Теория

Поток света позволяя воплощать декоративные сценарии. Правильное освещение в доме

Поток света позволяя воплощать декоративные сценарии. Правильное освещение в доме

Клеточные компьютеры представляют собой самоорганизующиеся колонии различных "умных" микроорганизмов, в геном которых удалось включить некую логическую схему, которая могла бы активизироваться в присутствии определенного вещества. Для этой цели идеально подошли бы бактерии, стакан с которыми и представлял бы собой компьютер. Такие компьютеры очень дешевы в производстве. Им не нужна столь стерильная атмосфера, как при производстве полупроводников.

Главным свойством компьютера такого рода является то, что каждая их клетка представляет собой миниатюрную химическую лабораторию. Если биоорганизм запрограммирован, то он просто производит нужные вещества. Достаточно вырастить одну клетку, обладающую заданными качествами, и можно легко и быстро вырастить тысячи клеток с такой же программой.

Основная проблема, с которой сталкиваются создатели клеточных биокомпьютеров, - организация всех клеток в единую работающую систему. На сегодняшний день практические достижения в области клеточных компьютеров напоминают достижения 20-х годов в области ламповых и полупроводниковых компьютеров. Сейчас в Лаборатории искусственного интеллекта Массачусетского технологического университета создана клетка, способная хранить на генетическом уровне 1 бит информации. Также разрабатываются технологии, позволяющие единичной бактерии отыскивать своих соседей, образовывать с ними упорядоченную структуру и осуществлять массив параллельных операций.

Трансгенные технологии

В 2001 г. американские ученые создали трансгенные микроорганизмы (т. е. микроорганизмы с искусственно измененными генами), клетки которых могут выполнять логические операции «И» и «ИЛИ», возможны сочетания этих операций. Специалисты лаборатории Оук-Ридж, штат Теннесси, использовали способность генов синтезировать тот или иной белок под воздействием определенной группы химических раздражителей. Ученые изменили генетический код бактерий Pseudomonas putida таким образом, что их клетки обрели способность выполнять простые логические операции. Например, при выполнении операции И в клетку подаются два вещества (по сути - входные операнды), под влиянием которых ген вырабатывает определенный белок. Теперь ученые пытаются создать на базе этих клеток более сложные логические элементы, а также подумывают о возможности создания клетки, выполняющей параллельно несколько логических операций.

Потенциал биокомпьютеров очень велик. К достоинствам, выгодно отличающим их от компьютеров, основанных на кремниевых технологиях, относятся:

1) более простая технология изготовления, не требующая для своей реализации столь жестких условий, как при производстве полупроводников 2) использование не бинарного, а тернарного кода (информация кодируется тройками нуклеотидов), что позволит при меньшем количестве шагов перебрать большее число вариантов при анализе сложных систем 3) потенциально исключительно высокая производительность, которая может составлять до 1014 операций в секунду за счет одновременного вступления в реакцию триллионов молекул ДНК 4) возможность хранить данные с плотностью, в триллионы раз превышающей показатели оптических дисков 5) исключительно низкое энергопотребление

Однако, наряду с очевидными достоинствами, биокомпьютеры имеют и существенные недостатки, такие как:

1) сложность со считыванием результатов - современные способы определения кодирующей последовательности не совершенны, сложны, трудоемки и дороги 2) низкая точность вычислений, связанная с возникновением мутаций, прилипанием молекул к стенкам сосудов и т.д. 3) невозможность длительного хранения результатов вычислений в связи с распадом ДНК в течение времени

Хотя до практического использования биокомпьютеров еще очень далеко, и они вряд ли будут рассчитаны на широкие массы пользователей, предполагается, что, они найдут достойное применение в медицине и фармакологии, а также с их помощью станет возможным объединение информационных и биотехнологий.

Не так давно на страницах нашего сайта мы рассказывали о создании биологического компьютера на основе цепочек ДНК , который способен выполнять заложенную в него программу. Но исследования в этом направлении ведутся различными группами исследователей, и некоторым из них удалось добиться более значимых успехов в области реализации биологических вычислительных систем. Исследователи из Научно-исследовательского института Скриппса (The Scripps Research Institute) в Калифорнии и Израильского технологического института Технион (Technion Israel Institute of Technology) разработали свой вариант биологического компьютера, сделанного полностью из сложных органических молекул, который способен расшифровывать и обрабатывать изображения "записанные" на цепочке молекулы ДНК. Этот биологический компьютер является первой реальной демонстрацией молекулярных вычислительных систем, основанных на молекулах ДНК.

Когда в этот компьютер было заложено соответствующее программное обеспечение он смог разделить сложное изображение на два разных изображения логотипов институтов Scripps Research Institute и Technion. Конечно под термином "программное обеспечение" подразумевается совсем не то программное обеспечение, с которым мы привыкли иметь дело. В подобных биологических вычислительных системах их аппаратная и программная часть представляют собой единое целое, состоящее из сложных органических молекул, которые взаимодействуют и активируют друг друга по определенным правилам, т.е. по заданной программе.

На входе биологического компьютера была цепочка ДНК в последовательности которой было закодировано исходное изображения. Проходя сквозь недра биологического компьютера эта цепочка претерпевала изменения под воздействием молекул компьютера и в конце концов превратилась в совершенно другую цепочку, содержащую два отдельных изображения, полученные из одного исходного. Сам компьютер физически представлял собой трубу, стены которой были сформированы из упорядоченных особым образом коротки цепочек ДНК, которые являлись программой этого компьютера. "Наше биологическое вычислительное устройство основано на принципах 75-летней давности, которые разработал английский математик, криптолог и программист Алан Тьюринг" - рассказывает один из ученых.

Данные исследования демонстрируют еще одну весьма перспективную возможность - возможность хранения информации, закодированной в цепочках ДНК. При этом на вид хранимой информации не накладывается никаких ограничений, а по плотности хранения информации ДНК превосходит все существующие современные технологии. Конечно биологические методы обработки информации весьма медленны, но ничего не мешает разбить длинные цепочки на короткие и произвести параллельную их обработку, получив вычислительную скорость, превышающую скорость современных компьютеров.

Биокомпьютеры будут управлять гигантскими заводами, странами и поведением людей. Компьютерами будущего станут ДНК и бактерии.

Учёные уже определились, как можно будет обойти закон Мура, согласно которому количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые два года.

Закон предсказывает, что к 2060 г. элементы микросхемы станут размером с атом, что невозможно с точки зрения квантовой механики. Хотя произойти это может гораздо раньше.

За последние несколько лет период удвоения производительности сократился с двух до полутора лет.

Впрочем, сам Гордон Мур еще в 2007 г. высказал мысль, что его закон скоро перестанет действовать из-за атомарной природы вещества и ограничения скорости света. Однако это не означает остановку технического прогресса. Принципиально новый его этап начнется, когда человечество откажется от квантових компьютеров в пользу биологических.

Биокомпьютеры — своеобразный гибрид информационных технологий и биологических систем

Исследователи биологии, физики, химии, генетики — используют природные процессы для создания искусственных вычислительных схем. Согласно прогнозу агентства IDC к 2020 г. объём данных, созданных и сохраненных человечеством, достигнет 40 000 эксабайт. Это 40 трлн гигабайт, или по 5200 гигабайт на человека.

Для хранения такого объёма информации было бы достаточно менее 100 г ДНК. Вычислительная мощность ДНК-процессора размером с каплю превышает возможности самых продвинутых суперкомпьютеров.

Более 10 трлн ДНК-молекул занимают объём всего в 1 куб. см. Такого количества достаточно для хранения объёма информации в 10 Тбайт, при этом они могут производить 10 трлн операций в секунду.

Ещё одно преимущество ДНК-процессоров в сравнении с обычными кремниевыми заключается в том, что триллионы молекул ДНК, работая одновременно, могут производить все вычисления не последовательно, а параллельно, что обеспечивает моментальное выполнение сложнейших математических расчётов (до 1014 операций в секунду).

Теоретически кодировать информацию в молекулах несложно: по сути, это происходит по аналогии с обычным программированием. Современные компьютеры работают с бинарной логикой: используя последовательность нулей и единиц, можно закодировать любую информацию.

В молекулах ДНК имеется четыре базовых основания: аденин (A), гуанин (G), цитозин (C) и тимин (T), связанных в цепочку. При кодировании информации на молекуле ДНК используется четверичная логика.

Как современные микропроцессоры имеют набор базовых функций типа сложения, сдвига, логических операций, так ДНК-молекулы под воздействием энзимов могут выполнять такие базовые операции, как разрезание, копирование, вставка и т. п.

Причём разные манипуляции с ДНК-молекулами идут параллельно — они не будут влиять друг на друга. Это необходимо для решения многоуровневых задач.

Экспериментов было немало, причём использовались не только ДНК, но и РНК. Ученые Принстонского университета заставили молекулы рибонуклеиновой кислоты решать комбинаторную шахматную задачу. РНК нашли правильный ход шахматного коня на доске из 512 вариантов.

Первый «физически осязаемый» биокомпьютер в 1999 г. создал профессор Ихуд Шапиро Вейцмановского института естественных наук. Пластмассовая модель имитировала работу молекулярной машины в живой клетке.

В 2001-м Шапиро удалось воплотить систему в реальном биокомпьютере, который состоял из молекул ДНК, РНК и специальных ферментов. Молекулы фермента выполняли роль аппаратного, а молекулы ДНК — программного обеспечения. При этом в одной пробирке помещалось около триллиона элементарных вычислительных модулей.

В результате скорость вычислений достигла миллиарда операций в секунду, а точность — 99,8%. Но биокомпьютер Шапиро может применяться лишь для решения самых простых задач, выдавая всего два типа ответа: «истина» или «ложь».

В конце февраля 2002 г. появилось сообщение, что японская фирма Olympus Optical в сотрудничестве с профессором Токийского университета Акирой Тоямой претендует на первенство в создании коммерческой версии ДНК-компьютера. Обычно анализ генов выполняется вручную и занимает более трёх дней: Биосистема же способна выполнять все необходимые расчёты всего за шесть часов.

Результаты более свежих исследований и достижений в этой сфере остаются засекреченными. Из дозированных сообщений известно лишь, что учёные работают над решением двух принципиальных задач, без ответа на которые невозможно создать полноценный биокомпьютер. Первая — организация клеток в единую рабочую систему. Вторая — быстрое и правильное извлечение сохраненной информации.

Биокомпьютер заменит все традиционные технические средства

Биокомпьютеры произведут революцию не только в IT-сфере, но и во многих других отраслях.

Учёные уверены, что в перспективе ДНК-машины смогут взаимодействовать с клетками человека, осуществлять наблюдение за потенциальными болезнетворными изменениями и синтезировать лекарства для борьбы с ними, производить гормоны и доставлять определенную дозу препарата к конкретному органу.

Психиатры говорят о возможности внедрения крошечных биомашин в организм человека для лечения психических расстройств, а со временем и для коррекции поведенческих реакций.

С помощью клеточных компьютеров можно будет объединить технологии для управления предприятиями всех видов продукции. Причём всего за несколько часов можно будет проанализировать эффективность деятельности огромного завода, просчитать конкурентоспособность основных видов товаров и необходимость расширения производства.

Биокомпьютерные технологии в бизнесе, науке, производстве и даже в управлении государством позволят моментально найти наилучшие решения — это избавит мир от фатальных проблем, связанных с не­­умелым руководством.

Способность получать как можно больше пользы за счёт технологий