В квартире

Акт центровки насосов форма. Центровка валов для насаживания муфт

Акт центровки насосов форма. Центровка валов для насаживания муфт

Центровка по образующей муфты с помощью линейки

Применяется при грубом центрировании валов. Линейку прикладывают к образующей первой полумуфты по оси вала в вертикальной и горизонтальной плоскостях. Визуально определяют радиальный зазор и угол наклона между линейкой и 2-0й полумуфтой, определяют величины сдвига опор

Точность такого способа не больше 500 мкм с учетом погрешности изготовления и дефектов поверхности до 1000 мкм.

Центровка по полумуфтам при помощи щупов

На одной из полумуфт жестко крепится измерительная стойка, нависающая над 2-ой полумуфтой. Измерение зазоров производят в 4-х положениях поворотом валов на угол 0º, 90º, 180º, 270º. При каждом положении замеряют радиальный и угловой зазоры (Р и а). В случае правильного выполнения зазоров выполняются равенства P 1 +P 3 = P 2 + P 4 ; a 1 + a 3 = a 2 + a 4 . Радиальный зазор – между щупом и поверхностью полумуфты; угловой – между торцами полумуфт возле точки измерения Р.

Центровка валов способом «обхода одной точкой»

В тех случаях, когда нет возможности поворота одного из валов при центровке, зазор между полумуфтами и величину радиального смещения измеряют при повороте только одного вала. При повороте одного из валов, с помощью набора щупов, контролируется зазор Р между штифтом и образующей полумуфты в радиальном направлении. Угловое смещение определяется как разность зазоров между полумуфтами, в вертикальной и горизонтальной плоскостях. Для того чтобы измерения проводились в одних и тех же точках на неподвижной полумуфте делают риски, относительно которых и производят измерения.Точность такой центровки очень низкая (300..500 мкм).

Центровка с помощью радиально-осевых скоб

Центровка при помощи одной или двух пар скоб (рисунок 5)

Данный способ центровки имеет высокую точность по сравнению с рассмотренными и не зависит от качества изготовления полумуфт. Для измерения зазоров используют штангенциркули, щупы и микрометры. Приспособление с одной парой применяют для агрегатов без осевого перемещения валов. Для компенсации осевых смещений при повороте используют две пары скоб. Угловая расцентровка на таких приспособлениях рассчитывается как разность двух пар (величин зазоров) скоб, измеренных при 180 0 и 0 0 .


Для приспособления с одной парой скоб расчет аналогичен случаю центровки при помощи щупов. Точность достигает 20-30 мкм, но данный способ требует больших затрат времени 12-16 часов) для 2-х - 4-х человек.

Центровка насосного агрегата с помощью индикаторов часового типа.

Перед соединением роторы должны быть расположены так, чтобы их упругие линии явились продолжением друг друга без смещения и излома (рисунок 1). Нарушение центровки влечет за собой повышенную вибрацию установки.

Центровочное приспособление включает в себя 3 индикатора часового типа. Индикатором Р измеряют радиальное расцентрирование, индикаторами А и В – осевое центрирование. Пределы измерения приборов от 0 до 10мм.После предварительной центровки устанавливают и настраивают приспособление. Показания фиксаторов в исходном положении фиксируют А 0 , В 0 и Р 0 . После поворота муфты на 180 0 снова снимают показания индикаторов А 1 , В 1 и Р 1 .

Коэффициент радиального смещения определяют по формуле:

Коэффициент радиального смещения находят по формуле:

Для определения коэффициентов радиальных и осевых смещений находят величины коррекции для передней и задней опор: где D – расстояние между точками опор индикаторов А и В. При полож значении коррекции опору приподнять, а при отриц – опустить соответс на вел V и H. Центровочные приспособления с лазерными излучателями используютсядля центровки оборудования с высокими требованиями на соосность валов. Отклонения от соосности измеряются при этом с точностью 1 мкм. Достоинства : -возможность компенсации влияния внешней вибрации; -для контроля соосности достаточно поворота валов на 60°;-высокая точность измерений. Недостатки отсутствие учета осевых смещений

Для нормальной работы подшипников и самой электрической машины соединяемые валы электрической машины и приводного механизма должны составлять единый вал. Устройствами, служащими для соединения валов между собой и передачи вращающего момента, являются муфты. Типы муфт по характеру соединяемых валов и компенсационной способности приведены в табл. 1 и на рис. 5.

Рис. 1. .
а - жесткая фланцевая; б - втулочно-пальцевая; в - упругая с резиновыми пластинами; г -зубчатая; 5 -переменной жесткости (пружинная); 1, 2 - точки измерения радиального и торцевого биения.

Жесткие фланцевые муфты для соединения одноопорного вала электрической машины снабжены центрирующим выступом, диаметр которого должен быть меньше диаметра заточки второй полумуфты на 0,03-0,08 мм. Допустимая окружная скорость стальных муфт - до 70 м/с, чугунных - 30 м/с, материал для изготовления муфт: сталь 35 или чугун СЧ21-40.

Зубчатые муфты состоят из двух зубчатых втулок и двух зубчатых обойм, соединяемых вместе, или одной целой обоймы. Муфты должны работать в масляной ванне. Между муфтой и машиной должен быть зазор, обеспечивающий возможность смещения обоймы полумуфты для контроля зазора между валами. Перекос оси каждой втулки относительно оси обоймы, вызываемой несоосностью соединяемых валов, допускается на угол не более 0°30".
Втулочно-пальцевые муфты изготовляются из чугуна СЧ21-40 или из СтЗ, пальцы из стали 45 и втулки из резины с пределом прочности на разрыв не менее 80 кгс/см2 (8 МПа) и относительным удлинением не менее 300% или из кожи. Зазор в пальцах не должен превышать 0,3-0,6 мм.
Пружинные муфты. Пружины уложены в специальные пазы, расположенные параллельно оси. Пружины закрыты разъемным кожухом, полость которого заполнена консистентной смазкой.
Шпонки. Для передачи вращающего момента от вала к муфте служат шпоночные соединения. Применяются шпонки следующих типов:
1) призматические, поперечное сечение прямоугольное, противоположные грани параллельны; создают ненапряженное соединение, передают только вращающий момент;
2) сегментные, создают ненапряженное соединение, передают небольшие вращающие моменты, применяются для валов диаметром до 58 мм;
3) клиновые, передающие вращающий момент при наличии некоторого осевого усилия;
4) тангенциальные, создают напряженное соединение, передают большие крутящие моменты и осевые усилия, применяются при ударных и знакопеременных нагрузках, устанавливаются на вал под углом 120°, состоят из двух односкосных одного уклона 1:100) клиньев, составленных так, что рабочие грани шпонки взаимно параллельны.
Наибольшее распространение получили призматические шпонки. Призматические шпонки выбирают по наибольшему передаваемому вращающему моменту.

Шпонки изготовляются из стали марок: Стб, сталь 40, сталь 45 с временным сопротивлением на разрыв не ниже 60 кгс/мм2. Размеры призматических шпонок и пазов приведены в табл. Размеры призматических шпонок и пазов электрических машин .

Насадка полумуфт на валы электрических машин производится, как правило, на заводе-изготовителе. В отдельных случаях насадка полумуфт производится и на монтажной площадке.
Для крупных машин предусматривается горячая посадка полумуфт по 2-му классу точности. Натяги, обеспечивающие достаточную прочность посадки, приведены в табл. Натяги при посадке полумуфт .

Перед насадкой полумуфт на валы машин необходимо убедиться, что натяг не более приведенного в табл. Натяги при посадке полумуфт . Натяг определяется как разность диаметра вала и диаметра ступицы полумуфты, замеренных, как показано на рис. 2.

Так же подгоняют шпонку, размеры шпонки и паза должны соответствовать данным табл ., шпонка должна размещаться в пазу вала плотно, с некоторым усилием (зазор по ширине шпонки и паза ступицы 0,05-0,1 мм).


Рис. 2. .
а - измерение диаметра ступицы полумуфты; б - измерение диаметра конца вала,

Нагрев полумуфт производят одним из следующих способов: в масляной ванне; индукционным методом токами промышленной частоты; газовыми или керосиновыми горелками. Нагрев полумуфт контролируют при помощи шаблона, который больше диаметра отверстия полумуфты на величину 2--3-кратного натяга. После насадки полумуфт и охлаждения проверяют торцевое и радиальное биения их. Места установки индикаторов часового типа показаны на рис. 2, значения допускаемых торцевых и радиальных биений полумуфт приведены в табл. допустимые биения полумуфт электрических машин , при больших значениях полумуфты должны протачиваться.

Методы центровки и приспособления. Допуски на центровку валов

Под центровкой валов понимается установка их в такое взаимное положение, когда вал электрической машины и вал производственного механизма (или вал другой электрической машины) являются как бы продолжением друг друга. При этом положения валов относительно друг друга могут различаться в зависимости от типа муфт и их компенсационных способностей в радиальном и осевом направлениях на значения не более приведенных в табл. Допускаемая несоосность валов электрических машин .

Проверка взаимного положения установленных валов осуществляется центровочными приспособлениями по полумуфтам в диаметрально противоположных точках. Угловой перекос валов также замеряется по полумуфтам, причем значения, приведенные в табл., относятся к полумуфтам, замеры на которых произведены на расстоянии 300 мм от оси вала. При измерениях на других расстояниях допуски на угловое (осевое) смещение валов должны быть пропорциональными.
Визуальная проверка взаимного положения валов производится по рискам, нанесенным на обод полумуфты через 90° при помощи центроискателЯ) изображенного на рис. 3. Риски наносятся на соответствующие полумуфты до установки машины на фундамент. Угольник центроискателя устанавливается на обод полумуфты таким образом, чтобы линейка прилегала к торцевой плоскости полумуфты, разметочная линейка 4 устанавливается на обод полумуфты. Риски наносятся чертилкой на ободе полумуфты и на торцевой плоскости по линейкам 4 и 3. Приспособление поворачивается на 90°, точность установки 90° проверяется при помощи движка с установочной линейкой 3.
Поворачивая таким образом приспособление, наносят четыре риски 1 через 90° на ободе полумуфты. Если диаметры двух полумуфт равны, а муфты смещены друг относительно друга на величину а, то необходимо один из валов передвинуть по вертикали либо вбок (рис. 4).
Если линейка, приложенная к рискам полумуфты машины, к которой прицентровывается другая машина, или к полумуфте приводного механизма, совпадает с риской центрируемой машины, то угловое смещение (перекос) валов отсутствует. Если между линейкой и риской имеется угол, то конец центрируемого вала перемещается по вертикали либо вбок до тех пор, пока риски не совпадут.


Рис. 3. .
а - параллельное смещение; б - угловое смещение; 1 - риски.


Рис. 4. . 1 - муфта; 2 - линейка; 3 - установочная линейка; 4 - разметочная линейка.

Точная проверка взаимного положения валов производится при помощи центровочных скоб или приспособлений с индикаторами часового типа, с магнитным или ленточным прижимом, показанных на рис. 5 и 6. Размеры центровочных скоб приведены в табл. Размеры центровочных скоб .

Рис. 5. .
1 - полумуфта установленной машины; 2 - стягивающие хомуты; 3 - наружная скоба; 4 - измерительные болты; 5 - внутренняя скоба; 6 - полумуфта устанавливаемой машины.

Рис. 6. .
а - с ленточным прижимом; б - с электромагнитным прижимом.

Проверку производят при совместном проворачивании валов на 90, 180, 270°. При измерениях должна исключаться возможность изменения зазоров между полумуфтами за счет осевых разбегов вала. При наличии влияния осевых разбегов на измерения необходимо пользоваться двумя центровочными приспособлениями, расположенными по диаметру полумуфт. Результаты измерений записываются, как показано на рис. 7. Разность показаний в диаметрально противоположных точках при измерении на расстоянии 300 мм от оси вала должна быть не более значений, приведенных в табл. Регулировку положения валов производят подбиванием клиньев под фундаментной плитой или регулировкой высотного положения установочных инвентарных приспособлений. Проверку взаимного положения вала приводного двигателя и приводимого механизма, если последний невозможно проворачивать, производят методом обхода одной точкой, т. е. проворачивая вал приводного двигателя, как показано на рис. 8. При проверке взаимного положения одноопорных валов, соединенных жесткими фланцевыми муфтами с центрирующим выступом, производят измерение только углового перекоса (осевого смещения). Взаимное положение валов приводного двигателя и приводимого механизма, соединяемых при помощи промежуточного вала, проверяют после жесткого соединения промежуточного вала с приводным двигателем или приводимым механизмом. В случае отсутствия промежуточного вала проверку производят по струне, как показано на рис. 9.

Рис. 7.

Рис. 8. .
1 - вал двигателя; 2 - центровочная скоба; 3 - полумуфта двигателя; 4 - штифт; 5 - полу муфта приводного механизма; 5 -вал приводного механизма; 7 - щуп.

При регулировке взаимного положения валов электромашинных агрегатов следят, чтобы уклоны шеек валов на крайних подшипниках, измеренные при помощи уровня, были одинаковыми по величине и противоположными по направлению.

Рис. 9. Центровка валов «по струне ».
1 - вал двигателя; 2 - угольник; 3 - визирная струна; 4-вал редуктора клети; 5 - места замера зазоров.

При определении перемещения подшипников при регулировке взаимного положения валов методом расчета пользуются следующими формулами:

где у и Х - горизонтальное и вертикальное перемещения подшипника, ближайшего к муфте; у2, х2 - горизонтальное и вертикальное перемещения подшипника, дальнего от муфты; l1 - расстояние от муфты до ближайшего подшипника; l2 - расстояние от муфты до дальнего подшипника; r - расстояние от центра вала до точки измерения осевого зазора.

Осевой разбег вала в подшипниках скольжения

Осевой разбег ротора при диаметрах вала до 200 мм устанавливается в 2-4 мм, а при диаметрах вала более 200 мм -2% диаметра. Разбег устанавливается в обе стороны от центрального положения якоря (ротора), определяемого магнитным полем.
Осевые зазоры между заточками вала и торцами вкладышей устанавливаются в соответствии с указаниями завода-изготовителя. В случае отсутствия специальных указаний осевые зазоры устанавливаются равными.

Центровка валов

Как известно, валы электродвигателя и основного меха­низма соединяют муфтами. Непременным условием такого соеди­нения является соосность валов, т. е. совпадение их осей. При от­сутствии соосности нарушается нормальная работа агрегата, в ре­зультате чего появляется вибрация, вызывающая ускоренный износ подшипников и полумуфт. Несоосность валов и повышенная вибра­ция часто являются причиной поломок и аварийных остановов обо­рудования. Операцию по приведению валов в соосное состояние на­зывают центровкой.

Смещения соединяемых валов могут быть трех видов: продоль­ное, поперечное и угловое. У каждой пары соединяемых валов обычно имеются все три вида смещений, так как с абсолютной точностью отцентровать валы невозможно. Центровку считают выпол­ненной, если отклонения валов от правильного положения нахо­дятся в пределах норм, установленных сборочными чертежами или техническими условиями на сбор­ку агрегата.

Для сборки и установки механизмов существуют общие прави­ла: вначале по чертежу устанавливают основной (приводимый) механизм, а затем электродвигатель. Вал электродвигателя прицентровывают к валу основного механизма. Если между основным механизмом и электродвигателем имеются зубчатый привод и ре­дуктор, привод прицентровывают к основному механизму, редук­тор к приводу, а электродвигатель к редуктору. Соосности ва­лов при центровке добиваются во всех случаях, изменяя положение прицентровываемого механизма, а не ранее установленного.

До начала центровки должны быть закончены ремонтные рабо­ты по основному механизму и электродвигателю и проверено со­стояние узлов агрегата. Болты крепления фундаментной рамы и подшипников должны быть прочно затянуты.

Валы механизма и электродвигателя центрируют обычно по по­лумуфтам в следующей последовательности: предварительно выверяют ось вала электродвигателя по оси вала механизма; устанавливают центровочные скобы на полумуфты и скобы с отжимными болта­ми на фундаментную раму электродвигателя; окончательно центри­руют вал электродвигателя относительно вала механизма по диа­грамме центровки и также по диаграмме производят контрольную проверку центровки валов.

Электродвигатель устанавливают на фундаментную раму таким образом, чтобы было выдержано осевое расстояние между полу­муфтами, предусмотренное чертежом. Перед замером этого рассто­яния роторы электродвигателя и механизма сдвигают друг к дру­гу до упора. Если специальных указаний не имеется, расстояние между полумуфтами при сдвинутых роторах не менее 4 мм для небольших агрегатов и не менее 8 мм для больших.

Линейкой и клиновым щупом предварительно выверяют ось ва­ла электродвигателя по оси вала механизма. Вначале накладывают линейку на верхние образующие полумуфт (рис. 3.11, а) и проверя­ют совпадение осей валов в вертикальной плоскости. Оси валов совпадают, если линейка прилегает к обеим полумуфтам без про­света.

Чтобы оси валов совпали по вертикали, поднимают вверх или опускают вниз электродвигатель, подкладывая стальные прокладки под его лапы. Достигнув совпадения осей валов по вертикали, проверяют клиновым щупом горизонтальность вала элек­тродвигателя. Для этого заводят щуп в зазор между полумуфтами сверху и снизу (рис. 3.11, б ). Неравенство зазоров свидетельствует о негори­зонтальности вала электродвигателя. Горизон­тальности добиваются, устанавливая подкладки под соответствующие лапы электродвигателя или снимая их. При этом стараются не нару­шить ранее достигнутую выверку валов по вы­соте.

Рис. 3.11. Предва­рительная вывер­ка осей валов по вертикали линей­кой (а ), по гори­зонтали клино­вым щупом (б ).

После достижения горизонтальности вала электродвигателя проверяют совпадение осей ва­лов в горизонтальной плоскости, прикладывая к боковым образующим полумуфт линейку. Одно­временно клиновым щупом проверяют зазоры между полумуфтами и выравнивают электродви­гатель в горизонтальной плоскости.

Окончив предварительную выверку, повора­чивают валы в положение, при котором риски на полумуфтах совпадут. На полумуфты уста­навливают центровочные скобы (рис. 3.12, а ), а на фундаментную раму электродвигателя ско­бы с отжимными болтами (рис. 3.12, б ).Между центровочными скобами винтами устанавливают зазоры в пределах 12 мм. Чтобы убедиться, что скобы не будут задевать друг друга, оба вала одновременно поворачивают на один оборот.

Рис. 3.12. Приспособления для центрирования валов:

а – центровочные скобы, б – скоба с отжимными болтами

При окончательной центровке поворачивают обе полумуфты в положении I , II , III и IV (рис. 3.13, а ) и в каждом из них замеряют пластинчатым щупом радиальные и торцевые (осевые) зазоры меж­ду центровочными скобами. Размеры зазоров записывают на круго­вой диаграмме (рис. 3.13, б ), где отмечают соответствующие поло­жения. Радиальные зазоры а 1 – а 4 обычно записывают снаружи окружности, а торцевые Т 1 – Т 4 – внутри.

При проверке центровки по скобам вращают полумуфты в одну сторону. В каждом положении перед замером зазоров сближают полумуфты до предела и затягивают все фундаментные болты элек­тродвигателя. Центровку по круговой диаграмме ведут до тех пор, пока не будут одинаково расположены на одном диаметре ради­альные зазоры и соответствующие им торцевые.

Для частот вращения вала 1500; 750; 500 об/мин допусти­мая разница диаметрально противоположных зазоров между цент­ровочными скобами составляет 0,070,11; 0,10,12; 0,150,2 мм соответст­венно.

Рис. 3.13. Центрирование осей валов по круговой диаграмме:

а – положение полумуфт, при котором за­меряют зазоры между центровочными ско­бами, б – круговая диаграмма

Для получения равенства зазоров между центровочными скоба­ми в диаметрально противоположных положениях осторожно пе­ремещают электродвига­тель в горизонтальной пло­скости отжимными болтами, а по высоте рычагами или домкратами. При этом уменьшают или увеличива­ют общую толщину прокла­док под соответствующими лапами электродвигателя. Нельзя перемещать элект­родвигатель ударами кувал­ды. После каждого переме­щения привода туго затяги­вают болты, которыми элек­тродвигатель крепится к фундаментной раме.

Контрольную проверку правильности замеров при центровке выполняют в по­ложении I после поворота полумуфт на 360°. При по­вторном измерении зазоры в положении I должны быть равны зазорам, полученным при первоначальном изме­рении в этом же положении.

Для ускорения центровки валов применяются также центровочные скобы с микрометрическими винтами и клиновые домкраты.



Центровочные скобы с микрометрическими винтами показаны на рис. 3.14. К концу 1 вала хомутом 3 крепится штатив 2 с крон­штейном 4 и микрометрическим винтом 5 . На конце 10 вала закреп­ляется штатив 8 с кронштейном и микрометрическим винтом 7 .Микрометрические винты 5 и 7 служат для измерения радиальных и осевых зазоров соответственно.

Рис. 3.14. Центровочные скобы с микромет­рическими винтами для центрирования ва­лов:

1 , 10 – концы вала, 2 , 8 – штативы, 3 , 9 – хому­ты, 4 , 6 – кронштейны,

5 , 7 – микрометрические винты

Зазоры измеряют так же, как и при обычной центровке. При совместном вращении обеих полумуфт (или валов) в четырех по­ложениях замеряют зазоры с помощью микрометрических винтов, возвращая каждый раз винт в первоначальное положение. Исполь­зование микрометрических винтов повышает точность замеров и ускоряет цент­ровку.

Перемещение тяжелых электродвигателей при цент­ровке в вертикальной пло­скости производят клиновы­ми домкратами (рис. 3.15), которые устанавливают между фундаментом (фундаментной рамой) и электро­двигателем. Домкрат состоит из корпуса 4 ,винта 3 ,верхнего 2 и нижнего 1 клиньев. Домкрат заводится под электродвигатель клиновой частью и при вращении винта клин 1 приподнимает клин 2 ,поджимающий электродвигатель.

Рис. 3.15. Клиновой домкрат для центрирования валов:

1, 2 – нижний и верхний клинья, 3 – винт, 4 – корпус

Если зазор в вертикальной плоскости между полумуфтами будет в верху будет больше чем внизу, то тогда необходимо П - образные стальные прокладки подложить под ближайшие к муфтам болты между станиной насоса и двигателя и рамой.

Важнейшим условием долговременной работы насоса и двигателя является горизонтальное положение рамы и соответственно оси ротора, отклонение от горизонтальности осей вала и рабочего колеса насоса и двигателя должны быть на 1м не более 0,04 мм, иначе будет возникать горизонтальная составляющая общей нагрузки ротора и подшипники будут быстрее выходить из строя.

Многоступенчатые насосы.

Многоступенчатые насосы выпускаются с горизонтальным и вертикальным валом. Насосы с горизонтальным валом выпускаются трех типов. Первый тип МС – многоступенчатые центробежные насосы с рабочими колесами одностороннего входа воды и вертикальной плоскостью разъема (рис.8а). При такой схеме соединения рабочих колес имеется существенный недостаток – возникает осевая нагрузка и при ремонте необходимо отсоединять всасывающий и напорный трубопроводы. У второго типа М (рис.8б) входом воды рабочие колеса расположены противоположно друг другу, что взаимно уравновешивает осевую нагрузку (количество рабочих колес у них четное). Кроме того, у этого типа насоса горизонтальный разъем корпуса. Третий тип МД (рис. 8в) с горизонтальным разъемом корпуса, первое рабочее колесо с двухсторонним входом воды, последующие колеса с односторонним входом также расположены попарно с противоположным входом воды.

В многоступенчатых насосах вода последовательно проходит через несколько рабочих колес, смонтированных в одном корпусе насоса, поэтому напор будет равен сумме напоров последовательно расположенных колес, пропускающих одно и то же количество воды.

Обозначения многоступенчатых насосов с горизонтальным валом:

Тип МС аМС – n s х i:

где а – диаметр всасывающего патрубка, уменьшенный в 25 раз, в мм;

n s – быстроходность, уменьшенная в 10 раз, мин;

i - число рабочих колес.

По новому ГОСТу тип насосов МС обозначается ЦНСQ – H:

где Q – подача, м 3 /час;

H – напор, м.

Например: ЦНС300 – 120, у которого подача 300 м 3 /час, напор 120 м.

Тип М по старому ГОСТу обозначался в общем виде аМ – n s xi , обозначения те же, что и у насосов типа МС.

По новому ГОСТу тип насосов М обозначается ЦНQ – H, где Q и H соответственно подача и напор.



Рис. 8 – Схемы движения воды в насосах

Конструкция насоса типа МС показана на рисунке 9.

Рис. 9 - Конструкция насоса типа МС

1 – напорный патрубок; 2 – направляющий аппарат; 3 – корпус секции; 4 – стяжная шпилька; 5 – защитно-уплотняющее кольцо; 6 – резиновый шнур; 7 – входная крышка со всасывающим патрубком; 8 – отверстие для подачи жидкости в уплотнение; 9 – упругая муфта; 10 – роликовый подшипник; 11 – кронштейн; 12 – сальниковый узел; 13 – кольцо гидравлического уплотнения; 14 – грундбукса; 15, 20, 21 – втулки соответственно распорно-защитная, дистанционная, разгрузки; 16 – рабочее колесо; 17 – вал; 18 – шпонка; 19 – щель подвода жидкости к гидравлической пяте; 22 – гайка-втулка; 23 – уплотнение в крышке подшипника; 24 – гидравлическая пята; 25 – защитно-уплотняющее кольцо

Ось всасывающего патрубка на рис. 9 условно показана вверх, на самом деле горизонтально пола машинного отделения, чтобы меньше было гидравлических сопротивлений при входе в насос.

Из всасывающего патрубка вода поступает в корпус насоса 7 и через кольцевой подвод к первому рабочему колесу 2. При выходе из рабочего колеса вода проходит через направляющий аппарат 3 на второе колесо и т. д. Рабочие колеса с односторонним входом воды. Направляющий аппарат имеет каналы, направляющие воду к кольцевому подводу на второе колесо. Сечение каналов в направляющем аппарате постепенно увеличивается, чтобы преобразовывать кинетическую энергию в потенциальную энергию. Секции направляющего аппарата и рабочие колеса взаимозаменяемые.

Из-за одностороннего входа воды на рабочее колесо ротор насоса испытывает значительные осевые усилия, направленные как у консольных насосов в сторону входа воды. Так как давление после каждой ступени возрастает и суммируется, то общая нагрузка на ротор будет большая, и весь ротор будет перемещаться в сторону входа воды на колесо. Для снятия осевых усилий служит разгрузочная шайба 24, которая на резьбе или болтах закрепляется на валу насоса за последним рабочим колесом. Жидкость из последнего рабочего колеса, через кольцевой зазор 21, поступает в разгрузочную камеру, из которой через патрубок 25 и трубку соединяется с всасывающей камерой первой ступени колеса. В связи с тем, что давление в промежуточной камере значительно больше, чем в разгрузочной камере, происходит разгрузка осевых усилий путем смещения ротора и уравновешивания давлений. Если ротор насоса под влиянием осевой силы движется вправо, то торцевой зазор между корпусом и шайбой уменьшается, давление в разгрузочной камере вследствие этого увеличивается и дальнейшее осевое продвижение ротора прекращается. Если давление на разгрузочную шайбу со стороны корпуса уменьшается, то за счет осевой нагрузки ротор перемещается вправо.

Назначение остальных деталей такое же как и у одноступенчатых насосов, наименование их дано в подрисуночной надписи.

Артезианские центробежные насосы.

К многоступенчатым насосам с вертикальным валом относятся артезианские насосы (глубинные насосы) для скважин. Артезианские насосы делятся на два вида:

1. насосы с трансмиссионным валом, у которых насос опускается в скважину, а двигатель располагается над скважиной;

2. насосы погружные, когда насос вместе с двигателем опускается в скважину.

Насосы с трансмиссионным валом отечественной промышленностью выпускаются типов А, НА и ЦТВ. Погружные насосы выпускаются единой серии ЭЦВ.

Насосы типов А и НА центробежные, артезианские (многоступенчатые), вертикальные, с трансмиссионным валом предназначены для подачи воды из высокодебитных скважин, иногда применяются на насосных станциях первого подъема для подачи воды а также как аварийные от затопления машинных залов особо ответственных насосных станций. В этих насосах электродвигатель располагается над устьем скважины и соединяется с насосом с помощью трансмиссионного вала (рис. 10).

Для того чтобы исключить вибрацию трансмиссионного вала, вал закрепляют промежуточными подшипниками с резино-металлическими вкладышами, смазываемыми водой. Масса вращающихся деталей насоса и трансмиссии воспринимается опорной пятой с радиально-упорными подшипниками, а масса всего насосного агрегата – опорным корпусом, установленным над скважиной.

Рис. 10 – Насосные установки с насосами типа АТН (а) и А (б)

В общем виде насосы данных типов обозначаются:

d скв A – n s xi ,

где d скв - минимальный диаметр скважины, в которую может быть опущен этот насос, уменьшенный в 25 раз и округленный;

n s - быстроходность, уменьшенная в 10 раз и округленная;

i – число рабочих колес.

Например, насос 24А – 18 х 1 , 24х25=600 мм – минимальный диаметр скважины;

18х10= 180об/мин – быстроходность насоса;

1 – число рабочих колес.

У насосов серии ЦТВ гидравлическая часть с теми же параметрами, что и у насосов ЭЦВ. Обозначения: Ц – центробежный, Т – с трансмиссионным валом, В – для подачи воды.

Насосы типа АТН центробежные секционные, вертикальные, предназначены для подачи воды из артезианских скважин.

Пример обозначения : АТН14-1-6

Буквы, входящие в маркировку насоса, обозначают: А – артезианский, Т - турбинный, Н- насос. Цифры обозначают: 14 – минимальный диаметр обсадной колонны в мм, уменьшенный в 25 рази округленный; 1 – тип рабочего колеса (закрытое); 6 – число рабочих колес.

У этого типа насоса для увеличения подачи при минимальных размерах обсадной колонны применены рабочие колеса диагонального типа (как у гидравлической турбины).

Насосы типа ЭЦВ многоступенчатые, погружные вертикальные, для подачи воды из скважины, с рабочими колесами одностороннего входа.

Условное обозначение насосов этой серии в общем виде:

ЭЦВd скв – Q - H , где

Э – с электроприводом,

Ц – центробежный,

В – для подачи воды,

d скв – минимальный внутренний диаметр обсадной колонны в мм, уменьшенный в 25 раз и округленный,

Q – подача, м 3 /час,

H – напор, м.

Пример обозначения: ЦТВ8 – 40 – 60 ,

где 8 - минимальный внутренний диаметр обсадной колонны, уменьшенный в 25 раз и округленный в которой может быть размещен насос, мм;

40 – подача, м 3 /час;

60 – напор, м.

Погружные насосы ЭЦВ представляют собой многоступенчатые центробежные насосы с рабочими колесами одностороннего входа и могут применяться для подачи воды из артезианских скважин в системах водоснабжения, понижения уровня грунтовых вод, в насосных станциях первого подъема из открытых водоисточников и т.д.

На рисунке 11 показан разрез погружного насоса.

Рис. 11 – Электропогружной насос:

а – электродвигатель ПЭДВ: 1 – днище; 2 – диафрагма; 3 – корпус; 4 – пробка-винт; 5 – подпятник; 6 – пята; 7 – манжета; 8 – пескосбрасыватель; 9, 10 – резиновые кольца; 11, 13 – корпуса; 12 – подшипник;

б – насос: 1 – соединительная муфта; 2 – ступицы основания; 3 – вал; 4 – диск; 5 – обойма; 6 – направляющий аппарат; 7 – рабочее колесо; 8 – ступица верхнего подшипника; 9 – клапан; 10 – стяжка; 11 - головка

Корпуса секций насоса изготовляются из пластмассы или из пластмассы на металлической основе. Направляющие аппараты имеют спиральные отводы лопаточного типа с кольцевыми подводами воды на следующее рабочее колесо. У крупных насосов корпуса стальные или из чугуна.

Рабочие колеса у мелких насосов ЭЦВ имеют плавающую посадку, позволяющую перемещаться вдоль вала в пределах заданных допусков. У остальных насосов рабочие колеса закрепляются с помощью шпонок, расстояние между ними фиксируется распорными втулками, у крупных насосов имеются защитные втулки. Вес вращающихся деталей ротора воспринимается опорными кольцами или самоустанавливающейся резинометаллической гидродинамической пятой. Вал вращается в резинометаллическом или металлографитовом подшипнике. Входные отверстия для воды закрыты металлической сеткой. Корпус насоса стягивается стяжными болтами.

Рис. 12 Насосная установка с насосом типа ЭЦВ

Насосы для перекачки сточных вод.

Для перекачки сточных вод применяются отечественные насосы с горизонтальным валом типа СМ, с вертикальным валом типа СДВ и погружные насосы типа ГНОМ, ЦМК, ИРТЫШ, и др., специальные массовые насосы с горизонтальным валом с односторонним входом, применяемые для перекачки сточных вод.

Условное обозначение насосов типа СМ:

Например, СМ100-65-250 , где

100 – диаметр всасывающего патрубка, мм;

65 – диаметр напорного патрубка, мм;

250 – диаметр рабочего колеса, мм.

Данные насосы применяются для перекачки сточных вод с плотностью до 1050 кг/м 3 и содержащих абразивных частиц по массе не более 1% и температурой до 100 0 С.

Конструкция центробежного насоса типа СМ отличается от центробежных насосов для перекачки воды тем, что рабочее колесо имеет меньше лопаток и ширина лопаток больше. В крышке корпуса насоса и в верхней части спирального отвода имеются трапы для прочистки в случае засорения. К кольцу гидравлического уплотнения – сальнику должна подводиться чистая вода.

Для большой подачи сточных вод применяются вертикальные насосы типа СДВ (рис. 13), у них в спиральном отводе с противоположных сторон предусмотрены люки для прочистки (5), которые можно очищать колесо и корпус насоса при засорении отбросами. Для предохранения от абразивного износа устанавливаются сменные защитные диски, изготовленные из стали. Вал насоса вращается в подшипниках скольжения, имеющих разъемный резиновый или лигнофолевый вкладыш. Подшипник скольжения смазывается и охлаждается чистой водой из хозяйственного водопровода под давлением 0,1 МПа превышающим давление в напорном патрубке насоса. Подшипник скольжения защищен от проникновения транспортируемой жидкости специальным резиновым уплотнением.

Для защиты вала от износа под сальником предусмотрена защитная втулка или методом электронаплавки наносится защитное покрытие из коррозийно - стойкой стали.

Рис. 13 – Насос типа СДВ

1-защитное кольцо; 2-рабочее колесо; 3-регулируемое уплотняющее кольцо; 4-нижняя крышка корпуса; 5-люк-прочистка; 6-корпус; 7-защитные диски; 8-верхняя крышка корпуса; 9-подшипник скольжения; 10-торцевое уплотнение вала; 11-вал; 12-фундаментная плита

Центробежные моноблочные, канализационные погружные насосы (рис. 14) вместе с электродвигателем предназначены для перекачки фекальных и других сточных вод с плотностью до 1050 кг/м 3 и содержащих абразивных частиц по массе не более 1% и температурой до 35 0 С.

Пример обозначения: ЦКМ 16/27 где 16 – подача м 3 /час; 27- напор, м.

Погружные насосы типа ГНОМ (рис.14) обозначаются:

ГНОМ 25x20, где 25 - подача м 3 /час; 20 - напор, м.

Рис. 14 – Конструкция погружного моноблочного насоса ГНОМ:

1 – ручка; 2 – напорный патрубок; 3, 4 – ротор и статор электродвигателя; 5 – корпус насоса; 6 – торцевое уплотнение; 7 – разделительная камера; 8 – обрезиненный отвод; 9 – рабочее колесо без переднего диска

Отличительные конструктивные особенности современных зарубежных насосв.

Погружные насосы фирмы ITT «FLYGT» предназначены для перекачки сточных вод имеют три типа рабочих колес: открытое колесо (тип F) (рис. 15), имеющие режущую кромку, закрытое однокольцевое колесо (тип С) и свободно –вихревое колесо (тип N). У насосов с рабочим колесом типа F засоряемость почти 100 %, но коэффициент полезного действия невысокий (около 60 %), у закрытого типа С к.п.д. доходит до 80 %, но высокая засоряемость (до 60-65 %). Поэтому ученые разработали свободно- вихревое колесо полуоткрытого типа N с засоряемостью 98 – 100 % и высоким к.п.д. 80 %.

Для насосов с большой подачей разработаны также самоочищающиеся осевые насосы. Усовершенствована противоизносная защита торцевого уплотнения, применена замкнутая система охлаждения двигателя, разработано торцевое уплотнение патронного типа.

Фирма «GRUNDFOS» выпускает одноступенчатые погружные блочные агрегаты типа АРВ с вертикальным нагнетательным патрубком и приемным сетчатым фильтром. Насос имеет износостойкое рабочее колесо из нержавеющей стали с высокой твердостью и оболочкой из резинотехнических изделий. Насос имеет поворотный напорный штуцер для вертикального и горизонтального монтажа к напорной линии. Высоконапорные насосы имеют два последовательно включенных рабочих колеса. Двигатели имеют специальное торцевое уплотнение с масляной запорной камерой со специальным физиологически инертным маслом и уплотнительным кольцом на валу.

У электродвигателей погружных насосов фирмы «GRUNDFOS» имеется специальное торцевое манжетное уплотнение из специальной резины. От осевого смещения ротора применяется гидравлическое выравнивание перепада давления. У крупных двигателей применяется опорное кольцо из металлокерамики (карбид вольфрама), что обеспечивает большой срок службы.

Для откачки воды из строительных котлованов этой же фирмой выпускаются насосы POMONA с электродвигателем или от двигателя внутреннего сгорания. Насос самовсасывающий и после первоначального заполнения постоянно сохраняет готовность к работе, может перекачивать жидкость с содержанием твердых включений от 3 до 30 мм.

При работе насосов с большим диапазоном подач и напоров применяются частотные преобразователи, позволяющие с их помощью изменять числа оборотов в больших пределах, а следовательно изменять в широких пределах все параметры насоса.

Немецкая фирма «WILO» поставляет широкий спектр насосов для системы отопления, водоснабжения, пожаротушения и канализации. Насосы моноблочные, необслуживаемые, т.е. имеют неразрезной вал и специальное скользящее торцевое уплотнение. Насосы выпускаются с сухим и мокрым ротором. Скользящее торцевое уплотнение представляет собой динамическое уплотнение и используется для герметизации зазора между вращающимся валом насоса и корпусом при среднем и высоком давлении. Динамическая область скользящего торцевого уплотнения состоит из двух гладких, износостойких поверхностей (например, кольца из карбида кремния или графита), которые сжимаются при воздействии аксиальных сил. Одно кольцо (скользящее) вращается вместе с валом, другое кольцо (ответное) стационарно установлено в корпусе. Кольца сжимаются при помощи пружины и давления жидкости. Средневзвешенный срок службы 2-4 года, но при этом нельзя допускать сухого хода насоса, т.е. без жидкости.

Рис. 16 – Одинарные насосы

Выпускаются также сдвоенные насосы, устанавливаемые на одной трубе, позволяющие увеличить подачу вдвое (рис. 17).

Рис.17 – Сдвоенные насосы

Изучение конструкций вихревых насосов.

Основная задача при изучении вихревых насосов – изучить их конструкцию, принципы действия и особенности их эксплуатации.

Вихревые насосы применяются при малых подачах и больших напорах. Подача колеблется в пределах 0,3-10 л/с, а напор 15-160 м.

Промышленностью выпускались и выпускают ряд конструктивных типов этих насосов: В – вихревой, ВК – вихревой консольный, ВКС – вихревой консольный самовсасывающий, ВКО – вихревой консольный обогревной, ЦВК – центробежно-вихревой консольный, ЦВС - центробежно-вихревой самовсасывающий.

Пример обозначения:

ВКС5-24 - вихревой консольный самовсасывающий 5 – подача, л/с 24 – напор, м.

Вихревые насосы широко применяются для перекачки чистых жидкостей без абразивных примесей с температурой до 85 0 С для вихревых и 105 0 C для центробежно - вихревых.

Обогревные насосы применяются для перекачки застывающих жидкостей (фенолы, парафины и др.) и отличаются от остальных насосов типа В дополнительной обогреваемой крышкой корпуса, имеющей обогревной канал. В обогревной крышке имеются отверстия для присоединения паропроводов.

Насосы самовсасывающие отличаются от насосов типа В дополнительным узлом состоящим из воздушного колпака и воздухоотвода, которые служат для обеспечения самовсасывания. Всасывающие и напорные патрубки расположены в верхней части корпуса насоса, поэтому эти насосы нужно заливать при первоначальном пуске его в работу. Способность вихревых насосов засасывать воду без заливки всасывающей трубы в последующем позволяет легко автоматизировать их работу.

Работа вихревых насосов основана на действии центробежной силы и ближе всего сходна с работой многоступенчатого насоса. При вращении рабочего колеса, представляющего собой стальной диск с лопатками, частичка жидкости за счет центробежной силы по лопатке будет перемещаться из точки А в точку Б (рис. 18).

Рис. 18 – Схема движения жидкости в вихревом насосе

При этом движении она приобретает скоростную энергию и энергию давления, с которой и выбрасывается в кольцевой отвод корпуса под некоторым углом по ходу вращения колеса. Так как давление у основания лопатки меньше чем на выходе из нее, то жидкость стремиться снова переместится в точку А 1 . Чтобы жидкость быстрее попала снова к основанию лопатки, диск между основанием лопатки и выходом выфрезерован по окружности. Частичка жидкости при этом ударяется под углом о кольцевой отвод и быстрее попадает снова на лопатку рабочего колеса. При этом рабочее колесо может совершить несколько оборотов (внизу у основания лопатки показано направление вращения). Таким образом, за время прохождения жидкостью пути от всасывающего патрубка к напорному, цикл повторяется несколько раз, и каждый раз происходит приращение энергии. Такое движение напоминает вихри, отсюда и название насоса. Такое же приращение энергии происходит и в многоступенчатом центробежном насосе, где жидкость переходит из одного колеса на другое.

Изучение конструкции вихревых насосов.

Вихревой насос состоит из гидравлической части и опорной стойки (рис. 19).

Рис. 19 - Вихревой насос В – 1,25/40

1 – корпус насоса; 2 – подводящие каналы; 3 – рабочее колесо; 4 – перемычка; 5 – крышка насоса; 6 – внутренняя крышка насоса; 7 – опорная стойка; 8 – сальниковое уплотнение; 9 и 10 – радиальные шарикоподшипники; 11 – отверстие для опорожнения насоса

Внутри чугунного корпуса от всасывающего до напорного патрубков, расположенных в верхней части, проходит кольцевой отводящий канал постоянного сечения. Перемычка 4 отделяет всасывающую часть от напорной. Напорный и всасывающий патрубки одинакового размера, названия могут менять в зависимости от направления вращения. Крышка к корпусу крепится с помощью шпилек и гаек. Внутренняя часть корпуса одновременно является конусом сальник и внутренней крышкой опорной стойки.

Рабочее колесо представляет собой стальной диск с фрезерованными по окружности пазами, образующими лопатки. Колесо посажено на валу на шпонке и фиксируется специальным болтом с шайбой. В месте выхода вала из корпуса насоса находится сальниковое уплотнение.

Приводная часть состоит из чугунной опорной стойки и вала. Опорами вала служат радиальные шарикоподшипники, у больших насосов радиально-упорные шарикоподшипники. Три отверстия, закрытые пробками, служат для заливки,слива и контроля уровня масла.

Отверстие 11 в нижней части корпуса насоса служит для его опорожнения.

У вихревых насосов имеются существенные недостатки: низкий к.п.д. и увеличение мощности при уменьшении подачи.

К.п.д. вихревых насосов не превышает 50%. Во-первых, это связано с большими гидравлическими потерями при входе и выходе жидкости с лопаток рабочего колеса. Во-вторых, происходит быстрый износ перегородки между всасывающими и напорными патрубками. Поэтому за счет увеличения зазора между перегородкой и рабочим колесом жидкость из напорного патрубка вновь поступает во всасывающий патрубок.

Кроме того, у вихревых насосов малая область подач и напоров с высоким к.п.д., поэтому при уменьшении подачи потребляемая мощность возрастает.

Центробежно-вихревой насос СЦЛ-20-24а

Насос СЦЛ-20-24а – двухступенчатый центробежно-вихревой самовсасывающий с горизонтальным валом предназначен для перекачивания бензина, керосина и чистой воды от 30 до 40 м 3 /час при напоре от 65 до 40 м с температурой до 50 0 С.

Первая ступень насоса выполнена с центробежным, вторая с вихревым рабочим колесом.

Основные детали насоса (рис. 20): алюминиевый корпус 13 с отводящим спиральным каналом для рабочего колеса центробежного насоса с односторонним входом жидкости (14) и кольцевым отводом для вихревого рабочего колеса (6), вала (16), крышки корпуса (7) и воздушного колпака (11).

Рис. 20 – Центробежно-вихревой насос СЦЛ-20-24а

1 – рабочая полость второй ступени; 2 – спускные отверстия; 3 – лопасти рабочее колеса; 4 и 20 – шарикоподшипники; 5 и 18 – обоймы узлов уплотнения вала; 6 – вихревое рабочее колесо; 7 –крышка корпуса; 8 – перемычка; 9 – воздухоотвод; 10 – напорный патрубок; 11 – алюминиевый колпак; 12 – промежуточная крышка; 13 – корпус; 14 – центробежное рабочее колесо; 15 – входной патрубок; 16 – вал; 17 – резиновые манжеты; 19 - сальниковое уплотнение; 21 – гайка; 22 – камера; 23 – отверстие для спуска в дренаж жидкости; 24 – втулка; 25 – прокладное кольцо; 26 – пружинные кольца; 27 – полость первой ступени; 28 и 29 – крышка подшипника

В верхней части корпуса расположен всасывающий патрубок (15), а в верхней части воздушного колпака – напорный патрубок (10 и 11).

Часть канала с промежуточной крышкой (12) образует полость первой ступени алюминиевым рабочим колесом (14) с односторонним входом, имеющим шесть лопаток. В остальной части канала, ограниченной промежуточной крышкой (12) и алюминиевой крышкой корпуса (7), находится полость второй ступени с вихревым рабочим колесом (6). Вихревое рабочее колесо представляет собой бронзовый диск с выфрезерованными по окружности пазами, образующими двадцать четыре лопатки (3), разделенные диском. Рабочие колеса закреплены на валу насоса призматическими шпонками, а центробежное колесо дополнительно фиксируется стопорными кольцами (26).

Вал насоса стальной, имеет две опоры в виде шарикоподшипников (4) и (20). Осевая сила воспринимается шарикоподшипником (20).

Обоймы (5 и 18) узлов уплотнения вала вставлены в корпус и крышку насоса с прокладкой. В обойме расположены три резиновые самоуплотняющие сальники – манжеты (17), отделенные одна от другой прокладными кольцами (25). Манжеты сжаты специальной гайкой (21) через втулку (24). Между обоймой и ограничителем имеется камера (22) для спуска в дренаж жидкости, просачивающейся через сальник.

Насос СЦЛ-20-24а при первоначально залитом корпусе может работать как самовсасывающийся с вакуумметрической высотой всасывания до 5,5 м.

На напорном фланце корпуса расположен алюминиевый колпак (11) для обеспечения самовсасывания.

В корпусе под колпаком установлен воздухоотвод (9) для отделения воздуха от перекачиваемой жидкости в начале работы насоса.

Для первоначального пуска необходимо залить перекачиваемой жидкостью только корпус, чему способствует расположение всасывающего и напорного патрубков насоса в верхней части.

Например, насос перекачивает воду из водоисточника потребителю:

При подключении насоса, за счет центробежной силы вода с рабочего колеса одностороннего входа будет передаваться на вихревое колесо, поэтому за счет образовавшегося вакуума будет захватываться воздух из всасывающего трубопровода. При смешивании воздуха с водой образуется водно-воздушная эмульсия, которая поступит в круглый по форме воздуховод. В воздуховоде водно-воздушная эмульсия начинает вращаться, при этом за счет центробежной силы, частички воды (т.к. они тяжелее воздуха) будут прижиматься к цилиндрической поверхности воздуховода и снова через отверстия в нижней части сливаться в корпус насоса, а воздух по боковым каналам выходить в воздушный колпак.

Таким образом, при быстром вращении ротора, воздух из всасывающей трубы выйдет через воздушный колпак в напорный патрубок, а вода за счет атмосферного давления будет поступать к всасывающему патрубку.

При остановке насоса вода остается в корпусе и ее достаточно, чтобы снова запустить насос.

Напорный патрубок воздушного колпака расположен горизонтально и при этом может быть повернут в любую сторону через деление в 36 0 .

Привод насоса осуществляется электродвигателем через эластичную муфту. Вал насоса вращается против часовой стрелки, если смотреть со стороны привода.

Одной из важнейших составляющих технологии виброналадки является центровка валов при монтаже агрегатов и в процессе их дальнейшей эксплуатации. Эксплуатационная центровка валов - это восстановление соосности валов, нарушающейся в процессе эксплуатации. Причинами эксплуатационной расцентровки агрегатов чаще всего бывает деформация фундаментных конструкций, в том числе сезонная, а также дефекты соединительных муфт, следствием - рост вибрации агрегата и в большинстве случаев - перегрузка подшипников и муфт.

При эксплуатации сложных агрегатов могут возникнуть и другие опасные изменения положения вращающихся узлов - нарушения параллельности осей вращения жестко связанных друг с другом валов, отклонения рабочих колес, шестерен, шкивов и т.д. от плоскости, перпендикулярной оси вращения вала. Такие нарушения геометрии влияют на вибрацию и могут быть обнаружены по соответствующим диагностическим признакам и параметрам. Но устранить их можно лишь путем выверки в процессе ремонта, поэтому необходимо после их обнаружения планировать соответствующие работы по выверке на ближайший ремонт.

В процессе эксплуатации, кроме центровки валов, без ремонта агрегата можно выполнить еще одну операцию виброналадки - выверку шкивов в ременной передаче. Однако опыт практической диагностики ременных передач по вибрации и току показывает, что основной вклад в вибрацию передачи дают погрешности изготовления шкивов и ремней, неточности их натяга и дефекты износа, поэтому требуемая в этих условиях точность выверки шкивов может достигаться с использованием простейших средств геометрических измерений. В связи с изложенным, ниже рассматриваются только наиболее важные для виброналадки агрегатов в процессе эксплуатации вопросы центровки их валов, соединяемых в одну линию с помощью муфт.

Общие вопросы центровки валов

Геометрические оси двух валов, имеющих собственные опоры вращения и связанных между собой соединительной муфтой, могут не совпадать, т.е. иметь несоосность. Несоосность может быть параллельной, угловой и смешанной, как это показано на рис.13.1.

Рис.13.1. Виды несоосности соединяемых муфтой валов. а- параллельная несоосность, б- угловая несоосность, в- смешанная несоосность, разделяемая на две компоненты.

Количественно параллельная несоосность измеряется в мм, угловая - также в мм, но приведенных к длине вала в 100мм, смешанная делится на параллельную и угловую.

Существует два основных метода измерения несоосности валов, а именно, радиально-осевой и метод обратных индикаторов, принцип действия которых показан на рис 12.2. Измеряются максимальное смещение контрольной точки на одном валу относительно контрольной точки на другом валу до и после разворота обоих валов на 180 угловых градуса. Измерения проводятся дважды - при развороте валов на 180 градусов вертикальном и горизонтальном направлениях. При проведении измерений контрольные точки выбираются из числа удаленных от оси вала, например, на внешнем радиусе полумуфты или, при использовании лазеров, на специальной штанге, закрепляемой на вал и регулируемой по высоте.


Рис.13.2. Радиально осевой метод определения несоосности валов с измерением радиального и осевого смещения одного из валов и метод взаимных индикаторов с измерением радиального смещения двух валов.

Более точным является второй метод, так как исключает возможную ошибку в определении осевого смещения из-за осевого «люфта» вала в подшипниках при разомкнутых полумуфтах или наличии свободного «осевого хода» связанных полумуфт в некоторых типах агрегатов. От одного из четырех измерений, проводимых при определении несоосности валов в горизонтальной и вертикальной плоскостях, можно отказаться, да и разворот валов точно на 180 градусов не всегда обязателен, необходимо только точно его измерять. Поэтому современные средства измерения расцентровки допускают проведение трех измерений с разворотом валов после каждого измерения в зависимости от используемых средств измерения угла разворота либо на 90 угловых градуса, либо на любой контролируемый угол от 20 до 90градусов.

Измерение расстояния между точками крепления индикаторов к каждому из валов, расстояния от муфты до ближайшей плоскости опор машины, перемещаемой при центровке, и расстояния между плоскостями опор этой машины, позволяет рассчитать необходимые для центровки валов перемещения ее опор. Для перемещения в вертикальном направлении используются прокладки между лапами машины и рамой в месте ее крепления, в горизонтальном направлении величина перемещения контролируется простейшими средствами геометрических измерений.

В процессе проведения работ по центровке роторов агрегатов необходимо проверить правильность крепления неподвижной и подвижной машин агрегата и устранить люфт прилегания опор к раме, часто называемый «мягкой лапой».

После закрепления подвижной машины в новом положении производится контрольное измерение расцентровки валов.

Подготовка специалистов по центровке валов в процессе эксплуатации

Минимальный срок подготовки - 18 часов, 3 уровня подготовки с практическим освоением методов и средств центровки валов, дополняемым освоением средств балансировки роторов, а также методов обнаружения динамической расцентровки валов и выявления причин автоколебаний ротора в подшипниках скольжения.

  • начальный, с изучением средств лазерной центровки валов и особенностей обнаружения динамической расцентровки роторов по вибрации агрегата и току приводного электродвигателя,
  • расширенный с совместным освоением средств и программ центровки валов и простейшей балансировки роторов, а также методов поиска и устранения причин возникновения автоколебаний ротора,
  • полный, с дополнительным изучением особенностей балансировки на нестабильных частотах вращения ротора, экспертной диагностики и путей устранения причин ограничений на балансировку и центровку роторов.

Индивидуальные консультации по методам, приборам и программам центровки валов, балансировки связанных муфтами роторов, экспертной диагностики причин возникающих ограничений на достигаемую эффективность центровки и балансировки.

Особенности центровки валов

Центровка валов в собственных опорах вращения может проводиться двумя практическими способами, используемыми на разных этапах эксплуатации агрегатов.

Первый - центровка с разомкнутой соединительной муфтой, этот способ обычно используется на этапе первичной наладки агрегатов после ремонта или монтажа на месте эксплуатации, при больших начальных расцентровках валов. При разомкнутой муфте положение геометрической оси каждого вала определяется пространственным положением его опор вращения. Соответственно, результатом центровки валов фактически является обеспечение соосности опор вращения с точностью, определяемой разностью зазоров в его подшипниках. Дополнительную погрешность в определении несоосности опор по несоосности валов с разомкнутой муфтой дает начальная кривизна каждого вала, а также и его статический прогиб в горизонтальных машинах или полная величина зазора подшипника в вертикальных машинах.

При затягивании даже упругой соединительной муфты несоосность валов может изменяться, так как при несовпадении осей валов в месте соединения полумуфт на валы начинает действовать центрирующая оси сила, перераспределяющая, а иногда и многократно увеличивающая статические нагрузки на опоры вращения и смещающая ось вращения вала в опорах. При вращении ротора указанное перераспределение статической нагрузки на опоры вращения и соединительную муфту сохраняется, что достаточно часто приводит к появлению автоколебаний ротора в подшипниках скольжения.

После предварительной центровки не имеющих начальной кривизны валов с разомкнутой муфтой опоры вращения ложатся на одну ось, но затягивание неточно изготовленных полумуфт искривляет форму линии вала, что также приводит к перераспределению нагрузок на опоры вращения и смещению осей каждого из валов, т.е. к их расцентровке. Различие нагрузок на опоры вращения и муфты при несоосности опор и искривлении линии вала в том, что вторая зависит от угла поворота соединенных муфтой валов, и эта нагрузка вращается вместе с валами. Вращающаяся, т.е. динамическая нагрузка на ротор агрегата оказывает разрушающее воздействие на подшипники и муфту, резко сокращая их ресурс.

Центровка валов агрегатов в процессе эксплуатации выполняется, как правило, с затянутой муфтой, и ее практически достижимая цель - поиск компромисса между несоосностью опор вращения и искривлением линии вала из-за первичной кривизны валов и дефектов муфты. Компромиссным решением обычно является достижение минимальной расцентровки валов без учета влияния остаточного искривления линии вала на динамические силы и вибрацию агрегата. Но это решение не гарантирует отсутствия в агрегате колебательных сил на частоте вращения ротора, которые определяются кривизной вала и не снижаются в процессе балансировки агрегата на месте эксплуатации. Поэтому для снижения вибрации агрегата на частоте вращения ротора, сохраняющейся даже после балансировки, приходится либо менять соединительную муфту, либо подбирать угол смещения одной полумуфты относительно другой, совместно минимизируя несоосность валов и величину вибрации агрегата.

То, что измеряемая несоосность валов при затянутой муфте не является показателем отсутствия, как несоосности опор вращения, так и искривления линии вала, подтверждает наличие в некоторых агрегатах после успешной центровки значительных пульсирующих с частотой вращения вала моментов сил. На практике они обнаруживаются как силы, препятствующие повороту валов во время контрольного измерения несоосности роторов, когда вал «застревает» при определенном угле поворота.

Следует также отметить, что искривление линии вала может также возникать из-за смещения полумуфт под действием передаваемого через муфту рабочего момента сил, чаще всего в зубцовых муфтах. Возможна еще одна причина искривления линии вала - несовпадение осей передачи момента сил в полумуфтах. Чаще всего такое несовпадение наблюдается в упругих пластинчатых муфтах, что и является основной причиной часто встречающихся автоколебаний ротора в высокооборотных агрегатах с подшипниками скольжения и пластинчатой муфтой.

Таким образом, расцентровку валов в опорах вращения эксплуатируемого агрегата можно разделить на две части - статическую и динамическую, причем вторая проявляется при вращении роторов. Первая определяется несоосностью опор вращения и устраняется путем центровки валов с разъединенной муфтой, но необходим учет дополнительной несоосности опор из-за их теплового смещения при прогреве опор вращения, из-за разной толщины смазочного слоя и из-за разного износа вкладышей в подшипниках скольжения. Вторая определяется начальной кривизной валов, качеством изготовления и износом соединительных муфт, а также разбросом жесткостей упругих элементов муфты и устраняется, как правило, путем замены муфты, подбора жесткостей упругих вкладышей или подбора угла разворота полумуфт друг относительно друга.

Статическая расцентровка обнаруживается и оценивается достаточно просто - по измерениям несоосности валов с разомкнутой муфтой. Обнаружение и оценка динамической расцентровки производится по косвенным признакам. Таких признаков несколько, но каждый из них имеет ограниченную достоверность. Так, на остановленном агрегате обнаружить динамическую расцентровку можно:

  • путем сравнения результатов измерения несосности валов до и после размыкания муфты, они не должны различаться больше, чем на тройную ошибку измерения,
  • путем сравнения результатов измерения несосности валов с затянутой муфтой при разных начальных углах поворота ротора, они также не должны различаться больше, чем на тройную ошибку измерения,
  • путем измерения момента сил, требуемого на проворот ротора остановленного агрегата при разных начальных угловых положениях ротора, он не должен различаться больше, чем в три раза,

При работающем агрегате признаками динамической несоосности валов, соединяемых муфтой, могут быть:

  • высокий уровень вибрации, по крайней мере, двух из четырех опор вращения агрегата на кратных (2-5) гармониках частоты вращения ротора, которые по виброскорости превышают треть от уровня первой гармоники (рис. 13.3.), если первая превышает норму, или треть от нормы. При этом следует исключить из рассмотрения те гармоники, которые могут расти по другим причинам или из-за других дефектов, например, гармонику с частотой 100Гц в электрических машинах переменного тока,
  • появление в силовом токе одной их фаз приводного электродвигателя модуляции тока частотой вращения ротора с амплитудой боковой гармоники тока более чем на 1-2% (рис.13.4)
  • появление в спектре огибающей случайной вибрации подшипников от сил трения по крайней мере трех опор вращения из четырех признаков сильного боя вала (рис.13.5.).

Рис.13.3.Спектры виброскорости опор вращения агрегата с двух сторон муфты при расцентровке валов, измеренные в радиальном направлении.

Рис.13..4. Спектр тока электродвигателя агрегата с динамической расцентровкой роторов.

Рис.13.5. Спектр огибающей высокочастотной вибрации опор вращения агрегата с динамической расцентровкой роторов, наблюдается одновременно на нескольких опорах вращения

Автоколебания ротора в подшипниках скольжения

Автоколебания ротора в подшипниках возникают в узлах вращения с большими флуктуациями сил трения, сравнимыми со статической нагрузкой на подшипник, и при увеличенных зазорах в подшипнике. Как правило, такая ситуация складывается в роторах с высокими скоростями вращения и мало нагруженными подшипниками скольжения, особенно при появлении дополнительных пульсирующих моментов, в том числе и периодических. Автоколебания роторов на докритических частотах вращения в подшипниках с масляными ваннами чаще всего происходят на частоте в одну вторую от частоты вращения ротора, автоколебания роторов на закритических частотах вращения (с неразрывным масляным слоем) - на частоте чуть меньше половины оборотной частоты и/или на частоте резонанса ротора в подшипниках. Исключение составляют насосные агрегаты, где в формировании автоколебаний участвуют и гидродинамические силы в потоке перекачиваемой жидкости, поэтому частота автоколебаний может быть существенно ниже.

В основную совокупность причин автоколебаний (при отсутствии ошибок в конструктивном исполнении агрегата) следует внести:

  • перераспределение статической нагрузки на опоры вращения агрегата из-за расцентровки опор вращения,
  • динамические перемещения оси вращения вала с принудительным изменением толщины смазочного слоя (или точки формирования масляного клина) из-за динамической расцентровки валов, неуравновешенности ротора, и других сил,
  • повышенная турбулентность потока смазки из-за изменений ее вязкости, загрязнения смазки, неровностей поверхностей трения в зоне нагружения, и других причин,

Соответственно, начинать работы по устранению автоколебаний роторов в эксплуатируемых агрегатах рекомендуется с устранения статической и динамической расцентровок валов, в том числе с ремонтом или заменой соединительных муфт и последующей балансировкой ротора на месте. Если центровкой и последующей балансировкой автоколебания не убрать, можно рекомендовать контроль параметров смазки и каналов ее подачи в подшипники с наиболее характерными признаками автоколебаний. Если и эти работы не дают результата, рекомендуется проводить регламентные работы по восстановлению величины и равномерности зазора в соответствующем подшипнике, в зоне его нагружения, в том числе с заменой вкладышей.