийном повышении амплитуды колебания.

Воздействие вибрации на здоровье человека

Колебательные движения в первую очередь вызывают патологии нервной системы, а также тактильного, зрительного и вестибулярного аппаратов. Профессиональные водители автотранспортных средств и машинисты жалуются на недуги пояснично-крестцового отдела позвоночного столба. Данные патологии становятся следствием систематического воздействия толчковой и низкочастотной вибрации, возникающей на их рабочем месте.

Те, на кого в течение технологического цикла передаются колебательные движения оборудования, страдают от болей в конечностях, пояснице и в области желудка, а также от отсутствия аппетита. У них появляется бессонница, быстрая утомляемость и раздражительность. В целом картина воздействия общей вибрации на человека выражается в вегетативных расстройствах, сопровождающихся периферическими нарушениями в конечностях, снижением чувствительности и сосудистого тонуса.

Воздействие локальных колебательных движений приводит к спазмам сосудов предплечий и кисти. При этом конечности недополучают нужного количества крови. Вместе с этим локальная вибрация воздействует на костные и мышечные ткани, а также на находящиеся в них нервные окончания. Это приводит к снижению чувствительности кожи, к отложению солей в суставах, к деформации и снижению подвижности пальцев. Стоит сказать и о том, что колебательные движения, совершаемые в диапазоне резко снижают тонус капилляров, а при высоких частотах происходит спазм сосудов.

Иногда у рабочего возникает вибрация в ухе. Что это явление представляет собой? Дело в том, что частота колебательных движений, передающаяся от работающего оборудования, бывает самой разной. Однако на отдельно взятом предприятии существует довольно узкий диапазон таких значений. Это и приводит к появлению того или иного типа вибрации, а также сопутствующего ей шума. Так, звуки могут иметь низкую, среднюю и высокую частоту.

Когда же возникает вибрация в ухе? Что это состояние характеризует собой? Дело в том, что иногда оборудование создает колебательные движения, стоящие на одном уровне со слуховым восприятием. В итоге и возникает шум, передаваемый на внутренне ухо через тело рабочего и его кости.

На практике выделяют допустимый уровень вибрации. Это те ее значения, которые не оказывают негативного влияния на организм человека. Данные параметры зависят от многих факторов (от времени воздействия, предназначения помещения и т. д.) и измеряются амплитудой колебания, виброскоростью, виброускорением и частотой.

Наиболее опасные уровни вибрации

Особенности негативного воздействия колебательных движений на организм человека определяются характером их распространения при сочетании массы и упругих элементов. У человека, работающего стоя, это туловище, таз и нижняя часть позвоночника. У сидящего на стуле негативным воздействиям подвержена верхняя часть тела и позвоночника.

Влияние вибрации на здоровье человека определяется ее частотным спектром. Те ручные механизмы, колебательные движения которых ниже значения 35 Гц, способствуют появлению негативных изменений в суставах и костно-мышечной системе.

Самые опасные вибрации близки к органов человека. Это диапазон от 6 до 10 Гц. Колебания такой частоты также негативно влияют на психологическое здоровье. Такая частота вполне могла быть причиной гибели многих путешественников в Бермудском треугольнике. При значениях колебаний от 6 до 10 Гц у людей возникает чувство страха и опасности. Моряки при этом стремятся поскорее покинуть свое судно. Длительное воздействие вибрации способно привести к гибели экипажа. Это явление опасно для функционирования как отдельных органов, так и всего организма в целом. Оно нарушает работу ЦНС и обмен веществ.

Очень опасна вибрация с большой амплитудой. Она оказывает негативное воздействие на кости и суставы. При длительном воздействии и высокой интенсивности колебаний такая вибрация провоцирует развитие Эта профессиональная патология при определенных условиях переходит в церебральную форму, излечить которую практически невозможно.

Устранение колебательных движений

Как же избежать вибрации в теле? Что это должны быть за мероприятия, которые позволят сохранить здоровье человека? Существуют две основных группы подобных методов. Мероприятия первого из них призваны снизить вибрацию непосредственно в источнике ее появления. Такие действия, осуществленные на этапе проектирования, предусматривают применение бесшумного оборудования и правильный подбор режимов его работы. Во время строительства и дальнейшей эксплуатации производственных зданий эти мероприятия касаются мер по использованию технически исправного оборудования.

Второй метод снижения вибрации - ее устранение на пути распространения. Для этого осуществляется виброизоляция оборудования и воздуховодов, строятся виброизолирующие площадки, рабочие места оборудуются специальными ковриками и сиденьями. Кроме того, устранить вибрацию на пути ее распространения можно при выполнении целого комплекса акустических и архитектурно-планировочных мероприятий. В их числе:
- расположение источников вибрации в максимальном удалении от защищаемых объектов;
- целесообразное размещение оборудования;
- применение схемы виброизолированного и жесткого крепления агрегата и т. д.

Защита временем

Для того чтобы сохранить здоровье человека, работающего с ручными механизмами или оборудованием, передающим на тело колебательные движения, разрабатывают специальные режимы отдыха и труда. Так, существует ограничение времени контакта с машинами и механизмами до 1/3 смены. При этом обязательно устраивается два-три перерыва по 20-30 минут. Причем свободное от работы время в течение смены предусмотрено для проведения и разнообразных физиотерапевтических процедур.

Подобные режимы труда разрабатываются для виброопасных профессий и являются своеобразными профилактическими мероприятиями, направленными на сохранение здоровья человека.

Числовая вибрация имени

Контактируя с различными людьми, каждый из нас ведет себя совершенно по-разному. Причем все это зависит от отношения к собеседнику и от сложившейся ситуации. Мы презираем или уважаем, ненавидим или любим, прислушиваемся к их мнению или оно нам вовсе безразлично.

Если встретившийся на жизненном пути человек сдержан и немногословен, то такое поведение становится характерным и для нас. Весельчак и балагур, напротив, заставит смеяться и непременно поднимет настроение. Как же узнать ту индивидуальность человека, которая скрывается в глубине его души? Многое подскажет вибрация имени. Что это? Нумерологическое сложение согласных имени. При помощи этого способа можно определить характер родственников и супруга, друзей и любого человека, даже не зная той даты, когда он родился. Необходимо лишь знание 9 числовых вибраций, соответствующих имени. С их помощью можно подобрать ключик к человеческой душе и почувствовать себя настоящим магом. Недаром некоторые говорят, что это вибрация моего сердца. Ведь с помощью данного способа в руках человека появляется магическое оружие, которое принесет пользу тем, кто знает его силу воздействия и основное значение.

Буквы имени каждого человека скрывают в себе три значения его индивидуальности. Это числовая вибрация:
- гласных;
- согласных;
- суммы всех букв.

Данные числовые значения в совокупности дают характеристику самых важных сторон личности.

Существует и звуковая вибрация имени, ведь жизнь является непрерывным движением. Именно поэтому ей присуща своя вибрация. Своей собственной вибрацией обладает и каждое имя. В течении жизни ее значение постепенно передается и хозяину. Ученые полагают, что нижний порог таких вибраций находится на уровне 35000 колебаний в секунду, а верхний - на уровне 130000/сек. Те люди, которые обладают наиболее высоким коэффициентом, устойчивы к различного рода инфекциям. У них также наблюдаются высокие уровни моральных установок.