Выключатели

Почему легко опадают желтые листья. Почему опадают листья у комнатных растений? Недостаточный полив растения

Почему легко опадают желтые листья. Почему опадают листья у комнатных растений? Недостаточный полив растения
Жиры - макронутриенты, необходимые участники полноценного питания каждого человека. В ежедневный рацион должны входить разные жиры, каждый из них выполняет свою функцию.

С физиологической точки зрения жиры - неотъемлемая составляющая тройки макронутриентов, обеспечивающей основные потребности организма человека. Они являются одним из основных источников энергии для человека. Жиры - составной элемент всех клеток, они необходимы для усвоения жирорастворимых витаминов, обеспечивают термоизоляцию организма, участвуют в деятельности нервной системы и иммунитета.

Что такое жиры

Официальное название жиров, входящих в состав пищи, - липиды. Те липиды, которые входят в состав клеток, называются структурными (фосфолипиды, липопротеиды), другие являются способом хранения энергии и называются запасными (триглицериды).

Энергетическая ценность жиров составляет 9 ккал на 1 г, что в два раза выше энергетической ценности углеводов.

По своей химической сути жиры представляют собой сложные эфиры глицерина и высших жирных кислот. Основа животных и растительных жиров - жирные кислоты, различный состав которых и определяет их функции в организме. Все жирные кислоты делятся на две группы: насыщенные и ненасыщенные.

Существенная составная часть всех жиров - фосфолипиды, они способствуют
полноценному обмену веществ. Основной источник фосфолипидов - продукты
животного происхождения. Самый известный фосфолипид - лецитин, в состав
которого входит витаминоподобное вещество холин.

Насыщенные жирные кислоты

Насыщенные жирные кислоты содержатся в основном в жирах животного происхождения. Это твердые вещества, имеющие высокую температуру плавления (т.н. тугоплавкие жиры). Они могут усваиваться организмом без участия желчных кислот, этим определяется их высокая питательная ценность. Однако излишки насыщенных жирных кислот неизбежно откладываются в запас.

Основные виды насыщенных кислот - пальмитиновая, стеариновая, миристиновая. Они в разных количествах содержатся в сале, жирном мясе, молочных продуктах (сливочное масло, сметана, молоко, сыры и т.д.). Животные жиры, в состав которых входят насыщенные жирные кислоты, обладают приятным вкусом, содержат лецитин и витамины А и D, а также холестерин.

Холестерин - основной стерин животного происхождения, он жизненно необходим организму, поскольку входит в состав всех клеток и тканей организма, участвует в гормональных процессах и синтезе витамина D. При этом избыток холестерина в пище ведет к повышению его уровня в крови, что является одним из основных факторов риска для развития сердечно-сосудистых заболеваний, диабета и ожирения. Холестерин синтезируется организмом из углеводов, поэтому с пищей его рекомендуется употреблять не более чем 300 мг в сутки.

Употребление животных жиров необходимо для полноценного развития детей, однако максимальное количество холестерина для них такое же - 300 мг в сутки. Предпочтительная форма употребления насыщенных жирных кислот - молочные продукты, яйца, мясные субпродукты (печень, сердце), рыба. На долю насыщенных жирных кислот в ежедневном рационе должно приходиться не более 10% калорийности.

Ненасыщенные жирные кислоты

Ненасыщенные жирные кислоты содержатся в основном в продуктах растительного происхождения, а также в рыбе. Ненасыщенные жирные кислоты легко окисляются, они не очень устойчивы к термообработке, поэтому наиболее полезно употреблять продукты, их содержащие, в сыром виде.

Ненасыщенные жирные кислоты делятся на две группы, в зависимости от того, сколько в них ненасыщенных водородом связей между атомами. Если такая связь одна - это мононенасыщенные жирные кислоты (МНЖК), если их несколько - это полиненасыщенные жирные кислоты (ПНЖК).

Мононенасыщенные жирные кислоты

Основные виды МНЖК - миристолеиновая, пальмитолеиновая, олеиновая. Эти кислоты могут синтезироваться организмом из насыщенных жирных кислот и углеводов. Одна из важнейших функций МНЖК - снижение уровня холестерина в крови. За это отвечает содержащийся в МНЖК стерин - р-ситостерин. Он образует нерастворимый комплекс с холестерином и таким образом препятствует всасыванию последнего.

Основной источник МНЖК - рыбий жир, оливковое, кунжутное и рапсовое масла.
Физиологическая потребность в МНЖК составляет 10% от суточной калорийности.

Полиненасыщенные жирные кислоты

Основные виды ПНЖК - линолевая, линоленовая, арахидоновая. Эти кислоты не только входят в состав клеток, но и участвуют в обмене веществ, обеспечивают процессы роста, содержат токоферолы, р-ситостерин. ПНЖК не синтезируются организмом человека, поэтому считаются незаменимыми веществами наравне с некоторыми аминокислотами и витаминами. Наибольшей биологической активностью обладает арахидоновая кислота, которой мало в продуктах питания, но при участии витамина В6 она может быть синтезирована организмом из линолевой кислоты.

Арахидоновая и линолевая кислота относятся к семейству кислот Омега-6. Эти кислоты содержатся практически во всех растительных маслах и орехах. Суточная потребность в Омега-6 ПНЖК составляет 5-9% от суточной калорийности.

Альфа-линоленовая кислота относится к семейству Омега-3. Основным источником ПНЖК этого семейства является рыбий жир и некоторые морепродукты. Суточная потребность в Омега-3 ПНЖК - 1-2% от суточной калорийности.

Избыток в рационе продуктов, содержащих ПНЖК, может вызвать заболевания почек и печени.

Важно помнить, что одни жирные кислоты не могут заменить другие,
и наличие в рационе всех из них - необходимое условие здорового питания.

Эксперт: Галина Филиппова, врач-терапевт, кандидат медицинских наук

В материале использованы фотографии, принадлежащие shutterstock.com

Жирами принято называть группу простых липидов, способных утилизироваться организмом человека, имеющих общие структурные особенности. Жиры, некоторые липиды, их составные части ответственны за многие процессы нормальной жизнедеятельности человека. Функции жиров в организме человека очень важны

Функции жиров в организме человека

Физиология, медицина, биохимия интенсивно развиваются параллельно с появлением новых приборных возможностей исследования. Постоянно появляются дополнительные научные данные, с учетом которых основные функции жиров в организме можно представить в предлагаемой совокупности.

  • Энергетическая . В результате окислительного расщепления из 1 гр жира опосредованно образуется 9 ккал энергии, что значительно превышает аналогичные цифры для белков и углеводов.
  • Регуляторная . Установлено, что в результате обменных реакций 1 гр жира в организме синтезируется 10 гр «внутренней» воды, которую правильнее называть эндогенной. Вода, которую мы получаем с пищей, напитками, называется «внешней», экзогенной. Вода – интереснейшее вещество, склонное объединяться в группы – ассоциаты. Этим отличаются характеристики воды, претерпевшей таяние, очистку, кипячение. Аналогично отличаются качества воды, синтезировавшейся в организме и поступившей извне. Эндогенная вода синтезироваться должна обязательно, хотя ее роль окончательно пока не установлена.
  • Структурно-пластическая . Жиры, самостоятельно либо в комплексе с белками, углеводами, участвуют в образовании тканей. Важнейшее значение имеет слой клеточных оболочек, состоящий из липопротеидов – структурных образований из липидов и белков. Нормальное состояние липидного слоя мембраны клетки обеспечивает обмен веществ и энергии. Так структурно-пластические функции жиров в клетке интегрируется с транспортной функцией.
  • Защитная . Подкожный слой жира выполняет теплосохраняющую функцию, защищает организм от переохлаждения. Это хорошо заметно на примере купающихся в прохладном море детей. Малыши с незначительным слоем подкожного жира замерзают очень быстро. Дети с нормальной жировой прослойкой могут принимать водные процедуры гораздо дольше. Естественный жировой слой на внутренних органах защищает их в некоторой степени от механических воздействий. Незначительная жировая прослойка покрывает в норме многие органы.
  • Обеспечивающая . Натуральные жиры – это всегда смеси, содержащие дополнительные биологически активные вещества. Роль жиров в организме заключается в параллельном обеспечении важными для физиологии компонентами: витаминами, витаминоподобными соединениями, стеринами, некоторыми сложными липидами.
  • Косметически-гигиеническая . Тонкий слой жиров, имеющийся на коже, придает ей упругость, эластичность, защищает от растрескивания. Цельность кожи, не содержащей микротрещины, исключает попадание микробов.

Состав жиров

Жиры – это группа веществ, состоящая из одного или нескольких сложных эфиров высокомолекулярных карбоновых кислот и спирта – глицерина. Кислоты, содержащие более 4 атомов углерода, принято называть высшими жирными. Состав жиров варьируется в зависимости от источника выделения. Помимо указанных сложных эфиров натуральные жиры могут содержать небольшое количество свободных высокомолекулярных кислот, ароматизирующих веществ, пигментов.

По структурным особенностям кислотных остатков всю группу принято разделять на насыщенные и ненасыщенные жиры.

  • В насыщенных жирах все атомы углерода в кислотном остатке связаны друг с другом только одинарными связями. Самая маленькая насыщенная кислота, входящая в состав жиров, называется масляной. При длительном хранении сложноэфирная связь может разрушаться, кислоты освобождаются. Свободная масляная кислота имеет резкий запах, горьковатый вкус. Это одна из причин ухудшения качеств жира при длительном хранении.

Важно! Насыщенные высшие карбоновые кислоты преобладают в основном в животных жирах.

Наиболее распространены в природных жирах кислоты с большим, чем у масляной кислоты количеством атомов углерода и массой молекул, например пальмитиновая, стеариновая. Пальмитиновую впервые выделили из масла пальм, ее содержание в котором достигает 50%. Стеариновую кислоту впервые извлекли из сала свиней, название которого на греческом языке стало основой названия кислоты. Все насыщенные кислоты плохо растворяются в воде, что осложняет выполнение функций жиров в клетке.

  • Ненасыщенными жирами называют сложные эфиры со значительным содержанием ненасыщенных высокомолекулярных кислот: олеиновой, линолевой, линоленовой, арахидоновой. Термин «ненасыщенные» обусловлен наличием между атомами углерода в таких молекулах не одинарных, а двойных связей. На обыденном языке можно сказать, что такие вещества не полностью насыщены водородом. Для обычных потребителей важны не структурные особенности, а свойства из них происходящие.

Важно! Все ненасыщенные жиры содержатся в основном в растениях, имеют низкие температуры плавления.

При нормальных комнатных условиях они находятся в жидком состоянии. Ненасыщенные кислоты принято подразделять на группы: олеиновая кислота и структурно похожие, линолевая кислота и ей подобные, линоленовая кислота с гомологами, арахидоновая кислота. Три последние группы имеют больше, чем одну двойную связь в молекуле. Поэтому их называют полиненасыщенными (ПНЖК). Устаревшим считают название этого комплекса кислот витамином F. Сейчас часто кислоты типа линоленовой называют омега-3, типа линолевой и арахидоновой – омега – 6 кислотами.

  • Структурная функция заключается в формировании мембран клетки.
  • Пластическая роль выполняется при образовании соединительной ткани, поверхности нервных волокон.
  • Антисклеротическая функция сводится к способности выводить излишек холестерина из полости кровеносных сосудов. Жиры и холестерин должны поступать в организм в строго определенном соотношении. Избыточный холестерин, поступающий извне, в совокупности с синтезирующимся внутри организма может провоцировать изменения сосудов.
  • ПНЖК увеличивают защитные ресурсы организма по отношению к внешним воздействиям, например, вирусов, микробов, неблагоприятных экологических факторов.
  • Для нормальной работы сердечнососудистой системы важно иметь физиологические показатели свертываемости крови. ПНЖК способствуют нормализации свертываемости, склонной с возрастом человека увеличиваться.
  • В научной литературе есть информация о способности ПНЖК расщеплять некоторые виды злокачественных клеток.
  • Из арахидоновой кислоты при участии ферментов образуются простагландины, которые относят к гормонам и гормоноподобным веществам. Простагландины обладают разнохарактерным регуляторным действием, в частности опосредованно улучшают расщепление жиров в организме.

ПНЖК незаменимы и должны содержаться в каждодневном рационе.

Источники жиров растительного и животного происхождения

Все пищевые продукты получают из животных и растений. Жиры не являются исключением. В настоящее время известно более 600 примеров различных жиров. Превалирующее (более 400) количество – это растительные вещества. 80 видов – жиры животных, более 100 видов – жиры обитателей водоемов. Источники жиров растительного и животного происхождения разнообразны, в огромной мере определены кулинарными традициями, местом проживания, климатом, уровнем дохода населения.

  • Часть жиров видна зрительно. Это сливочное и растительные масла, сало, животные жиры в составе мяса, маргарины.
  • Некоторые жиры продуктов невидимы. Они равномерно распределены в мясных, кондитерских изделиях, молочных продуктах, хлебе, рыбе, крупах, орехах.

Сколько жиров нужно в день?

Потребность каждого человека следует определять с учетом многих обстоятельств: возраста, вида деятельности, ареала проживания, типа конституции. При занятиях спортом целесообразно получить консультацию специалиста, который сможет учесть все индивидуальные особенности. Важно помнить, что животные жиры и холестерин поступают с пищей параллельно, составлять рацион с учетом всех компонентов.

Ответ на вопрос «Сколько жиров нужно в день поглощать каждому человеку?» можно представить в виде следующего перечня:

  • суммарное количество всех жиров -80-100 гр;
  • растительных масел – 25-30 гр;
  • ПНЖК – 2-6 гр;
  • холестерина – 1 гр;
  • фосфолипидов – 5 гр.

Максимальное количество жиров содержится в очищенных растительных маслах (до 99,8%), в сливочных маслах – до 92,5% жиров, в маргаринах – до 82%.

  • Нужно помнить, что один из методов получения маргаринов заключается в насыщении водородом растительных масел. Процесс называется гидрогенизацией. При этом в продукте получаются изомеры, обладающие негативным физиологическим действием – транс-изомеры. В последнее время используют иной метод получения маргарина – модификацию растительных масел. Вредных изомеров при этом не образуется. Изначально маргарин был изобретен во Франции в конце 19 века для питания бедных слоев населения и военных. По мере возможности маргарин из рациона лучше исключить.

В молочных продуктах содержание жиров может достигать 30%, в крупах – 6%, в твердых сырах – 50%.

Учитывая важность ПНЖК, следует помнить об источниках их содержания
  • Максимальное количество незаменимых кислот, прежде всего арахидоновой, находится в жире рыб. Идеальный поставщик этой кислоты – рыбья печень.
  • Много ПНЖК содержится в растительных маслах. Содержание линолевой кислоты в кукурузном масле достигает 56%, в подсолнечном – 46%.
  • Удельный вес ПНЖК не превышает 22 % в свином сале, курином, гусином жире. Оливковое масло содержит 15% незаменимых кислот.
  • В сливочном масле, большинстве животных жиров, в молочных жирах ПНЖК содержится мало, до 6%.

В перечне обязательных компонентов натуральных жиров, рекомендуемых к ежедневному питанию, находится холестерин. Нужное количество мы получаем, съедая яйца, сливочное масло, субпродукты. Злоупотреблять ими не следует.

В пище обязательно должны присутствовать фосфолипиды, относящиеся к сложным липидам. Они способствуют транспортировке продуктов расщепления жиров в организме, их эффективной утилизации, предотвращают жировое перерождение клеток печени, нормализуют обмен веществ в целом. Фосфолипиды содержатся в большом количестве в желтке яиц, печени, молочных сливках, сметане.

Избыток жиров в пище

При излишке жиров в каждодневном рационе деформируются все обменные процессы. Избыток жиров в пище приводит к преобладанию процессов накопления над реакциями расщепления. Происходит жировое перерождение клеток. Они не могут выполнять физиологические функции, что провоцирует многочисленные нарушения.

Недостаток жиров в пище

Если жиров поступает мало, нарушается энергетическая подпитка организма. Какая-то часть может синтезироваться из остатков молекул, образующихся при утилизации белков, углеводов. Незаменимые кислоты образовываться в организме не могут. Следовательно, все функции этих кислот не реализуется. Это приводит к упадку сил, понижению сопротивляемости, нарушению холестеринового обмена, гормональному дисбалансу. Абсолютный недостаток жиров в пище встречается редко. Нехватка полезных компонентов жира может проявляться при несоблюдении правил сочетания пищевых жиров.

Алексей Динулов, Элит - Тренер FPA

  • 3.3.2. Яйца и яичные продукты
  • 3.3.3. Мясо и мясные продукты
  • 3.3.4. Рыба, рыбные продукты и морепродукты
  • 3.4. Консервированные продукты
  • Классификация консервов
  • 3.5. Продукты с повышенной пищевой ценностью
  • 3.5.1. Обогащенные продукты
  • 3.5.2. Функциональные пищевые продукты
  • 3.5.3. Биологически активные добавки к пище
  • 3.6. Гигиенические подходы к формированию рационального ежедневного продуктового набора
  • Глава 4
  • 4.1. Роль питания в возникновении заболеваний
  • 4.2. Алиментарно-зависимые неинфекционные заболевания
  • 4.2.1. Питание и профилактика избыточной массы тела и ожирения
  • 4.2.2. Питание и профилактика сахарного диабета II типа
  • 4.2.3. Питание и профилактика сердечно-сосудистых заболеваний
  • 4.2.4. Питание и профилактика онкологических заболеваний
  • 4.2.5. Питание и профилактика остеопороза
  • 4.2.6. Питание и профилактика кариеса
  • 4.2.7. Пищевые аллергии и другие проявления пищевой непереносимости
  • 4.3. Заболевания, связанные с инфекционными агентами и паразитами, передающимися с пищей
  • 4.3.1. Сальмонеллезы
  • 4.3.2. Листериозы
  • 4.3,3. Коли-инфекции
  • 4.3.4. Вирусные гастроэнтериты
  • 4.4. Пищевые отравления
  • 4.4.1. Пищевые токсикоинфекции и их профилактика
  • 4.4.2. Пищевые бактериальные токсикозы
  • 4.5. Общие факторы возникновения пищевых отравлений микробной этиологии
  • 4.6. Пищевые микотоксикозы
  • 4.7. Пищевые отравления немикробной природы
  • 4.7.1. Отравления грибами
  • 4.7.2. Отравления ядовитыми растениями
  • 4.7.3. Отравления семенами сорных растений, загрязняющих злаковые культуры
  • 4.8. Отравления животными продуктами, ядовитыми по своей природе
  • 4.9. Отравления растительными продуктами, ядовитыми при определенных условиях
  • 4.10. Отравления животными продуктами, ядовитыми при определенных условиях
  • 4.11. Отравления химическими веществами (ксенобиотиками)
  • 4.11.1. Отравления тяжелыми металлами и мышьяком
  • 4.11.2. Отравления пестицидами и другими агрохимическими средствами
  • 4.11.3. Отравления компонентами агрохимикатов
  • 4.11.4. Нитрозамины
  • 4.11.5. Полихлорированные бифенилы
  • 4.11.6. Акриламид
  • 4.12. Расследование пищевых отравлений
  • Глава 5 питание различных групп населения
  • 5.1. Оценка состояния питания различных групп населения
  • 5.2. Питание населения в условиях неблагоприятного действия факторов окружающей среды
  • 5.2.1. Основы алиментарной адаптации
  • 5.2.2. Гигиенический контроль состояния и организации питания населения, проживающего в условиях радиоактивной нагрузки
  • 5.2.3. Лечебно-профилактическое питание
  • 5.3. Питание отдельных групп населения
  • 5.3.1. Питание детей
  • 5.3.2. Питание беременных и кормящих
  • Родильниц и кормящих
  • 5.3.3. Питание лиц престарелого и старческого возраста
  • 5.4. Диетическое (лечебное) питание
  • Глава 6 государственный санитарно-эпидемиологический надзор в области гигиены питания
  • 6.1. Организационные и правовые основы Госсанэпиднадзора в области гигиены питания
  • 6.2. Госсанэпиднадзор за проектированием, реконструкцией и модернизацией пищевых предприятий
  • 6.2.1. Цель и порядок Госсанэпиднадзора за проектированием пищевых объектов
  • 6.2.2. Госсанэпиднадзор за строительством пищевых объектов
  • 6.3. Госсанэпиднадзор за действующими предприятиями пищевой промышленности, общественного питания и торговли
  • 6.3.1. Общие гигиенические требования к пищевым предприятиям
  • 6.3.2. Требования к организации производственного контроля
  • 6.4. Предприятия общественного питания
  • 6.5. Организации продовольственной торговли
  • 6.6. Предприятия пищевой промышленности
  • 6.6.1. Санитарно-эпидемиологические требования к производству молока и молочных продуктов
  • Качественные показатели молока
  • 6.6.2. Санитарно-эпидемиологические требования к производству колбасных изделий
  • 6.6.3. Госсанэпиднадзор за применением пищевых добавок на предприятиях пищевой промышленности
  • 6.6.4. Хранение и транспортировка пищевых продуктов
  • 6.7. Государственное регулирование в области обеспечения качества и безопасности пищевых продуктов
  • 6.7.1. Разделение полномочий органов государственного надзора и контроля
  • 6.7.2. Стандартизация пищевых продуктов, ее гигиеническое и правовое значение
  • 6.7.3. Информация для потребителей о качестве и безопасности пищевых продуктов, материалов и изделий
  • 6.7.4. Проведение санитарно-эпидемиологической (гигиенической) экспертизы продукции в предупредительном порядке
  • 6.7.5. Проведение санитарно-эпидемиологической (гигиенической) экспертизы продукции в текущем порядке
  • 6.7.6. Экспертиза некачественных и опасных продовольственного сырья и пищевых продуктов, их использование или уничтожение
  • 6.7.7. Мониторинг качества и безопасности пищевых продуктов, здоровья населения (социально-гигиенический мониторинг)
  • 6.8. Госсанэпиднадзор за выпуском новых пищевых продуктов, материалов и изделий
  • 6.8.1. Правовая основа и порядок государственной регистрации новых пищевых продуктов
  • 6.8.3. Контроль за производством и оборотом биологически активных добавок
  • 6.9. Основные полимерные и синтетические материалы, контактирующие с пищевой продукцией
  • Глава 1. Основные этапы развития гигиены питания 12
  • Глава 2. Энергетическая, пищевая и биологическая ценность
  • Глава 3. Пищевая ценность и безопасность пищевых продуктов 157
  • Глава 4. Алиментарно-зависимые заболевания
  • Глава 5. Питание различных групп населения 332
  • Глава 6. Государственный санитарно-эпидемиологический надзор
  • Гигиена питания Учебник
  • 2.3. Жиры и их значение в питании

    Жиры (липиды) - это сложные органические соединения, со­стоящие из триглицеридов и липоидных веществ (фосфолипидов, стеринов). В состав триглицеридов входит глицерин и жирные кис­лоты, соединенные эфирными связями. Жирные кислоты явля­ются основными компонентами липидов (около 90 %), именно их структура и характеристики определяют свойства различных ви­дов пищевых жиров. По своей природе пищевые жиры могут быть животными и растительными. По химической структуре раститель­ные масла отличаются от животного жира жирно-кислотным со­ставом. Высокое содержание в растительных маслах ненасыщен­ных жирных кислот придает им жидкое агрегатное состояние и определяет их пищевую ценность. Растительные жиры (масла) находятся при обычных условиях в жидком агрегатном состоянии за исключением пальмового масла.

    Жиры играют значительную роль в жизнедеятельности орга­низма. Они являются вторыми по значимости после углеводов ис­точниками общей энергии, поступающей с пищей. При этом, обладая максимальным среди энергонесущих нутриентов калори­ческим коэффициентом (1 г жира дает организму 9 ккал), жиры даже в небольшом количестве способны придать содержащему их продукту высокую энергетическую ценность. Это обстоятельство имеет не только положительное значение, но и является предпо­сылкой формирования быстрого и относительно не связанного с большими объемами употребляемой пищи избыточного поступ­ления жира и соответственно энергии.

    Физиологическая роль жиров, однако, не сводится лишь к их энергетической функции. Пищевые жиры являются прямыми ис­точниками или предшественниками образования в организме

    Окончание табл. 2.6

    структурных компонентов биологических мембран, стероидных гормонов, кальциферолов и регуляторных клеточных соединений -эйкозаноидов (лейкотриенов, простагландинов). С пищевыми жи­рами в организм поступают также другие соединения липидной природы или липофильной структуры: фосфатиды; стерины; жи­рорастворимые витамины.

    В желудочно-кишечном тракте здорового человека при нормаль­ном уровне поступления жиров усваивается около 95 % их общего количества.

    В составе пищи жиры представлены в виде собственно жиро­вых продуктов (масло, сало и т.п.) и так называемых скрытых жиров, входящих в состав многих продуктов (табл. 2.6).

    Таблица 2.6

    Основные источники пищевых жиров

    Именно продукты, содержащие скрытый жир, являются ос­новными поставщиками пищевых жиров в организм человека.

    Жирные кислоты, входящие в состав пищевых жиров, делятся на три большие группы: насыщенные, мононенасыщенные и по­линенасыщенные (табл. 2.7).

    Таблица 2.7 Основные жирные кислоты пищи и их физиологическое значение

    Окончание табл. 2.7

    * ЛПВП - липопротеиды высокой плотности.

    Насыщенные жирные кислоты. Насыщенные жирные кислоты (НЖК), наиболее представленные в пище, делятся на короткоце-почечные (4... 10 атомов углерода - масляная, капроновая, кап-риловая, каприновая), среднецепочечные (12... 16 атомов углеро­да - лауриновая, миристиновая, пальмитиновая) и длинноце-почечные (18 атомов углерода и более - стеариновая, арахидино-вая).

    Жирные кислоты с короткой длиной углеродной цепи практи­чески не связываются с альбуминами в крови, не депонируются в тканях и не включаются в состав липопротеинов - они способны быстро окисляться с образованием энергии и кетоновых тел. Кро­ме того, они выполняют ряд биологических функций, например масляная кислота служит модулятором генетической регуляции, иммунного ответа и воспаления на уровне слизистой кишечника, а также обеспечивает клеточную дифференцировку и апоптоз. Каприновая кислота является предшественником монокаприна -соединения с антивирусной активностью. Избыточное поступле-

    ние короткоцепочечных жирных кислот может привести к разви­тию метаболического ацидоза.

    Жирные кислоты со средней и длинной углеродной цепью, напротив, включаются в состав липопротеинов, циркулируют в крови, запасаются в жировых депо и используются для синтеза других липоидных соединений в организме, например холестери­на. Кроме того, для лауриновой кислоты показана способность инактивировать ряд микроорганизмов, в частности Helicobacter pylory, а также грибки и вирусы за счет разрыва липидного слоя их биомембран.

    Лауриновая и миристиновая жирные кислоты в наибольшей степени повышают уровень холестерина в сыворотке крови и в силу этого ассоциируются с максимальным риском развития ате­росклероза.

    Пальмитиновая кислота также ведет к повышенному синтезу липопротеинов. Она является основной жирной кислотой, связы­вающей кальций (в составе жирных молочных продуктов) в неу­сваиваемый комплекс, омыляя его.

    Стеариновая кислота, так же как и короткоцепочечные жир­ные кислоты, практически не влияет на уровень холестерина в крови, более того - она способна снижать усвояемость холесте­рина в кишечнике за счет уменьшения его растворимости.

    Ненасыщенные жирные кислоты. Ненасыщенные жирные кис­лоты подразделяют по степени не насыщенности на мононенасы-шенные жирные кислоты (МНЖК) и полиненасыщенные жир­ные кислоты (ПНЖК).

    Мононенасыщенные жирные кислоты имеют одну двойную связь. Основным их представителем в рационе является олеиновая кислота (18:1 п-9 - двойная связь в положении 9-го углеродного атома). Ее основными пищевыми источниками служат оливковое и арахисовое масло, свиной жир. К МНЖК относятся также эруко-вая кислота (22:1 и-9), составляющая "/ 3 от состава жирных кислот в рапсовом масле, и пальмитолеиновая кислота (18:1 «-9), при­сутствующая в рыбьем жире.

    К ПНЖК относятся жирные кислоты, имеющие несколько двойных связей: линолевая (18:2 и-6), линоленовая (18:3 п-3), арахидоновая (20:4 п-6), эйкозапентаеновая (20:5 л-3), докоза-гексаеновая (22:6 п-У). В питании их основными источниками яв­ляются растительные масла, рыбий жир, орехи, семена, бобовые (табл. 2.8). Подсолнечное, соевое, кукурузное и хлопковое масла являются основными источниками линолевой кислоты в питании. В рапсовом, соевом, горчичном, кунжутном масле содержатся зна­чимые количества линолевой и линоленовой кислот, причем со­отношение их различно - от 2:1 в рапсовом, до 5:1 в соевом.

    В организме человека ПНЖК выполняют биологически важ­ные функции, связанные с организацией и функционированием

    биомембран и синтезом тканевых регуляторов. В клетках "P^cxo-дит! сложный процесс синтеза и взаимного превращения I линЬлевая кислота способна трансформироваться в арахидоновую с последующим включением ее в биомембраны или синтезом леи котриенов, тромбоксанов, простагландинов. Линоленовая кисло­та играет важную роль в нормальном развитии и функционирова­нии миелиновых волокон нервной системы и сетчатки глаза, вхо­дя в состав структурных фосфолипидов, а также содержится значительных количествах в сперматозоидах.

    Полинасыщенные жирные кислоты состоят из двух основ­ных семейств: производные линолевой кислоты, относящиеся к (о-6 жирным кислотам, и производные линоленовои кислоты -к со-3 жирным кислотам. Именно соотношение этих семейств при условии общей сбалансированности поступления жира ста­новится доминирующим с позиций оптимизации липидж обмена в организме за счет модификации жирно-кислотно]

    состава пищи.

    Линоленовая кислота в организме человека превращается т длинноцепочечные я-3 ПНЖК -- эйкозапентаеновую (ЭПК) и докозагексаеновую (ДГК). Эйкозапентаеновая кислота определя­ется наряду с арахидоновой в структуре биомембран в количестве поямо пропорциональном ее содержанию в пище. При высоком уровне поступления с пищей линолевой кислоты относительно линоленовои (или ЭПК) повышается общее количество арахидо­новой кислоты, включенной в биомембраны, что изменяет функциональные свойства.

    В результате использования организмом ЭПК для синтеза био­логически активных соединений образуются эйкозаноиды, физио­логические эффекты которых (например, снижение скорости тром-бообразования) могут быть прямо противоположными действ! эйкозаноидов, синтезируемых из арахидоновой кислоты. Показа­но также что в ответ на воспаление ЭПК трансформируется в эйкозаноиды, обеспечивая более тонкую по сравнению с эикоза-ноидами - производными арахидоновой кислоты, регуляцию фаз] воспаления и тонуса сосудов.

    Докозагексаеновая кислота найдена в высоких концентрациях в мембранах клеток сетчатки, которые поддерживаются на этом уровне вне зависимости от поступления со-3 ПНЖК с питанием. Она играет важную роль в регенерации зрительного пигмента ро допсина Также высокие концентрации ДГК обнаруживаются в мозге и нервной системе. Эта кислота используется нейронами для модификаций физических характеристик собственных био­мембран (таких, как текучесть) в зависимости от функцис ных потребностей.

    Последние достижения в области нутриогеномики подтверж дают участие ПНЖК семейства со-3 в регуляции экспрессии г

    нов, участвующих в обмене жиров и воспалении, за счет актива­ции факторов транскрипции.

    В последние годы делаются попытки определить адекватные уровни поступления ю-3 ПНЖК с питанием. В частности, показа­но, что для взрослого здорового человека употребление в составе пищи 1,1... 1,6 г/сут линоленовой кислоты полностью покрывает физиологические потребности в этом семействе жирных кислот.

    Основными пищевыми источниками ПНЖК семейства ю-3 являются льняное масло, грецкие орехи (табл. 2.9) и жир морских рыб (табл. 2.10).

    В настоящее время оптимальным соотношением в питании ПНЖК различных семейств считается следующее: ю-6:со-3 = = 6... 10:1.

    Таблица 2.9 Основные пищевые источники линоленовой кислоты

    Таблица 2.10 Основные пищевые источники ПНЖК семейства ю-3

    Порция, г

    Порция, обеспечивающая поступление 1 г ЭПК + ДГК, г

    Креветки

    Рыбий жир (лососевый)

    Фосфолипиды и стерины. В состав пищевых липидон входят такие значимые группы веществ, как фосфолипиды и стерины. К группе фосфолипидов относятся лецитин (фосфотидилхолин), кефалин и сфингомиелин. Фосфолипиды состоят из глицерина, этерифицированного полиненасыщенными жирными кислотами и фосфорной кислотой, которая соединена с азотистым основа­нием. Фосфолипиды, поступающие с пищей, способствуют аб­сорбции триглицеридов пищи за счет мицеллообразования. Они полностью расщепляются в клетках кишечника, поэтому для орга­низма имеет решающее значение их эндогенный синтез в печени и почках. Эндогенный синтез лецитина, в частности, лимитиро­ван поступлением с рационом ПНЖК и холина.

    Лецитин имеет большое значение в регулировании жирового обмена в печени - он относится к липотропным факторам пита­ния, препятствующим жировой инфильтрации печени за счет ак­тивизации транспорта нейтральных жиров из гепатоцитов. К пище­вым продуктам, содержащим максимальное количество предше­ственников синтеза лецитина и его самого, относятся нерафини­рованные растительные масла, яйца, морская рыба, печень, мас­ло сливочное, птица, а также фосфатидные концентраты, полу­чаемые как вторичное сырье при рафинировании масел и исполь­зуемые для обогащения пищевых продуктов.

    Стерины имеют сложное органическое строение: они представ­ляют из себя гидроароматические нейтральные спирты. В живот­ных жирах содержится холестерин, а в растительных - фитосте-рин Наибольшей биологической активностью среди фитостери-нов обладает р-ситостерин. Он способен оказывать гипохолесте-ринемическое действие, снижая абсорбцию холестерина в резуль­тате образования с последним в кишечнике неусваиваемых комп­лексов. Показано также участие ситостеринов в организации био­мембран. В растительных маслах содержится следующее количе­ство р-ситостерина, в 100 г продукта:

    Основным животным стерином является холестерин. В усло­виях сбалансированного питания его эндогенный синтез (био­синтез) из НЖК в печени составляет не менее 80 %, остальной холестерин поступает с пищей. Оптимальным уровнем его по­ступления с рационом считается 0,3 г/сут. В обмене холестерина важную роль играют витамины: аскорбиновая кислота, В 6 , В, 2 , фолиевая кислота, биофлавоноиды. Холестерин имеет ключевое

    значение в организации и нормальном функционировании био­мембран, синтезе стероидных гормонов, кальциферолов, желч­ных кислот.

    Последствия избыточного поступления жиров с пищей. Высокое поступление с пищей НЖК и собственно холестерина сопровож­дается повышением общей концентрации триглицеридов и жир­ных кислот в крови, увеличением количества циркулирующих в крови липопротеинов.

    Все это ведет к гиперлипидемии, а в дальнейшем к развитию дислипопротеинемии - базовому нарушению пищевого статуса, лежащего в основе развития атеросклероза, сахарного диабета и избыточной массы тела и ожирения. Дислипопротеинемия - это нарушение соотношения различных фракций липопротеидов и триглицеридов, циркулирующих в крови, ведущее в различных соотношениях к повышению как абсолютного, так и относитель­ного количества липопротеидов низкой и очень низкой плотно­сти (ЛПНП и ЛПОНП) и триглицеридов при одновременном снижении количества ЛПВП. Последние относятся к компонен­там, снижающим атерогенность холестерина.

    С биохимических позиций очень важно, что именно избыточ­ное поступление с пищей лауриновой, миристиновой и пальми­тиновой жирных кислот ведет к развитию гиперхолестеринемии и росту концентрации в крови наиболее атерогенных ЛПНП. Стеа­риновая кислота не участвует в построении ЛПНП и не обладает гиперхолестеринемическим эффектом.

    Одновременное с ростом ЛПНП снижение концентрации ЛПВП отмечено при чрезмерном употреблении с пищей транси­зомеров жирных кислот. В природных жирах они практически от­сутствуют, за исключением небольшого содержания в мясе и мо­локе коров и овец - у этих животных происходит частичная изо­меризация природных жирных кислот в желудке. Основная же масса трансизомеров образуется при гидрогенезации ПНЖК - разрыве двойных связей атомами водорода при производстве маргарина или так называемых мягких масел (состоящих из комбинации ра­стительных и животных жиров). Длинноцепочечные жирные кис­лоты пищи, поступающие в организм в виде трансизомеров, на­пример транс- lS : 1; не могут включаться в биосинтез биологиче­ски активных клеточных регуляторов (простагландинов и лейко-триенов), а используются лишь в качестве энергетического суб­страта.

    При поступлении жира в избыточном по сравнению с потреб­ностью организма количестве также стимулируется глюконеоге-нез. Последнее обстоятельство приводит к снижению степени ути­лизации «углеводной» глюкозы из крови, увеличению нагрузки на инсулярный аппарат и проявляется у здорового человека в ро­сте концентрации гликозилированного гемоглобина ai c .

    С гигиенических позиций, учитывая, что человек мс питается отдельными жирными кислотами, гиперлипидемия и дислипо-протеинемия, а также метаболическая гипергликемия должны рас­сматриваться как результат избыточного поступления с пищей всего объема жировых продуктов и продуктов, содержащих скрытый жир, независимо от их природы и жирно-кислотного состава.

    В природе не существует «идеального» с позиций оптимально­го питания источника жира. Жирно-кислотный состав всех ис­пользуемых растительных масел наряду со значительным содер­жанием МНЖК и ПНЖК включает в себя и существенные коли­чества среднецепочечных НЖК (10... 15 % и более).

    Морская рыба в настоящее время является единственным ис­точником жира, адекватное увеличение употребления которого взамен жира животного происхождения и растительного масла может рассматриваться как эволюционно оправданный шаг. При этом, однако, следует учитывать реальную возможность интенси­фикации прооксидантной нагрузки на организм, связанной с дей­ствием двух факторов:

      наличием относительно большого количества ПНЖК с вы­ сокой степенью ненасыщенности (пять и шесть двойных связей), обладающих в силу этого большой способностью к окислению;

      отсутствием в жире рыб основного антиоксиданта - вита­ мина Е.

    Немаловажной является проблема безопасности рыбного сы­рья в плане контроля над остаточными количествами токсичных элементов, полихлорированных бифенилов и других контаминан-тов, а также природных токсинов (это особенно актуально при возможном использовании нетрадиционных видов морских рыб и других морепродуктов).

    Еще один способ оптимизации жирно-кислотного состава пи­щевых продуктов связан с возможностями селекции и генной ин­женерии в рамках современной биотехнологии. Так, в результате обычной селекционной работы уже получены высокоолеиновое подсолнечное масло и низкоэруковое рапсовое. В настоящее время ведутся научно-практические разработки для создания на основе генной модификации масличных и зерновых культур (в первую оче­редь сои, рапса и кукурузы) с заданным составом жирных кислот.

    Учитывая возможные индивидуальные особенности обмена веществ, оптимальный уровень жира находится в интервале 20... 30 % от энергетической ценности рациона, т. е. не должен пре­вышать 35 г на 1000 ккал рациона. Для человека со средним уров­нем энергозатрат это соответствует примерно 70... 100 г жира в сутки.

    Большинство липидных соединений организма человека могут при необходимости быть синтезированы в обменных процессах из углеводов. Исключение составляют незаменимые полиненасыщен-

    ные жирные кислоты линолевая и линоленовая, входящие соот­ветственно в семейства со-6 и со-3. В этой связи нормируются как общее поступление ПНЖК: оно должно быть в интервале 3...7 % энергоценности рациона, так и потребность в линолевой кислоте: 6... 10 r/сут (это количество содержится в 1 столовой ложке расти­тельного масла). Норматив для линоленовой кислоты не установ­лен, но ее должно поступать не меньше 10% от содержания в пище линолевой кислоты.

    2-4. Углеводы и их значение в питании

    Углеводы являются основными энергонесущими макронутри-ентами в питании человека, обеспечивая 50...70 % общей энерге­тической Ценности рациона. Они способны при метаболизации образовывать макроэргические соединения, причем как в аэроб­ных, так и анаэробных условиях. В результате метаболизации 1 г углеводов ор гани3 м получает энергию, эквивалентную 4 ккал. Об­мен углевод ов тесно связан с обменом жиров и белков, что обес­печивает их взаимные превращения. При умеренном недостатке углеводов в питании депонированные жиры, а при глубоком де­фиците (менее 50 r/сут) и аминокислоты (как свободные, так и из состава Мышечных белков) вовлекаются в процесс глюконео-генеза, приводящий к получению необходимой организму энер­гии. В обратной ситуации происходит активация липонеогенеза и из лишних углеводов синтезируются жирные кислоты, отклады­вающиеся в депо.

    Наряду с основной энергетической функцией углеводы уча­ствуют в пластическом обмене. Глюкоза и ее метаболиты (сиало-вые кислоты, аминосахара) являются составными частями гли-копротеидов 5 к которым относятся большинство белковых соеди­нений крови (трансферрин, иммуноглобулины), ряд гормонов, ферментов, факторов свертывания крови. Гликопротеиды, а так­же гликолиггиды участвуют вместе с белками и липидами в струк­турной и Функциональной организации биомембран и играют при этом ведущу ю роль в процессах клеточной рецепции гормонов и других биоло гичес ки активных соединений и в межклеточном вза­имодействии, имеющем существенное значение для нормального клеточного роста, дифференцировки и иммунитета. Углеводы пищи также являются предшественниками гликогена и триглицеридов; они служат источником углеродного основания заменимых ами­нокислот, участвуют в построении коферментов, нуклеиновых кислот, аденозинтрифосфорной кислоты (АТФ) и других биоло­гически важных соединений. Углеводы оказывают антикетогенное действие, стимулируя окисление ацетилкоэнзима А, образующе­гося при окислении жирных кислот.

    Углеводы - это полиатомные альдегиде- и кетоспирты. Они образуются в растениях при фотосинтезе и поступают в организм главным образом с растительными продуктами. Однако все боль­шее значение в питании приобретают добавленные углеводы, ко­торые чаще всего представлены сахарозой (или смесями других Сахаров), получаемой промышленным способом и вводимой за­тем в пищевые рецептуры.

    Все углеводы делятся по степени полимеризации на простые и сложные. К простым относятся так называемые сахара - моноса­хариды: гексозы (глюкоза, фруктоза, галактоза), пентозы (ксило­за, рибоза, дезоксирибоза) и дисахариды (лактоза, мальтоза, га­лактоза, сахароза).

    Сложными углеводами являются олигосахариды, состоящие из нескольких (3...9) остатков моносахаридов (рафиноза, стахиоза, лактулоза, олигофруктоза) и полисахариды. Полисахариды пред­ставляют собой высокомолекулярные полимерные соединения, образованные из большого числа мономеров, в качестве которых выступают остатки моносахаридов. Полисахариды делятся на крах­мальные и некрахмальные, которые в свою очередь могут быть растворимыми и нерастворимыми.

    Моно- и дисахариды. Они обладают сладким вкусом и поэтому называются сахарами. Степень сладости различных Сахаров неоди­накова. Если сладость сахарозы принять за 100 %, то сладость дру­гих Сахаров составит, %:

    Фруктозы 173

    Глюкозы 81

    Мальтозы и галактозы 32

    Рафинозы 23

    Лактозы 16

    Полисахариды сладким вкусом не обладают.

    Природными источниками простых углеводов являются фрук­ты, ягоды, овощи, плоды, в некоторых из которых содержание Сахаров достигает 4... 17 % (табл. 2.11).

    Глюкоза (альдегидоспирт) является основным структурным мо­номером всех важнейших полисахаридов - крахмала, гликогена, целлюлозы. Она поступает с питанием изолированно в составе ягод, фруктов, плодов и овощей, а также в качестве компонента наиболее распространенных дисахаридов: сахарозы, мальтозы, лактозы. Глю­коза быстро и практически в полном объеме усваивается в желудоч­но-кишечном тракте, поступает в кровь и разносится ко всем орга­нам и тканям для окисления, сопряженного с образованием энер­гии. Уровень глюкозы в крови наряду с уровнем ряда аминокислот является сигналом для соответствующих структур головного мозга, моделирующих аппетит и пищевое поведение человека. Избыток глю­козы быстро превращается в депонирующиеся триглицериды.

    Таблица 2.11

    Фруктоза в отличие от глюкозы является кетоспиртом и обла­дает другой динамикой распределения и метаболизации в орга­низме. Она почти в два раза медленнее всасывается в кишечнике и в большей степени задерживается в печени. Фруктоза переходит в глюкозу в клеточных обменных процессах, но увеличение кон­центрации глюкозы в крови происходит при этом плавно и посте­пенно, с меньшим напряжением инсулярного аппарата. В то же время фруктоза по более короткому метаболическому пути по срав-

    нению с глюкозой вовлекается в процессы липонеогенеза и спо­собствует отложению жира в депо. Этим объясняются ряд новых фактов, полученных при изучении положительной динамики массы тела у лиц, регулярно употребляющих продукты, обогащенные пищевыми компонентами, содержащими фруктозу (мальтодекст-риновые кукурузные сиропы). Чрезмерное поступление фруктозы приводит к увеличению концентрации в крови С-пептида, харак­теризующего степень инсулинрезистентности при развитии сахар­ного диабета второго типа. Фруктоза содержится в пищевых про­дуктах как в свободном виде в меде и фруктах, так и в виде фрук-тозного полисахарида инулина в составе топинамбура (земляной груши), цикория и артишоков.

    Галактоза поступает в организм в составе молочного сахара (лактозы). В свободном виде она может находиться в некоторых ферментированных молочных продуктах, таких как йогурты. Га­лактоза превращается в печени в глюкозу.

    Основным промышленно производимым дисахаридом являет­ся сахароза, или столовый сахар. Сырьем для его производства слу­жат сахарная свекла (14...25% сахара) и сахарный тростник (10... 15% сахара). Натуральными источниками сахарозы в пита­нии являются дыни, арбузы, некоторые овощи, ягоды и фрукты. Сахароза легко усваивается и быстро распадается на глюкозу и фруктозу, которые затем вовлекаются в присущие им обменные

    процессы.

    Именно использование сахарозы в качестве существенного ком­понента многих продуктов (кондитерских изделий, конфет, дже­мов, десертов, мороженого, прохладительных напитков) приве­ло в настоящее время к увеличению доли моно- и дисахаридов в общем объеме поступающих углеводов в развитых странах до 50 % и выше (при рекомендуемых 20 %). В результате на фоне снижа­ющихся энергозатрат увеличивается алиментарная нагрузка на ин-сулярный аппарат, повышается уровень инсулина в крови, ин­тенсифицируется отложение жира в депо, нарушается липидный профиль крови. Все это способствует увеличению риска развития сахарного диабета, ожирения, атеросклероза и многочисленных заболеваний, базирующихся на перечисленных патологических

    состояниях.

    Лактоза является основным углеводом молока и молочных продуктов (состоит из молекул галактозы и глюкозы) и имеет большое значение в качестве источника углеводов для питания детей. У взрослых его доля в углеводном составе рациона значи­тельно снижается за счет широкого использования других источ­ников. К тому же у взрослых, а иногда и детей снижена актив­ность фермента лактазы, расщепляющего молочный сахар. Послед­ствиями непереносимости цельного молока и продуктов, содер­жащих его, являются диспептические расстройства. Использова-

    ние в питании кисло-мол очных продуктов (кефира, йогурта, сме­таны), а также творога и сыра, как правило, не вызывают подоб­ной клинической картины. Непереносимость молока отмечается у 30...35 % взрослого населения Европы, в то время как у жителей Африки - более чем у 75 %.

    Мальтоза, или солодовый сахар, в свободном виде встречается в меде, солоде, пиве, патоке и продуктах, изготавливаемых с до­бавлением патоки (кондитерские и хлебобулочные изделия). В орга­низме мальтоза представляет собой промежуточный продукт и обра­зуется в результате расщепления в желудочно-кишечном тракте полисахаридов. Затем онадиссимилируетдо двух молекул глюкозы. В некоторых фруктах (яблоках, грушах, персиках) и ряде ово­щей встречается спиртовая форма Сахаров - сорбит, являющий­ся восстановленной формой глюкозы. Он способен поддерживать уровень глюкозы в крови, не вызывая чувства голода и не напря­гая инсулярный аппарат. Сорбит и другие многоатомные спирты, такие как ксилит, маннит или их смеси, обладая сладким вкусом (30...40 % сладости глюкозы), используются для производства ши­рокого ассортимента пищевых продуктов, в первую очередь для питания больных сахарным диабетом, а также жевательной ре­зинки. К недостаткам многоатомных спиртов относится их влия­ние на кишечник, выражающееся в послабляющем эффекте и повышенном газообразовании.

    Олигосахариды. Олигосахариды, к которым относятся рафино-за, стахиоза, вербаскоза, в основном содержатся в бобовых и про­дуктах их технологической переработки, например в соевой муке, а также в незначительных количествах во многих овощах. Фрукто-олигосахариды встречаются в зерновых (пшенице, ржи), овощах (луке, чесноке, артишоках, спарже, ревене, цикории), а также в бананах и меде. К группе олигосахаридов также относятся мальто-декстрины, являющиеся основными компонентами промышлен-но производимых из полисахаридного сырья сиропов, паток. Од­ним из представителей олигосахаридов является лактулоза, обра­зующаяся из лактозы в процессе тепловой обработки молока, на­пример при выработке топленого и стерилизованного молока.

    Олигосахариды практически не расщепляются в тонком ки­шечнике человека из-за отсутствия соответствующих ферментов. По этой причине они обладают свойствами пищевых волокон. Некоторые Олигосахариды играют существенную роль в жизнедея­тельности нормальной микрофлоры толстого кишечника, что позволяет отнести их к пребиотикам - веществам, частично фер­ментирующимся некоторыми кишечными микроорганизмами и обеспечивающим поддержание нормального микробиоценоза ки­шечника.

    Полисахариды. Основным усваиваемым полисахаридом явля­ется крахмал - пищевая основа зерновых, бобовых и картофеля. 56

    Он представляет из себя сложный полимер (в качестве мономера, к котором находится глюкоза), состоящий из двух фракций: ами­лозы -- линейного полимера (200...2000 мономеров) и амило-пектина - разветвленного полимера (10000... 1 000000 мономе­ров). Именно соотношение этих двух фракций в различных сырь­евых источниках крахмала и определяет его различные физико-химические и технологические характеристики, в частности рас­творимость в воде при разной температуре.

    Для облегчения усвоения крахмала организмом продукт, со­держащий его, должен быть подвергнут тепловой обработке. При этом образуется крахмальный клейстер в явной форме, например кисель, или скрытом виде в составе пищевой композиции: каше, хлебе, макаронах, блюд из бобовых. Крахмальные полисахариды, поступившие с пищей в организм, подвергаются последователь­ной, начиная с ротовой полости, ферментации до мальтодекст-ринов, мальтозы и глюкозы с последующим практически пол­ным усвоением. Крахмал диссимилируется организмом достаточ­но длительный период и в отличие от моно- и дисахаридов не обеспечивает столь быстрое и выраженное повышение уровня глю­козы в крови. Однако основные пищевые источники крахмальных полисахаридов (хлеб, крупы, макароны, бобовые, картофель) поставляют в организм значительные количества аминокислот, витаминов и минеральных веществ и минимум жира. В то же время сахар не только не содержит незаменимых нутриентов, но и тре­бует для своей метаболизации в организме затрат дефицитных витаминов и других микронутриентов. Большинство сладких кон­дитерских изделий одновременно являются и источниками скры­того жира (торты, пирожные, вафли, печенье сдобное, шоко­лад).

    В процессе тепловой обработки (выпечки, отваривания) и при охлаждении может образовываться так называемый резистентный (устойчивый к перевариванию) крахмал, количество которого зависит как от степени тепловой нагрузки, так от содержания в крахмале амилозы. Устойчивые к перевариванию крахмалы содер­жатся и в натуральных продуктах - их максимальное количество найдено в бобовых и картофеле. Вместе с олигосахаридами и не­крахмальными полисахаридами они составляют углеводную груп­пу пищевых волокон.

    В последние годы увеличился объем используемых в пищевой промышленности так называемых модифицированных крахмалов. Они отличаются от природных форм хорошей растворимостью в воде (независимо от температуры). Это достигается их предваритель­ной производственной ферментацией с образованием в конечной композиции различных декстринов. Модифицированные крахма­лы используют в виде пищевых добавок для достижения ряда тех­нологических целей: придания продукту заданного внешнего вида

    и стабильной формы, достижения необходимой вязкости и одно­родности.

    Вторым перевариваемым полисахаридом является гликоген. Его пищевое значение невелико --с рационом поступает не более 10... 15 г гликогена в составе печени, мяса и рыбы. При созрева­нии мяса гликоген превращается в молочную кислоту.

    У человека излишки глюкозы в первую очередь (до метаболиче­ской трансформации в жир) превращаются именно в гликоген - единственный резервный углевод животных тканей. В организме человека общее содержание гликогена составляет около 500 г ("/ 3 в печени, остальное количество в мышцах) - это суточный за­пас углеводов, используемый при их глубоком дефиците в пита­нии. Длительный дефицит гликогена в печени ведет к дисфунк­ции гепатоцитов и ее жировой инфильтрации.

    Величина потребности в углеводах для человека определяет­ся их ведущей ролью в обеспечении организма энергией и не­желательностью синтеза глюкозы из жиров (а тем более из бел­ков) и находится в прямой зависимости от энергозатрат. Учи­тывая возможные индивидуальные особенности обмена веществ и уровень поступления жира, оптимальный уровень углеводов в питании находится в интервале 55...65 % энергоценности рацио­на, т.е. в среднем составляет 150 г на 1000 ккал рациона. Для человека со средним уровнем энергозатрат это соответствует при­мерно 300...400 г углеводов в сутки.

    Потребность человека с энергозатратами 2 800 ккал в углево­дах и их оптимальная групповая сбалансированность может быть в основном обеспечена:

    1) ежедневным потреблением".

      360 г хлеба и хлебобулочных изделий;

      300 г картофеля;

      400 г овощей, зелени, бобовых;

      200 г фруктов, ягод;

      не более 60 г сахара (чем меньше - тем лучше);

    2) еженедельным потреблением:

      175 г круп;

      140 г макаронных изделий.

    Оценку адекватности обеспечения реальной потребности в уг­леводах взрослого человека необходимо проводить с использова­нием индикаторных параметров пищевого статуса: индекса массы тела и уровня гликозилированного гемоглобина А 1с, повышение концентрации которого свидетельствует о длительном чрезмер­ном употреблении Сахаров, в том числе и у здорового человека.

    С позиций оценки возможного влияния углеводного компо­нента рациона на параметры пищевого статуса, характеризующие углеводный обмен, целесообразно использовать данные о так на­зываемом гликемическом индексе (ГИ) - процентном показателе,

    отражающем разницу в изменении концентрации глюкозы в сы­воротке крови в течение 2 ч после употребления какого-либо про­дукта по сравнению с аналогичным результатом после употребле­ния тест-продукта. В качестве тест-продукта обычно используют глюкозу (50 г) или пшеничный хлеб (порция, содержащая 50 г крахмала).

    Гликемический индекс продуктов (табл. 2.12) зависит от мно­гих пищевых факторов:

    Химической структуры и формы углеводов, входящих в со­став продукта;

    Таблица 2.12

    Порция, включающая в себя 50 г углеводов.


    Гликемический индекс некоторых продуктов

      наличия в пищевом продукте белков, жиров, непереваривае­ мых компонентов, органических кислот;

      способа кулинарной, в том числе тепловой, обработки про­ дукта.

    Сложные углеводы могут иметь ГИ, приближающийся к уров­ню простых углеводов и даже превосходящий его для некоторых моно- и дисахаров. Уровень гликемии после употребления крах-малсодержащих продуктов зависит в том числе от соотношения в крахмале амилозы и амилопектина: скорость переваривания и ус­вояемости амилопектина меньше, чем амилозы.

    Информация о величине ГИ продукта имеет значение не толь­ко для больных сахарным диабетом, но и полезна любому потре­бителю с позиций профилактики чрезмерной алиментарной гли­кемии. Данную информацию целесообразно выносить на этикетку продуктов, содержащих углеводы.

    Некрахмальные полисахариды. Некрахмальные полисахариды (НПС) -- это широко распространенные вещества растительной природы. В их химический состав входят смеси различных полиса­харидов, содержащие пентозы (ксилоза и арабиноза), гексозы (рамноза, манноза, глюкоза, галактоза) и уроновые кислоты. Ряд из них содержатся в клеточных оболочках, играя структурную роль, другие находятся в форме камедей и слизей внутри и на поверх­ности растительных клеток.

    Согласно классификации НПС делятся на несколько групп: целлюлоза, гемицеллюлоза, пектины, р-гликаны и гидроколлои­ды (камеди, слизи).

    Некрахмальные полисахариды не перевариваются в тонком кишечнике человека в связи с отсутствием соответствующих фер­ментных систем, по этой причине ранее они назывались «балласт­ными веществами», признаваясь лишними компонентами пищи, удаление которых в процессе технологической переработки про­довольственного сырья считалось вполне допустимым. Это оши­бочное мнение наряду с другими чисто технологическими причи­нами способствовало появлению широкого ассортимента рафи­нированных (очищенных от НПС) пищевых продуктов, име­ющих значительно более низкие показатели пищевой ценности. В настоящее время не вызывает сомнений, что НПС играют зна­чительную роль в жизнеобеспечении организма как на функцио­нальном, так и на метаболическом уровнях, что позволяет отнес­ти их к группе незаменимых факторов питания человека.

    У животных встречается в виде единственного исключения только одна группа неперевариваемых углеводных полимеров, состоящих из ацетилированного гликозамина, - хитин и хито-зан, пищевыми источниками которых является панцирь крабов и лобстеров (может использоваться в качестве пищевого обога­тителя).

    Аналогичными свойствами обладает также лигнин - водоне-растворимое соединение неуглеводной (полифенольной) приро­ды, входящее в состав клеточных оболочек многих растений и семян.

    Пищевые волокна. Все перечисленные выше НПС, лигнин и хитин в совокупности с олигосахаридами и неперевариваемым крахмалом в настоящее время объединяются в одну общую разно­родную группу пищевых веществ, названных пищевыми волокна­ми (ПВ). Таким образом, пищевые волокна - это съедобные ком­поненты пищи, главным образом растительной природы, устой­чивые к перевариванию и усвоению в тонком кишечнике, но под­вергающиеся полной или частичной ферментации в толстом ки­шечнике.

    Хорошими источниками ПВ в питании являются бобовые, зер­новые, орехи, а также фрукты, овощи и ягоды (табл. 2.13). Чем выше степень очистки (рафинирования) продовольственного сы­рья при технологической переработке, тем меньше ПВ (а также и многих михронутриентов) остается в конечном продукте. Этот факт наглядно иллюстрируется на примере продуктов перера­ботки зерна: в пшенице содержится 2,5 г ПВ (на 100 г); в пше­ничной муке, г: обойной - 1,9, 2-го сорта - 0,6, 1-го сорта - 0,2, высшего сорта - 0,1; в хлебе (в зависимости от сорта муки 0,1... 1,7); в овсе - ю,7 г; в овсяной крупе - 2,8, в овсяных хлопьях - 1,3.

    Таблица 2.13

    Анастасия Ливанова
    Проект «Почему опадают листья с деревьев осенью?»

    Введение

    Осень - очень красивое время года. Все вокруг окрашено в сотни оттенков: от светлых золотистых, до насыщенных багряных. Под ногами шуршат опавшие листья, в которых так приятно валяться детям. Школьники собирают гербарии для творческих работ. Взрослые устраивают фотосессии на фоне разноцветной листвы.

    Цели:

    1. Узнать почему листья осенью опадают легче?

    Задачи:

    1. Выяснить значение листа в жизни растения.

    2. Понаблюдать за изменениями листьев осенью.

    3. Установить причины листопада.

    4. Изготовить гербарий из осенних листьев.

    Причины листопада

    Существует целый комплекс причин, обуславливающих сброс листьев деревьями:

    Избавление от ненужного балласта.

    Все мы хоть раз в жизни слышали о том, что листья называют легкими растений. В летний период в листьях под воздействием света протекает процесс фотосинтеза, когда благодаря зеленому пигменту, хлорофиллу, углекислый газ, вода и минеральные соли превращаются в кислород и органические вещества. Из-за этого к осени в листьях скапливается много побочных продуктов фотосинтеза и ненужных веществ. К тому же под воздействием низких температур прекращается выработка хлорофилла и листья перестают выполнять свою функцию, а затем, став ненужными, опадают.

    Осенний листопад - это процесс, который не зависит напрямую изменений в окружающей среде. Он заложен природой в единый биологический цикл деревьев. На это ушло не одно столетие. Именно поэтому даже в том случае, если мы перенесем растение в благоприятные условия, к примеру, в оранжерею, оно не перестанет сбрасывать листья.

    Как листья отделяются от дерева?

    В летний период листья очень прочно соединяются с ветвями, на которых растут. Но постепенно в месте прикрепления листа у основания черешка происходит образование пробкового слоя, который отделяет черешок от ветки. Именно поэтому листья осенью гораздо легче оторвать от веток, чем летом или весной. По окончании образования разделительного слоя листья теряют свою связь с деревом. Дальше все просто. Часть листьев облетает под воздействием ветра и прочих внешних факторов, остальные же падают сами благодаря работе силы тяжести.

    Что происходит после опадения листьев?

    Избавившиеся от листьев растения погружаются в состояние анабиоза, которое можно сравнить с очень глубоким сном. Деревья и кустарники перестают расти и просто отдыхают в ожидании прихода весны, экономно расходуя накопленные летом запасы питательных веществ.

    Но даже опавшие листья продолжают приносить пользу. Во-первых, они не дают земле и корням промерзнуть в зимние холода. А во-вторых, листья постепенно превращаются в перегной, который обогащает почву ценными для растений веществами.

    Для чего нужен листопад?

    Для чего растения избавляются от органов, которые обеспечивают им ежедневное питание? Ведь именно в зеленых листьях происходит фотосинтез - превращение углекислого газа в питательные вещества под воздействием солнца.

    Причины листопада могут быть различными:

    Ежегодное изменение погоды, наступление холодов или засухи;

    Внутренний цикл развития дерева, сопровождающийся ростом, обновлением или одеревенением веток;

    Поражение вирусными заболеваниями, вредителями;

    Плохая экология;

    Повреждение корней или недостаток в почве питательных веществ.

    Если причина листопада кроется в плохих внешних условиях, дерево может приостановить рост и даже погибнуть. Но опадание листьев, вызванное естественными природными факторами, полезно и необходимо растениям.

    План реализации:

    1)собрать группу из детского сада на прогулку по лесу или парку.

    2) провести опрос на знание видов растений.

    3) охарактеризовать их.

    4)Индивидуальная работа с детьми по развитию

    движений, физических качеств.

    5)Подвижные игры: 2-3 игры большой подвижности, 2-3 игры малой и средней подвижности, игры на выбор детей, дидактические игры.

    6)собрать гербарий из листьев которые наблюдали.

    Методические работы:

    a. подготовка списка видов растений в нашей местности

    b. разработка подвижных игр на природе

    c. сбор листьев разных цветов и оттенков для гербария

    Практическая часть:

    С помощью разных подвижных и развивающих моторику игр, дети учатся различать листья и природные предметы на ощупь, на зрительную запоминание.

    Предложим несколько вариантов игр для детей:

    1. Аппликация

    2. Дорисуй-ка

    3. Гербарий

    1. Сбор предлагаемых материалов для изготовления аппликации:

    Цветная бумага (картон)

    Ножницы

    Сушеные листья

    2. Сбор материалов для реализации игры «Дорисуй-ка»:

    Белая бумага (твердая)

    Карандаш простой

    Цветные карандаши

    Сушеные листья

    Фломастеры

    3. Сбор предлагаемых материалов для создания «Гербария»:

    Сухие листья

    Ножницы

    Природные материалы для украшения

    Вывод:

    Подводя итоги работы, можно сделать вывод, что цель, которую поставлена – достигнута. Мы изучили, почему осенью листья с деревьев так легко опадают, и сравнили обоснованные и научно доказанные выводы с результатами исследования по данной теме.

    Гипотезы , которые выдвинуты в начале работы, не подтвердились. Листья опадают с деревьев не потому, что им холодно и они постарели.

    Настоящие причины листопада в следующем:

    1)Недостаток солнечного света

    Хлорофилл разрушается, в листе не производится новый строительный материал, связи между клетками в черешке разрушаются. Образуется пробковый слой. Лист держится только на тонких трубочках.

    2) Недостаток влаги

    Листья дерева в своей совокупности имеют очень большую площадь, и со всей этой площади интенсивно испаряется вода. Летом дерево способно возместить потери влаги, извлекая воду из почвы. Но с похолоданием извлечение холодной воды из почвы сильно уменьшается. Это мешает правильной работе листа и жизнедеятельности дерева. Если бы дерево не сбросило листву, ему бы грозила засуха.

    3) Избыток минеральных веществ

    Лист утяжеляется и едва держится за ветку, ветер легко срывает его.

    Во время листопада дерево избавляется от избытка минеральных солей, которые могли бы его отравить.

    Приложения

    А давайте все вместе посмотрим на деревья! Их здесь очень много, и они все такие разные.

    Как называется это дерево? (Воспитатель показывает детям на дерево.)

    А это дерево, наверное, знают все, как оно называется?

    Да, правильно. А кто пробовал березовый сок, правда он напоминает сладкую водичку…

    Дети, а вы хотите поиграть в игру?

    Я буду называть дерево, а вы будете к нему подбегать. (Если дети правильно выбирают деревья, тогда они запомнили их названия, а если нет, тогда воспитатель повторно рассказывает, где какое дерево.)

    Дети играют.

    Молодцы, никто ни разу не ошибся, теперь я знаю, что вы все хорошо выучили названия деревьев.

    А сейчас давайте возьмем корзинки и насобираем листочки, которые попадали с деревьев, позднее мы сделаем из них очень красивую аппликацию.

    Дети, а с чего состоят наши деревья?

    Ствол, ветви, корень, листья (цветы, стебли)

    А теперь давайте посмотрим, какие же птички сидят на наших деревьях?

    Чёрные вороны, воробьи, синицы.

    А кто расскажет мне, как выглядит ворона?

    Она черная, большая, большие глаза, клюв.

    А кто расскажет, как выглядит воробей, синичка?

    Загадки про листья:

    Летом вырастают,

    Осенью опадают.

    Ответ: Листья

    Летают, кружатся,

    На землю ложатся,

    С земли не встают

    И тут пропадут.

    Ответ: Листья

    Рыжий Егорка

    Упал на озерко,

    Сам не утонул

    И воды не всколыхнул.

    Ответ: Осенний лист

    Осень в гости к нам пришла

    И с собою принесла.

    Что? Скажите наугад!

    Ну, конечно.

    Ответ: Листопад

    Сидит – зеленеет,

    Падает – желтеет,

    Лежит – чернеет.

    Ответ: Лист

    Он с весны висел на ветке,

    Был зеленый - пожелтел,

    Только дунул слабый ветер,

    Он уже и полетел.

    Ответ: Лист

    Она под осень умирает,

    И вновь весною оживает,

    Коровам без нее беда,

    Она их главная еда.

    Растут - зеленеют,

    Упадут - пожелтеют,

    Полежат - почернеют.

    Ответ: Листья

    Падают с ветки золотые монетки.

    Ответ: Листья

    С ветки в речку упадет,

    И не тонет,

    А плывет.

    Вы знаете, почему опадают листья? Причем у одних растений это происходит периодически, а у других связано с окончанием жизненного цикла. Из нашей статьи вы узнаете о причинах и значении этого природного явления.

    Когда и почему опадают листья с деревьев?

    Традиционно принято считать, что это явление происходит только осенью. Так ли это? На самом деле листопад только в некоторых случаях является реакцией растений на климатические изменения. Это понижение температуры воздуха, засуха, уменьшение продолжительности светового дня.

    А почему опадают листья в другое время года? Причинами этого явления могут быть заболевания, вызванные действием химических веществ, вредных насекомых, недостаточным количеством удобрений в почве.

    Листопад происходит у всех растений без исключения. Даже вечнозеленые сосны и ели меняют хвою. Только происходит это постепенно в течение продолжительного периода.

    Золотая осень

    С наступлением холодного времени года большинство деревьев сбрасывают листву. Это явление, прежде всего, является защитой от излишней потери влаги. В растение она проникает из почвы. Зимой вода замерзает. Поэтому процесс ее поступления внутрь растительного организма становится невозможным.

    В таких условиях процесс испарения воды с поверхности листьев не прекращается. Хотя интенсивность его снижается. Вот почему осенью листья опадают, защищая растения от высыхания.

    В это время года природа особенно яркая. Это связано с тем, что листья изменяют свой зеленый наряд на более пестрый. Он может быть желтым, красным, пурпурным, оранжевым. Изменение цвета объясняется взаимопревращением пластид. В этих постоянных клеточных структурах находятся красящие вещества, которые называются пигменты. Пластиды хлоропласты содержат хлорофилл. Этот пигмент придает зеленый цвет листьев и стеблей молодых растений.

    Осенью хлоропласты превращаются в пластиды другого типа. Они называются хромопласты, содержащие антоцианы и каротиноиды. Эти вещества обуславливают яркое осеннее одеяние растений.

    Наверняка вы обращали внимание, что цвет листвы зависит от вида. Так, листья клена и тополя приобретают желтый цвет, кизила - фиолетовый, дуба - красно-коричневый. У некоторых растений процесс взаимопревращения пластид выражен не ярко. Поэтому их опадающая листва практически не меняет свет.

    Зимой и летом...

    Почему желтеют и опадают листья цветковых растений, а у представителей отдела голосеменных этого не происходит? В частности, речь идет о классе хвойные. Дело в том, что у них есть целый ряд приспособлений для сохранения влаги.

    Прежде всего, это форма и размер листьев, которые называются хвоинки. Они имеют маленькую площадь, что сокращает интенсивность транспирации. Устьица, через которые происходит газообмен и испарение воды, углублены в толщу листа. Кроме того, на зиму запечатываются воском. Это обеспечивает практически полное прекращение потери влаги.

    В течение благоприятного периода в хвое накапливается достаточное количество углеводов и воды, чтобы пережить зиму. А масла обеспечивают защиту от низких температур.

    Почему мы не замечаем, как хвойные меняют листву? Потому что происходит это постепенно. При этом растение не растет голым несколько месяцев. А молодые хвоинки вырастают сразу.

    Механизм явления

    Что является для растений сигналом к началу листопада? Это сокращение продолжительности светового дня. Снижение температуры воздуха и дождливая погода лишь сопутствуют основной причине.

    Листья меняют цвет, что вызывает процесс перекрывания сосудов. У основания черешка формируется слой клеток. Он препятствует нисходящему току воды с растворенными в ней сахарами. В результате образуются пигменты антоцианы, изменяющие цвет листовой пластинки. С течением времени основание черешка в месте прикрепления к побегу пересыхает. Начинается листопад.

    Значение листопада

    Есть еще одна причина, объясняющая, почему опадают листья. С одной стороны, если этого бы не происходило, растения бы просто засыхали. Но в листьях тоже находится вода. Если она замерзнет, это неминуемо повлечет гибель растений.

    Второй причиной сбрасывания листьев является защита от механических повреждений в зимний период от массы прилипшего снега. Стволы деревьев с мощной кроной просто бы ломались под его давлением.

    Вместе с листьями растения избавляются от массы вредных веществ, которые накопились в них за вегетационный период. Поэтому это явление наблюдается у всех растений без исключения. Даже в тропическом поясе, где не бывает осени и зимы, наблюдается листопад. Только происходит он на протяжении всего года. Поэтому практически не заметен.

    Итак, в нашей статье мы разобрались, почему опадают листья. Этот процесс является защитной реакцией растений от излишней потери влаги, механических повреждений от налипания снега и оледенения, а также механизмом очищения от вредных веществ.