Измерительные

Вспышка определение. Определение температуры вспышки нефтепродуктов

Вспышка определение. Определение температуры вспышки нефтепродуктов

Лабораторная работа №2

Определение температуры вспышки в открытом тигле (ГОСТ 4333-87)

Цель работы - э кспериментальное определение температуры вспышки в открытом тигле для горючих нефтепродуктов, в частности для дизельного топлива и мазута, и сравнение с показателями ГОСТа на товарные нефтепродукты.

Краткие теоретические сведения

Температуру вспышки измеряют в приборах закрытого и открытого типов.

Метод открытого тигля моделирует возгорание жидкости в открытых сосудах или при случайном разливе и применяется для нефтепродуктов с низким давлением насыщенных паров, обычно для минеральных масел и остаточных нефтепродуктов.

Величина температуры вспышки одного и того же продукта в аппаратах открытого типа всегда несколько выше, чем в аппаратах закрытого типа. Это объясняется тем, что в последних испарение продукта происходит в сосуде и давление паров, необходимое для создания воспламеняющейся при поднесении пламени смеси продукта с воздухом, достигается значительно раньше, чем в приборах открытого типа. В приборах открытого типа образующиеся пары имеют возможность свободно диффундировать в воздух, где значительная часть их рассеивается.

Подобная разность вспышек возрастает по мере увеличения вязкости продуктов. В случае тяжелых нефтепродуктов эта разница в величине температуры вспышки может доходить до 50 0 С, в случае маловязких масел она составляет от 3 до 8 0 С.

Методика определения

Сущность метода заключается в определении температуры, при которой пары нефтепродукта, нагреваемого в установленных настоящим стандартом условиях, образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ней пламени.

Аппаратура, материалы и реактивы

Аппарат для определения температуры вспышки и воспламенения нефтепродуктов в открытом тигле (рис.1); щит из листовой кровельной стали, окрашенной с внутренней стороны черной краской, высотой 550-650 мм или экран, окрашенный с внутренней стороны черной краской, каждая секция которого имеет ширину (461) см и высоту 671) см; термометр типа ТН-2; секундомер любого типа; барометр; барометр-анероид; бензин-растворитель.

Рисунок 1 - Определение температуры вспышки в открытом тигле:

1- наружный тигель; 2- внутренний тигель; 3- термометр; 4- шаблон; 5- штатив; 6 - лампа Бартеля; 7-лучины; 8- песок.

Проведение испытания

Испытуемый образец продукта перед анализом перемешивают в течение 5 мин. встряхиванием в склянке, заполненной не более чем на 2/3 её вместимости.

Аппарат устанавливают на ровном устойчивом столе в таком месте, где нет заметного движения воздуха. Поверхность над тиглем предохраняют от попадания дневного света во избежание помех при определении температуры вспышки. Защищают аппарат от движения воздуха щитом или экраном.

Тигель 2 промывают бензином для удаления следов нефтепродуктов от предыдущего испытания. Углеродистые отложения удаляют металлической щеткой. После этого тигель промывают холодной дистиллированной водой и высушивают на открытом пламени или горячей плиткой с целью удаления следов растворителя и воды. Тигель 2 охлаждают до температуры 15-25°С и ставят в наружный тигель 1 аппарата с прокаленным песком так, чтобы песок был на высоте около 12 мм от края внутреннего тигля, а между дном этого тигля и наружным тиглем был песок, толщина слоя которого 5-8 мм, что может быть проверено при помощи шаблона 4. Испытуемый нефтепродукт наливают во внутренний тигель 2 так, чтобы уровень жидкости отстоял от края на 12 мм для нефтепродуктов со вспышкой до 210°С включительно и на 18 мм - нефтепродуктов со вспышкой выше 210°С. Правильность налива нефтепродукта проверяют шаблоном 4, налив нефтепродукта производят до соприкосновения поверхности нефтепродукта с острием указателя высоты уровня жидкости. При нагревании допускается разбрызгивания нефтепродукта и смачивания стенок внутреннего тигля выше уровня жидкости.

Во внутренний тигель с нефтепродуктом устанавливают термометр 3 строго вертикальном положении так, чтобы ртутный шарик находился в центре тигля приблизительно на одинаковом расстоянии от дна тигля и от уровня нефтепродукта и закрепляют термометр в таком положении в лапке штатива 5.

Наружный тигель аппарата нагревают пламенем газовой горелки или лампы Бартеля 5, или электрической плиткой так, чтобы испытуемый нефтепродукт нагревался на 10°С в 1 мин. За 40С до ожидаемой температуры вспышки нагрев ограничивают 4°С в 1 мин.

За 10°С до ожидаемой температуры вспышки проводят медленно по краю тигля на расстоянии 10-14 мм от поверхности испытуемого нефтепродукта и параллельно этой поверхности пламенем зажигательного приспособления (лучинки) 7. Длина пламени должна быть 3-4 мм. Время продвижения пламени от одной стороны тигля до другой 2-3 с. Такое испытание повторяют через 2°С подъема температуры.

За температуру вспышки принимают температуру, показываемую термометром при появлении первого синего пламени над частью или над всей поверхностью испытуемого нефтепродукта. В случае появления неясной вспышки она должна быть подтверждена последующей вспышкой через 2°С.

Расхождения между двумя последовательными определениями температуры вспышки не должны превышать следующих величин:

Температура вспышки Допускаемые расхождения

Свыше 150 6

За результат определения принимают среднее арифметическое двух последовательных определений. Вычисляют температуру вспышки с поправкой на барометрическое давление. Прибавляют поправку на барометрическое давление, если оно ниже 95,1 кПа (715 мм.рт.ст.) в соответствии со следующими данными:

Барометрическое давление кПа (мм.рт.ст.) Поправка, °С

от 95,3 до 88,7 (от 715 до 665) 2

от 88,6 до 81,3 (от 664 до 610) 4

от 81,2 до 73,3 (от 609 до 550) 6

Практическая часть

Испытуемый образец авиационное масло МС-8П t всп ≥150°С по ГОСТу.

152°С-нет вспышки

154°С-нет вспышки

168°С-нет вспышки

174°С-нет вспышки

177°С-нет вспышки

179°С-есть вспышка

Вывод: экспериментально определили температуру вспышки в открытом тигле для горючего нефтепродукта, в частности для авиационного масла МС-8П, и сравнили с показателями ГОСТа на товарные нефтепродукты. Испытуемое дизельное топливо соответствует ГОСТу. Авиационное масло МС-8П относится к горючим жидкостям.

ГОСТ ISO 2719-2013

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НЕФТЕПРОДУКТЫ

Методы определения температуры вспышки в закрытом тигле Пенски-Мартенса

Petroleum products. Methods for determination of flash point in Pensky-Martens closed cup


МКС 75.080

Дата введения 2015-01-01

Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ" (ФГУП "ВНИЦСМВ") на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4 стандарта, который выполнен ОАО "ВНИИ НП"

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 5 ноября 2013 г. N 61-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Азербайджан

Азстандарт

Казахстан

Госстандарт Республики Казахстан

Киргизия

Кыргызстандарт

Молдова

Молдова-Стандарт

Россия

Росстандарт

Украина

Минэкономразвития Украины

4 Настоящий стандарт идентичен международному стандарту ISO 2719:2002* Determination of flash point - Pensky-Martens closed cup method (Определение температуры вспышки. Метод Пенски-Мартенса в закрытом тигле).
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт http://shop.cntd.ru . - Примечание изготовителя базы данных.

Настоящий стандарт разработан на основе ГОСТ Р ЕН ИСО 2719-2002 "Нефтепродукты. Методы определения температуры вспышки в закрытом тигле Пенски-Мартенса".

Стандарт ISO 2719:2002 разработан Комитетом ISO/TC 28 "Нефтепродукты и смазочные материалы".

Перевод с английского языка (en).

Официальные экземпляры международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, и международных стандартов, на которые даны ссылки, имеются в Федеральном информационном фонде технических регламентов и стандартов.

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам приведены в дополнительном приложении ДА.

Степень соответствия - идентичная (IDT)

5 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. N 724-ст межгосударственный стандарт ГОСТ ISO 2719-2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Июнь 2014 г.


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет


Предупреждение - В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его применением. Пользователь настоящего стандарта несет ответственность за установление соответствующих правил по технике безопасности и охране здоровья, а также определяет целесообразность применения законодательных ограничений перед его использованием.

1 Область применения

1 Область применения

1.1 Настоящий стандарт устанавливает два метода (А и В) определения температуры вспышки горючих жидкостей, жидкостей, содержащих суспендированные твердые вещества, жидкостей, склонных к образованию пленки на поверхности в условиях испытания, и других жидкостей в аппарате Пенски-Мартенса с закрытым тиглем. Методы распространяются на жидкости, температура вспышки которых выше 40 °С.

Примечание 1 - Обычно испытание технических керосинов с температурой вспышки выше 40 °С проводят по стандарту , но можно провести их испытания и по настоящему стандарту. Испытания неиспользованных смазочных масел обычно проводят по стандарту .

1.2 Метод А применяют для определения температуры вспышки лаков и красок, которые не образуют пленку на поверхности, товарных смазочных масел и других нефтепродуктов, для которых не пригоден метод В.

1.3 Метод В применяют для определения температуры вспышки остаточных жидких топлив, разжиженных битумов, отработанных смазочных масел, жидкостей, склонных к образованию пленки на поверхности; жидкостей, содержащих суспендированные твердые вещества, и высоковязких жидких продуктов, таких как растворы полимеров и клейкие вещества.

Примечание 2 - Для сравнения температур вспышки неиспользованных и отработанных смазочных масел в рамках программы исследований смазочных материалов можно провести испытания отработанных смазочных масел по методу А. Однако данные по прецизионности для таких продуктов установлены только для метода В.

1.4 Настоящий стандарт не распространяется на лаки на водной основе и жидкости, содержащие следы низкокипящих веществ.

Примечание 3 - Испытания лаков на водной основе проводят по стандарту . Жидкости, содержащие следы низкокипящих веществ, можно испытать по стандарту или стандарту .

Примечание 4 - Данные по прецизионности действительны только для интервалов температур вспышки, приведенных в разделе 13.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы*. Для датированных ссылок применяют только указанное издание ссылочного документа, для недатированных ссылок применяют последнее издание ссылочного документа (включая все его изменения).
_______________
* Таблицу соответствия национальных стандартов международным см. по ссылке. - Примечание изготовителя базы данных.

ISO 1513:1992 Paints and varnishes - Examination and preparation of samples for testing (Лаки и краски. Проверка и приготовление образцов для испытания)

ISO 3170:2004 Petroleum liquids - Manual sampling (Нефтепродукты жидкие. Ручной отбор проб)

ISO 3171:1988 Petroleum liquids - Automatic pipeline sampling (Нефтепродукты жидкие. Автоматический отбор проб из трубопровода)

ISO 15528:2000 Paints, varnishes and raw materials for paints and varnishes - Sampling (Лаки, краски и сырье для лаков и красок. Отбор проб)

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1 температура вспышки (flash point): Минимальная температура, при которой происходит воспламенение паров образца от пламени в установленных условиях испытания при барометрическом давлении 101,3 кПа, при этом пламя распространяется по всей поверхности образца.

4 Сущность метода

В испытательный тигель аппарата Пенски-Мартенса помещают испытуемый образец и нагревают таким образом, чтобы при непрерывном перемешивании происходило постоянное повышение температуры. Источник зажигания опускают через равномерные интервалы времени через отверстие в крышке тигля, одновременно с этим перемешивание прекращают. Самую низкую температуру, при которой источник зажигания вызывает возгорание паров испытуемого образца нефтепродукта, а пламя распространяется по поверхности жидкости, регистрируют как температуру вспышки при фактическом барометрическом давлении. Эту температуру с помощью уравнения приводят к стандартному атмосферному давлению.

5 Реактивы и материалы

5.1 Растворитель для удаления остатков образца из тигля и с крышки.

Примечание - Выбор растворителя зависит от растворимости остатка предварительно испытанного нефтепродукта. Для удаления маслянистых остатков можно использовать низкокипящие ароматические растворители (не содержащие бензол); для смолообразных остатков эффективными могут быть смеси растворителей, например толуол-ацетон-метанол.

5.2 Жидкости для проверки - см. приложение А.

6 Аппаратура

6.1 Аппарат Пенски-Мартенса для определения температуры вспышки в закрытом тигле (приложение В).

Если для испытания применяют автоматическое оборудование, следует убедиться, что полученные результаты находятся в пределах прецизионности настоящего метода и размеры испытательного тигля и крышки соответствуют техническим требованиям, приведенным в приложении В. Кроме того, следует убедиться, что выполнены все инструкции изготовителя по регулировке и эксплуатации при применении автоматического испытательного оборудования.

Примечание - В некоторых случаях при использовании электрического источника зажигания результаты могут отличаться от полученных при использовании запальника в качестве источника зажигания. Кроме того, применение электрических источников зажигания может привести к нестабильным результатам.


В спорных случаях арбитражным является ручное определение температуры вспышки с применением пламенного запала в качестве источника зажигания.

6.2 Термометры для низких, средних и высоких диапазонов температур, характеристики которых приведены в приложении С. Перед началом измерений выбирают термометр в соответствии с предполагаемой температурой вспышки.

Примечание - Можно использовать другие устройства для измерения температуры при условии, что они соответствуют требованиям точности и дают такие же показания, что и термометры, приведенные в приложении С.

6.3 Барометры с погрешностью до 0,1 кПа. Не следует применять барометры, предварительно откорректированные на давление над уровнем моря, которые используют на метеорологических станциях и в аэропортах.

6.4 Нагревательная баня или термостат, обеспечивающий поддержание температуры при нагревании образца с точностью ±5 °С. Термостат должен быть оснащен системой вентиляции и сконструирован таким образом, чтобы не вызывать воспламенение огнеопасных паров, которые могут образовываться при нагревании образца.

Рекомендуется конструкция термостата во взрывобезопасном исполнении.

7 Подготовка аппарата

7.1 Установка аппарата

Аппарат для определения температуры вспышки (6.1) устанавливают на ровной, устойчивой поверхности в помещении без сквозняка.

Примечание 1 - Если сквозняка невозможно избежать, аппарат защищают экраном со всех сторон.

Примечание 2 - Если испытуемые образцы выделяют ядовитые пары, испытательный аппарат должен быть установлен в вытяжном шкафу с регулируемым потоком отходящего воздуха. Поток отходящего воздуха регулируют таким образом, чтобы пары отводились, не создавая вихревых потоков воздуха над тиглем.

7.2 Очистка испытательного тигля

Испытательный тигель и крышку, включая комплектующие, моют соответствующим растворителем (5.1) для удаления любых следов смолы или остаточных продуктов, оставшихся от предыдущего испытания. Затем тигель сушат потоком чистого воздуха для полного удаления используемого растворителя.

7.3 Сборка испытательного аппарата

Тигель, крышку и другие детали проверяют на наличие повреждений или отложений. Аппарат собирают в соответствии с приложением В.

7.4 Проверка испытательного аппарата

7.4.1 Правильность работы испытательного аппарата проверяют не реже одного раза в год испытанием сертифицированного стандартного материала (CRM) по методу А. Полученный результат должен быть равен или отличаться от значения CRM не более чем , где - воспроизводимость метода (таблица 3).

Рекомендуется проводить более частые проверки, используя вторичные рабочие стандарты (SWS) (5.2).

В приложении А приведена рекомендуемая процедура для проверки испытательного аппарата с использованием CRM и SWS, а также приготовление SWS.

7.4.2 Значения, полученные во время проверки, не могут быть использованы ни для определения отклонения (смещения), ни для любой корректировки температур вспышки, впоследствии определяемых с использованием испытательного аппарата.

8 Отбор проб

8.1 Если не установлено иное, отбор проб проводят по ISO 15528, ISO 3170, ISO 3171 или эквивалентным национальным стандартам.

8.2 Пробу помещают в герметичные контейнеры, подходящие для отбираемого материала. Для обеспечения безопасности следует убедиться, что контейнер для пробы заполнен только на 85%-95% вместимости.

8.3 Пробы хранят в условиях, при которых потери от испарения и повышение давления минимальны. Следует избегать хранения проб при температуре выше 30 °С.

9 Подготовка образцов

9.1 Нефтепродукты

9.1.1 Отбор проб для испытания

Отбор проб для испытания проводят при температуре не менее чем на 28 °С ниже ожидаемой температуры вспышки. Если до испытания образец должен находиться на хранении, следует убедиться, что контейнер заполнен более чем на 50% его вместимости (примечание к 10.1).

9.1.2 Пробы, содержащие нерастворенную воду

Если проба содержит нерастворенную воду, перед перемешиванием ее следует отделить от воды.

Присутствие воды может влиять на результаты определения температуры вспышки. Для некоторых жидких топлив и смазочных масел пробу не всегда можно отделить от свободной воды. В таких случаях вода должна быть физически отделена от пробы нефтепродукта или, если это невозможно, испытание пробы проводят по стандарту .

9.1.3 Пробы жидкие при температуре окружающей среды

Перед отбором пробы для испытания образец перемешивают вручную осторожным встряхиванием, следя за тем, чтобы минимизировать потери низкокипящих компонентов, а далее действуют в соответствии с разделом 10.

9.1.4 Пробы полутвердые или твердые при температуре окружающей среды

Контейнер с пробой нагревают в нагревательной бане или термостате (6.4) в течение 30 мин при температуре (30±5) °С или при более высокой температуре, не превышающей ожидаемую температуру вспышки на 28 °С. Если проба не становится полностью жидкой через 30 мин, то ее предварительное нагревание продолжают по мере необходимости дополнительными периодами по 30 мин. Следует избегать перегрева пробы, что может привести к потере низкокипящих компонентов. Далее после осторожного перемешивания поступают в соответствии с разделом 10.

9.2 Краски и лаки

Подготовку проб проводят по ISO 1513.

10 Проведение испытания

10.1 Общие положения

Примечание - Результаты определения температуры вспышки могут быть искажены, если контейнер заполнен пробой менее чем на 50% его вместимости.


Следует быть внимательным при испытании образцов мазута, содержащих значительное количество воды, так как нагревание таких образцов может вызвать их вспенивание и выброс из испытательного тигля.

10.2 Метод А

10.2.1 По барометру (6.3) записывают давление окружающей среды около аппарата во время испытания.

Примечание - Нет необходимости корректировать давление окружающей среды на 0 °С, хотя некоторые барометры выполняют эту корректировку автоматически.

10.2.2 Испытательный тигель заполняют образцом (7.3) до метки. Тигель закрывают крышкой и помещают в нагревательную камеру. Убеждаются, что он расположен нормально и запирающий механизм зафиксирован, затем помещают термометр (6.2). Зажигают запальное пламя и регулируют, чтобы его диаметр был в пределах от 3 до 4 мм, или включают альтернативный источник запального пламени. Зажигают нагревательное пламя (нагревательную горелку) или включают электрический нагреватель и нагревают с такой скоростью, чтобы температура испытуемого образца, фиксируемая термометром, повышалась на 5 °С - 6 °С в минуту; эту скорость нагревания поддерживают в течение всего испытания.

Перемешивают испытуемый образец сверху вниз со скоростью от 90 до 120 об/мин.

10.2.3 Если ожидаемая температура вспышки испытуемого образца не выше 110 °С, первое испытание пламенем проводят при достижении температуры испытуемой пробы на (23±5) °С ниже ожидаемой температуры вспышки и далее с интервалами 1 °С. Перемешивание прерывают и проводят зажигание, запуская механизм, расположенный на крышке, который управляет заслонкой и запальным устройством таким образом, что пламя опускается в паровое пространство тигля в течение 0,5 с, остается в нижнем положении 1 с и быстро возвращается в верхнее положение.

10.2.4 Если ожидаемая температура вспышки выше 110 °С, первое испытание пламенем проводят при достижении температуры испытуемого образца на (23±5) °С ниже ожидаемой температуры вспышки и далее с интервалами 2 °С. Перемешивание прерывают и проводят зажигание, запуская расположенный на крышке механизм, который управляет заслонкой и зажигательным устройством таким образом, что пламя опускается в паровое пространство тигля в течение 0,5 с, остается в нижнем положении 1 с и быстро возвращается в верхнее положение.

10.2.5 Если температура вспышки испытуемого продукта неизвестна, то проводят предварительное испытание при подходящей исходной температуре. Первое поджигание проводят при температуре на 5 °С выше исходной температуры, затем действуют в соответствии с процедурой, приведенной в 10.2.3 или 10.2.4.

10.2.6 В качестве наблюдаемой температуры вспышки записывают температуру испытуемого образца по показанию термометра в то время, когда пламя запального устройства вызывает четко выраженную вспышку внутри испытательного тигля.

Температуру вспышки не следует путать с голубоватым ореолом, который иногда окружает источник зажигания перед тем, как он вызывает вспышку.

10.2.7 Если температура, при которой наблюдается вспышка, отличается менее чем на 18 °С и более чем на 28 °С от температуры, при которой было проведено первое применение источника зажигания, результат считают недействительным. В этом случае испытание повторяют с другой порцией образца, а температуру, при которой зажигательное устройство вводят впервые, подбирают таким образом, чтобы был получен достоверный результат, следовательно, температура вспышки должна быть на18 °С - 28 °С выше температуры, при которой проводилось первое испытание пламенем.

10.3 Метод В

10.3.1 Записывают давление окружающей среды по барометру (6.3) вблизи аппарата во время испытания (см. примечание к 10.2.1).

10.3.2 Помещают испытуемый образец в испытательный тигель (7.3) до метки. Тигель закрывают крышкой и помещают в нагревательную камеру. Убеждаются, что он расположен нормально и зафиксирован, и затем вставляют термометр (6.2). Зажигают пламя и устанавливают диаметр запального пламени в пределах от 3 до 4 мм либо включают альтернативный источник зажигания. Затем осуществляют нагревание, поджигая нагревательное пламя или включая электрический нагреватель, чтобы температура испытуемого образца, фиксируемая термометром, поднималась со скоростью от 1 °С до 1,5 °С в минуту; эту скорость нагревания сохраняют во время всего испытания. Испытуемый образец перемешивают сверху вниз со скоростью (250±10) об./мин.

10.3.3 Выполняют испытание согласно 10.2.3-10.2.7, за исключением требований по скорости нагревания и скорости перемешивания, приведенных в 10.3.2.

11 Вычисления

11.1 Пересчет показаний барометрического давления

Если барометрическое давление измерено в единицах, отличных от килопаскалей, то его пересчитывают по одному из следующих выражений:

значение в гектопаскалях0,1 = значение в килопаскалях;

значение в миллибарах0,1 = значение в килопаскалях;

значение в миллиметрах ртутного столба1,333 = значение в килопаскалях.

11.2 Пересчет наблюдаемой температуры вспышки на стандартное атмосферное давление

Температуру вспышки , с поправкой на стандартное атмосферное давление 101,3 кПа, рассчитывают по формуле

где - температура вспышки при барометрическом давлении окружающей среды, °С;

- барометрическое давление окружающей среды, кПа.

Примечание - Эта формула действительна только для барометрического давления в диапазоне от 98,0 до 104,7 кПа.

12 Обработка результатов

Записывают температуру вспышки с поправкой на стандартное атмосферное давление, округляя до 0,5 °С.

13 Прецизионность

13.1 Общие положения

Прецизионность, определенная статистической оценкой результатов межлабораторных испытаний по стандарту , приведена в 13.2 и 13.3.

13.2 Повторяемость (сходимость)

Расхождение между двумя результатами испытаний, полученными одним оператором на одной и той же аппаратуре при постоянных условиях на идентичном испытуемом материале при нормальном и правильном выполнении метода испытания в течение длительного времени, может превышать значения, приведенные в таблицах 1 и 2, только в одном случае из двадцати.

Таблица 1 - Повторяемость для метода А

В градусах Цельсия

Материал (нефтепродукт)

Диапазон температуры вспышки

Повторяемость

Краски и лаки

От 40 до 250 включ.



Таблица 2 - Повторяемость для метода В

В градусах Цельсия

Материал (нефтепродукт)

Диапазон температуры вспышки

Повторяемость

От 40 до 110

Отработанные смазочные масла

От 170 до 210

Жидкости, склонные к образованию пленки на поверхности; жидкости с суспендированными твердыми материалами; высоковязкие продукты

Данные, полученные для одного образца дизельного моторного топлива, испытанного в 20 лабораториях.

Данные по прецизионности были определены Комитетом ASTM D-1.

13.3 Воспроизводимость

Расхождение между двумя независимыми результатами испытаний, полученными разными операторами, работающими в разных лабораториях, на идентичном испытуемом материале при нормальном и правильном выполнении метода испытаний в течение длительного времени, может превышать значения, приведенные в таблицах 3 и 4, только в одном случае из двадцати.

Таблица 3 - Воспроизводимость для метода А

В градусах Цельсия

Материал (нефтепродукт)

Диапазон температуры вспышки

Воспроизводимость

Краски и лаки

Дистилляты и свежие смазочные масла

От 40 до 250

Среднеарифметическое значение сравниваемых результатов испытания.


Таблица 4 - Воспроизводимость для метода В

В градусах Цельсия

Материал (нефтепродукт)

Диапазон температуры вспышки

Воспроизводимость

Остаточные топлива и разжиженные битумы

От 40 до 110

Отработанные смазочные масла

От 170 до 210

Жидкости, склонные к образованию поверхностной пленки; жидкости с суспендированными твердыми веществами; высоковязкие продукты

Данные получены для одного образца дизельного моторного топлива, испытанного в 20 лабораториях.

Прецизионность установлена Комитетом ASTM D-1.

14 Протокол испытаний

Протокол испытаний должен содержать:

а) обозначение настоящего стандарта и примененную процедуру;

b) тип и полную идентификацию испытуемого образца;

c) температуру предварительного подогрева и время подогрева, если он применялся (9.1.4);

d) барометрическое давление вблизи испытательного аппарата (10.2.1 и 10.3.1);

e) результат испытания (раздел 12);

f) любое отклонение от установленной процедуры испытания;

g) дату проведения испытания.

Приложение А (справочное). Проверка аппарата

Приложение А
(справочное)

А.1 Общие положения

В настоящем приложении изложены процедура приготовления вторичных рабочих стандартов (SWS) и метод для контрольной проверки с использованием SWS и сертифицированного стандартного материала (CRM).

Функционирование аппарата (ручного или автоматического) следует регулярно проверять с использованием CRM, приготовленного по стандартам и , или SWS, приготовленных в соответствии с одной из процедур, приведенных в А.2.2. Функционирование аппарата должно быть оценено по стандартам и .

Оценка результата испытания проводится с 95%-ной доверительной вероятностью.

А.2 Стандарты для контрольной проверки

А.2.1 CRM - стабильный индивидуальный углеводород или другое стабильное вещество, температура вспышки которого определена по стандартам и в ходе специальных межлабораторных испытаний по определению сертифицированного значения, характерного для настоящего метода.

А.2.2 SWS - стабильный нефтепродукт или индивидуальный углеводород, или другое стабильное вещество, температура вспышки которого была определена:

а) испытанием представительных образцов не менее трех раз, с использованием аппаратуры, которая предварительно была проверена с использованием CRM, с последующим статистическим анализом полученных результатов, исключая любые выпадающие из них результаты и вычисляя среднеарифметическое значение полученных результатов;

b) проведением межлабораторной программы испытаний по настоящему методу, в которой принимают участие не менее трех лабораторий, выполняющих параллельные испытания представительных образцов. Окончательное значение температуры вспышки должно быть вычислено после проведения статистического анализа результатов, полученных при межлабораторных испытаниях.

SWS хранят в контейнерах, позволяющих сохранить их чистоту, защищенных от прямых солнечных лучей, при температуре не выше 10 °С.

А.3 Проведение испытаний

А.3.1 Выбирают CRM или SWS, температура вспышки которых попадает в диапазон температур, определенный с использованием рассматриваемого аппарата.

CRM и SWS выбирают таким образом, чтобы их температура вспышки находилась в пределах интервала, измеренного с помощью прибора. Приблизительные значения температуры вспышки приведены в таблице А.1.


Таблица А.1 - Приблизительные значения температуры вспышки углеводородов в закрытом тигле

Углеводород

Номинальная температура вспышки, °С

Ундекан

Додекан

Тетрадекан

Гексадекан


Для того чтобы охватить по возможности большую часть используемого диапазона температур, рекомендуется применять два CRM или SWS. Кроме того, рекомендуется провести повторные испытания с применением аликвот CRM или SWS.

А.3.2 Для новой аппаратуры и не менее одного раза в год для работающей аппаратуры выполняют контрольные проверки по 10.2 с использованием CRM (А.2.1).

А.3.3 При промежуточной проверке по 10.2 для контроля используют SWS (А.2.2).

А.3.4 Полученные результаты корректируют на барометрическое давление в соответствии с 11.2. В окончательный отчет записывают откорректированный результат с точностью до 0,1 °С.

А.4 Обработка результатов испытаний

А.4.1 Общая информация

Сравнивают откорректированный результат с сертифицированным значением температуры вспышки CRM или известной температурой вспышки SWS.

В формулах, приведенных в А.4.1.1 и А.4.1.2, предусмотрено, что воспроизводимость была оценена по стандарту , а сертифицированное значение температуры вспышки CRM или заданное значение температуры вспышки SWS было определено с использованием процедур по руководству , и его неопределенность мала по сравнению со стандартным отклонением настоящего метода испытания и, следовательно, мала по сравнению со значением воспроизводимости настоящего метода испытания.

А.4.1.1 Единичное испытание

Для единичного испытания, проведенного с использованием CRM или SWS, разность между единичным результатом и сертифицированным значением температуры вспышки CRM или обозначенным значением температуры вспышки SWS должна находиться в пределах следующего допуска

где - результат испытания;



- воспроизводимость настоящего метода испытания.

А.4.1.2 Многократные испытания

Если ряд повторных испытаний проведен с использованием CRM или SWS, разность между средним значением результатов и сертифицированным значением CRM или обозначенным значением SWS должна находиться в пределах следующего допуска

где - среднеарифметическое значение результатов испытания;

Сертифицированное значение температуры вспышки CRM или обозначенное значение температуры вспышки SWS;

- рассчитывают по формуле

где - повторяемость настоящего метода испытания;

Количество повторных испытаний, выполненных с использованием CRM или SWS.

А.4.2 Если результат испытания находится в пределах установленного допуска, это должно быть записано.

А.4.3 Если результат испытания находится вне пределов требуемого допуска, а для контрольной проверки аппаратуры был использован SWS, это записывают и повторяют испытание с использованием CRM. Если в этом случае результат испытания находится в пределах установленного допуска, это также записывают.

А.4.4 Если результат испытания все еще находится вне пределов требуемого допуска, проверяют испытательную аппаратуру и убеждаются в том, что она соответствует требованиям спецификации. Если не установлены очевидные несоответствия, выполняют еще одну контрольную проверку с использованием CRM. Если результат испытания находится в пределах установленного допуска, это записывают. Если результат испытания все еще находится вне пределов требуемого допуска, то аппаратуру отправляют изготовителю для тщательной проверки.

Приложение В (обязательное). Аппарат Пенски-Мартенса с закрытым тиглем

Приложение В
(обязательное)

В.1 Общая информация

В настоящем приложении приведено описание аппарата, работающего в ручном режиме, нагреваемого газом или электронагревателем и оснащенного источником зажигания с применением пламени. Аппарат состоит из испытательного тигля, крышки со вспомогательным приспособлением и нагревательной камеры, представленных в разделах В.2-В.4. На рисунке В.1 приведен типичный аппарат c газовым нагревателем.

1 - ручка (не обязательна); 2 - передняя часть; 3 - запальник; 4 - обогреватель: газовая горелка или электроэлемент (на рисунке приведена горелка); 5 - металлическая стенка воздушной бани, окружающей тигель, толщиной не менее 6,5 мм; 6 - нагревательная камера; 7 - воздушная баня; 8 - колпак; 9 - крышка; 10 - зажигательное устройство; 11 - гибкий вал; 12 - рукоятка, приводящая в движение заслонку; 13 - термометр; 14 - втулка диаметром не более 9,5 мм; 15 - тигель; 16 - заслонка; 17 - воздушный зазор

Примечание - Крышка устанавливается поворотом влево или вправо.

Рисунок В.1 - Аппарат Пенски-Мартенса с закрытым тиглем с газовым нагревателем

В.2 Испытательный тигель

Испытательный тигель из латуни или другого нержавеющего металла с аналогичной теплопроводностью, форма и размеры которого должны соответствовать приведенным на рисунке В.2. Фланец должен быть оснащен приспособлениями для фиксации положения тигля в нагревательной камере. Ручка, прикрепленная к фланцу тигля, является желательным приспособлением. Она не должна быть настолько тяжелой, чтобы опрокидывать тигель.

1 - метка наполнения

Рисунок В.2 - Испытательный тигель

В.3 Крышка с комплектующими

В.3.1 Крышка должна включать нижеперечисленные элементы.

В.3.2 Крышка из латуни или другого нержавеющего металла аналогичной проводимости, имеющая бортик, выступающий вниз почти до фланца тигля, как показано на рисунке В.3. Зазор между бортиком и наружной поверхностью тигля не должен превышать 0,36 мм в диаметре. Необходимо предусмотреть установочное или запорное устройство или и то, и другое, соединяющееся с соответствующим приспособлением на тигле. В крышке имеются три отверстия А, В и С, показанные на рисунке В.3. Верхний край тигля должен плотно соприкасаться с внутренней поверхностью крышки по всей ее окружности.

Рисунок В.3 - Крышка

Рисунок В.3 - Крышка

В.3.3 Заслонка из латуни толщиной приблизительно 2,4 мм, перемещающаяся в плоскости верхней поверхности крышки, как показано на рисунке В.4. Заслонка должна иметь такую форму и быть установлена таким образом, чтобы она поворачивалась в горизонтальной плоскости на оси в центре крышки между двумя упорами, при этом, когда она находится в одном крайнем положении, отверстия в крышке А, В и С должны быть полностью закрыты, а когда она находится в другом крайнем положении, эти отверстия должны быть полностью открыты. Заслонка приводится в действие пружинным механизмом, сконструированным таким образом, что в неработающем состоянии заслонка точно закрывает все три отверстия. Если заслонка переводится в другое крайнее положение, три отверстия в крышке должны быть полностью открыты, а наконечник устройства для зажигания (В.3.4) должен быть полностью опущен.

а - край тигля должен соприкасаться с поверхностью крышки по всей окружности, b - зазор, равный не более 0,36 мм

1 - мешалка; 2 - испытательный тигель; 3 - заслонка; 4 - устройство для поджигания испытуемого образца; 5 - термометр; 6 - адаптер (переходная муфта); 7 - крышка

Рисунок В.4 - Тигель с крышкой

В.3.4 Устройство для зажигания, которое должно иметь наконечник с отверстием диаметром от 0,7 до 0,8 мм (см. рисунок В.4). Наконечник должен быть изготовлен из нержавеющей стали или другого подходящего материала. Устройство для зажигания должно быть оснащено перемещающим механизмом, который при "открытом" положении заслонки опускает наконечник таким образом, что центр его отверстия располагается между плоскостями верхней и нижней поверхностей крышки, в точке на радиусе, проходящем через центр самого большого отверстия А (рисунок В.3).

Примечание - В хорошо просматриваемом месте крышки может быть закреплен изготовленный из подходящего материала шарик-шаблон, размеры которого соответствуют размерам испытательного пламени (от 3 до 4 мм).

В.3.5 Запальник для автоматического зажигания испытательного пламени. Наконечник запальника должен иметь отверстие диаметром от 0,7 до 0,8 мм.

В.3.6 Перемешивающее устройство, смонтированное в центре крышки (рисунок В.4), имеющее две двухлопастные металлические крыльчатки. Нижняя крыльчатка должна иметь приблизительно 38 мм между кончиками лопастей, каждая из двух ее лопастей должна иметь ширину 8 мм и быть установлена под углом 45°. Верхняя крыльчатка должна иметь приблизительно 19 мм между кончиками лопастей, каждая из двух ее лопастей должна иметь ширину 8 мм и быть установлена под углом 45°. Обе крыльчатки располагаются на валу мешалки таким образом, что если смотреть снизу, то лопасти одной крыльчатки располагаются на направлениях 0° и 180°, а лопасти другой - на направлениях 90° и 270°.

Примечание - Вал мешалки соединяют с двигателем с использованием гибкого вала или соответствующего комплекта шкивов, при этом перемешивание должно осуществляться сверху вниз.

В.4 Нагревательная камера и колпак

Тепло подводят к испытательному тиглю с помощью специальной нагревательной камеры, которая эквивалентна воздушной бане. Нагревательная камера должна состоять из воздушной бани и колпака, на который опирается фланец испытательного тигля.

Внутреннее пространство воздушной бани должно иметь цилиндрическую форму и соответствовать размерам, приведенным на рисунке В.1. Металлический корпус воздушной бани должен нагреваться газовым пламенем или наружным электронагревателем, или элементом электросопротивления. В любом случае наружная поверхность корпуса воздушной бани не должна деформироваться при температурах, которым она будет подвергаться во время испытаний.

Если воздушная баня нагревается газовым пламенем или металлическим электрообогревателем, то она должна быть сконструирована таким образом, чтобы температура дна и стенок нагреваемой конструкции была приблизительно одинаковой. Для этого толщина дна и стенок должна быть не менее 6 мм. Если воздушная баня нагревается газовым пламенем, то конструкция корпуса должна быть такой, чтобы продукты сгорания не могли подниматься вверх и контактировать с испытательным тиглем.

Если воздушная баня оснащена элементом электросопротивления, то он должен быть сконструирован таким образом, чтобы все части внутренней поверхности воздушной бани нагревались равномерно. Стенки и дно воздушной бани должны иметь толщину не менее 6 мм.

Верхний металлический колпак должен быть установлен так, чтобы между ним и воздушной баней был воздушный зазор. Колпак должен быть прикреплен к воздушной бане тремя болтами с использованием распорных втулок. Втулки должны быть выполнены так, чтобы обеспечить воздушный зазор (4,8±0,2) мм, а их диаметр не должен быть более 9,5 мм.

Приложение С (обязательное). Требования к термометрам

Приложение С
(обязательное)

Таблица С.1 - Требования к термометрам

Параметр

Низкое значение температуры

Среднее значение температуры

Высокое значение температуры

Диапазон, °С

От -5 до +100

От 20 до 150

От 90 до 370

Глубина погружения, мм

Градуировки:

цена деления, °С

длинная линия у каждого деления, °С

Оцифровка у каждого деления, °С

Погрешность шкалы, °С, не более

1 - до 260 °С

2 - св. 260 °С

Расширительный резервуар допускает нагревание до, °С

Общая длина, мм

От 282 до 295

От 282 до 295

От 282 до 295

Внешний диаметр капилляра, мм

Длина резервуара, мм

Диаметр резервуара, мм

Не менее 5,5 и не более наружного диаметра капилляра

Не менее 5,5 и не более наружного диаметра капилляра

Расстояние от основания резервуара до начала шкалы, мм, при

0 °С: от 85 до 95

20 °С: от 85 до 95

90 °С: от 80 до 90

Длина градуировки, мм

От 140 до 175

От 140 до 180

От 145 до 180

Расширение внешнего диаметра капилляра:

диаметр, мм

От 7,5 до 8,5

От 7,5 до 8,5

От 7,5 до 8,5

длина, мм

От 2,5 до 5,0

От 2,5 до 5,0

От 2,5 до 5,0

расстояние от основания расширения до основания резервуара, мм

Примечания

1 Указанным выше требованиям соответствуют термометры типа IP 15C/ASTM 9С, IP 16C/ASTM 10С, IP 101 С и ASTM 88C.

2 Приложение D содержит описание адаптера для низкотемпературных термометров.

Приложение D (справочное). Адаптеры для низкотемпературных термометров

Приложение D
(справочное)

D.1 Общие положения

Низкотемпературные термометры иногда оснащены металлической манжетой с установочным кольцом для испытательного тигля Тага (стандарт ). Для применения в установочном кольце большего диаметра аппарата Пенски-Мартенса можно использовать адаптер (переходную муфту) (рисунок D.1).

___________________

Или эквивалентный.

В соответствии с диаметром расширения внешнего диаметра капилляра.

Прорезь.

1 - зажимная гайка; 2, 4 - уплотнительные кольца (мягкий алюминий); 3 - манжета; 5 - адаптер (переходная муфта)

Рисунок D.1 - Размеры адаптера (переходной муфты) для термометра, уплотнительных колец и манжеты

D.2 Контрольный шаблон

Длину расширения внешнего диаметра капилляра и расстояние от основания расширения до основания шарика термометра можно измерить контрольным шаблоном, приведенным на рисунке D.2.

Рисунок D.2 - Контрольный шаблон для проверки расширения внешнего диаметра капилляра термометра

Библиография

ISO Guide 33:1989

Uses if certified reference materials
(Руководство по использованию стандартных образцов)

ISO Guide 34:2000

General requirements for the competence of reference material producers
(Общие требования к компетенции изготовителей стандартных образцов)

ISO Guide 35:1989

Certification of reference materials - General and statistical principles
(Руководство сертификации стандартных образцов. Общие и статистические принципы)

Determination of flash point - Closed cup equilibrium method
(Определение температуры вспышки. Метод в закрытом тигле в равновесных условиях)

ISO 2592:2000

Determination of flash and fire points - Cleveland open cup method
(Определение температуры вспышки и воспламенения. Метод Кливленда в закрытом тигле)

Determination of flash point- Rapid equilibrium closed cup method
(Определение температуры вспышки. Экспресс-метод в закрытом тигле)

ISO 4259:1992

Petroleum products - Determination and application of precision data in relation to methods of test
(Нефтепродукты. Определение и применение прецизионности методов испытания)

ISO 13736:1997

Petroleum products and other liquids - Determination of flash point - Abel closed cup method
(Нефтепродукты и другие жидкости. Определение температуры вспышки. Метод Абеля в закрытом тигле)

ASTM D 56-10

Standard test method for flash point by Tag closed tester
(Стандартный метод определения температуры вспышки в закрытом тигле Тага)

Приложение ДА (справочное). Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Приложение ДА
(справочное)

Таблица ДА.1

Обозначение и наименование международного стандарта

Степень соответствия

Обозначение и наименование межгосударственного стандарта

ISO 1513:1992 Лаки и краски. Проверка и приготовление образцов для испытания
ISO 3171:1988 Нефтепродукты жидкие. Автоматический отбор проб из трубопровода* Соответствующий межгосударственный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

УДК 665.71:006.354 МКС 75.080 IDT

Ключевые слова: нефтепродукты, методы определения, температура вспышки, закрытый тигель Пенски-Мартенса

____________________________________________________________________



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2014

Для создания НКПРП паров над поверхностью жидкости достаточно нагреть до температуры, равной НТПРП, не всю массу жид­кости, а лишь только ее поверхностный слой.

При наличии ИЗ такая смесь будет способ­на к воспламенению. На практике чаще всего используются понятия температура вспышки и воспламенения.

Под температурой вспышки понимают наименьшую темпера­туру жидкости, при которой над ее поверхностью в условиях спе­циальных испытаний образуется концентрация паров жидкости, способная к воспламенению от ИЗ, но скорость их образования недостаточна для последующего горения. Таким образом, как при температуре вспышки, так и при нижнем тем­пературном пределе воспламенения над поверхностью жидкости образуется нижний концентрационный предел воспламенения, однако в последнем случае HKПРП создается насыщенными пара­ми. Поэтому температура вспышки всегда несколько выше, чем НТПРП. Хотя при температуре вспышки имеет место кратковременное воспламенение паров в воздухе, которое не спо­собно перейти в устойчивое горение жидкости, тем не менее при определенных условиях вспышка паров жидкости способна явить­ся источником возникновения пожара.

Температура вспышки принята за основу классификации жидкостей на легковоспламеняющиеся (ЛВЖ) и горючие жидкости (ГЖ). К ЛВЖ относятся жидкости, имеющие температуру вспыш­ки в закрытом тигле 61 0 С или в открытом 65 0 С и ниже, к ГЖ – с температурой вспышки в закрытом тигле более 61 0 С или в открытом тигле 65 0 С.

I разряд – особо опасные ЛВЖ, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки от -18 0 С и ниже в закрытом тигле или от -13 0 С и ниже в открытом тигле;

II разряд – постоянно опасные ЛВЖ, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки выше -18 0 С до 23 0 С в закрытом тигле или от -13 до 27 0 С в открытом тигле;

III разряд – ЛВЖ, опасные при повышенной темпе­ратуре воздуха, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки от 23 до 61 0 С в закрытом тигле или от 27 до 66 0 С в открытом тигле.

В зависимости от температуры вспышки устанавли­вают безопасные способы хранения, транспортирования и применения жидкостей для различных целей. Темпе­ратура вспышки жидкостей, принадлежащих к одному и тому же классу, закономерно изменяется с изменени­ем физических свойств членов гомологического ряда (табл. 4.1).

Таблица 4.1.

Физические свойства спиртов

Молекулярная

Плот-ность,

Температура, К

Метиловый СН 3 ОН

Этиловый С 2 Н 5 ОН

н-Пропиловый С 3 Н 7 ОН

н-Бутиловый С 4 Н 9 ОН

н-Амиловый С 5 Н 11 ОН

Температура вспышки повышается с увеличением молекулярной массы, темпе­ратуры кипения и плотности. Эти закономерности в го­мологическом ряду говорят о том, что температура вспышки связана с физическими свойствами веществ и сама является физическим параметром. Необходимо от­метить, что закономерность изменения температуры вспышки в гомологических рядах нельзя распространятьна жидкости, принадлежащие к разным классам органических соединений.

При смешении горючих жидкостей с водой или четы-реххлористым углеродом давление горючих паров при той же температуре понижается, что приводит к повышению температуры вспышки. Можно разбавить горючую жидкость до такой степени, что получившаяся смесь не будет иметь температуру вспышки (см. табл. 4.2).

Практика пожаротушения показывает, что горение хорошо растворимых в воде жидкостей прекращается, когда концентрация горючей жидкости достигает 10-25 %.

Таблица 4.2.

Для бинарных смесей горючих жидкостей, хорошо растворимых друг в друге, температура вспышки находится между температурами вспышки чистых жидкостей и приближается к температуре вспышки одной из них в зависимости от состава смеси.

С повышением температуры жидкости скорость испарения увеличивается и при определенной температуре достигает такой величины, что раз подожженная смесь продолжает гореть после удаления источника воспламенения. Такую температуру жидкости принято называть температурой воспламенения . Для ЛВЖ она отличается на 1-5 0 С от температуры вспышки, а для ГЖ – на 30-35 0 С. При температуре воспламенения жидко­стей устанавливается постоянный (стационарный) про­цесс горения.

Между температурой вспышки в закрытом тигле и нижним тем­пературным пределом воспламенения имеется корреляционная связь, описываемая формулой:

Т вс – Т н.п. = 0,125Т вс + 2. (4.4)

Это соотношение справедливо при Т вс < 433 К (160 0 С).

Существенная зависимость температур вспышки и воспламене­ния от условия эксперимента вызывает определенные трудности при создании расчетного метода оценки их величин. Одним из наиболее распространенных из них является полуэмпирический метод, предложенный В. И. Блиновым:

, (4.5)

где Т вс – температура вспышки, (воспламенения), К;

р вс – парциальное давление насыщенного пара жидкости при температуре вспышки (воспламенения), Па;

D 0 – коэффициент диффузии паров жидкости, м 2 /с;

n – количество молекул кислорода, необходимое для пол­ного окисления одной молекулы горючего;

Сопровождающееся ярким кратковременным свечением. Устойчивого горения при этом нет. Температура вспышки - минимальная температура конденсированных веществ, при которой над их поверхностью образуются пары, вспыхивающие при появлении искры, пламени либо раскаленного тела.

Способностью вспыхивать при относительно невысоких температурах обладают жидкости, относящиеся к разряду легковоспламеняющихся. Максимальная температура вспышки таких веществ в закрытых тиглях составляет + 61 °С, в открытых - + 66 °С. Некоторые вещества способны самовозгораться, достигнув характерной именно для них температуры возгорания.

Определение давления возможно для любой горючей жидкости. Оно возрастает соразмерно возрастанию температуры вещества. Как только температура вспышки достигнет критического (максимального) показателя, становится возможным и поддержание горения.

Однако наступление равновесия «пар - жидкость» потребует некоторого времени, которое пропорционально скорости образования паров. Устойчивого горения можно добиться, достигнув определенной (для каждого вещества индивидуальной) температуры возгорания, поскольку температура горения всегда выше, чем температура вспышки.

Прямое изменение температур, при которых вещества вспыхивают, имеет определенные сложности. Поэтому температурой вспышки принято считать температуру стенок реакционных сосудов, в которых эта вспышка наблюдается. Зависит температура непосредственно от условий происходящего теплообмена внутри самого сосуда, от его каталитической активности, от окружающей среды, от объема находящейся в сосуде жидкости.

Особенно опасны жидкости, способные вспыхивать при температурах ниже -18 °С в тиглях закрытых, ниже - 13°С - в открытых. Постоянно опасными принято считать жидкости, вспышка которых возможна при температуре + 23°С в закрытых тиглях и до + 27°С в открытых. Показатели температур опасных жидкостей составляют до + 60 °С включительно при закрытых тиглях, до + 66 °С включительно - при открытых.

Разница и горения существенно варьируется, причем она индивидуальна для каждого вещества. Температура вспышки например, - не более + 70 °С. Температура его горения - + 1100 °С. Температура воспламенения - от + 100 °С до + 119 °С. А вот температура вспышки бензина, в связи с очень высокой летучестью, составляет + 40 °С, а иногда и меньше. Температура его воспламенения - + 300 °C. Показатели, касающиеся бензина, несколько обобщены. Их нужно считать средними, поскольку существуют различные виды бензина (автомобильные (летние, зимние), авиационные) с существенно отличающимися характеристиками и, соответственно, разными температурами вспышки, воспламенения, горения.

Горение - процесс, сопровождающийся выделением большого количества тепла с характерным излучением света (свечением), возможный при достижении определенной для каждого вещества температуры и доступе к нему кислорода либо других веществ (серы, паров брома и пр.).

Наиболее опасными считаются взрывы, характеризующиеся мгновенной химической реакцией с выделением огромной энергии и несущие механическую работу. Огонь при взрыве может распространиться на 3000 метров за одну секунду. Горение смеси при такой скорости называют детонацией. Являющиеся следствием детонации ударные волны часто становятся причинами значительных разрушений и несчастных случаев.

Cтраница 1


Температура вспышки нефти и нефтепродуктов, зависящая от их испаряемости и упругости паров, колеблется в очень широких пределах: от - 35 до 36 С для сырых нефтей, от - 36 до - 7 С для бензина, от 15 до 60 С для керосина, от 60 до 120 С для мазута, от 130 до 325 С для масла.  

Температуры вспышки нефти и нефтепродуктов чрезвычайно разнообразны; бензиновые фракции имеют отрицательные температуры вспышки от - 10 до - 30 С, керосиновые - от 28 до 60 С, а масляные - от 1 30 до 325 С.  

Температуры вспышки нефти п нефтепродуктов чрезвычайно разнообразны; бензиновые фракции имеют отрицательные температуры вспышки от минус 40 до минус 30 С, керосиновые - от 28 до 60 С, а масляные - от 130 до 325 С.  

Аппарат Абель-Пенского служит для определения температуры вспышки нефтей, керосинов и тому подобных продуктов с температурой вспышки до 50 С. Устройство его показано на рис. VIII. Внутри латунного цилиндрического резервуара 1 имеется один штифт 2 для регулирования высоты налива исследуемого продукта. Резервуар снабжен хорошо пригнанной к нему крышкой, имеющей тубус для термометра 3, зажигательное приспособление 4, часовой механизм 5 с рычажком для пуска 6 и пуговичкой для завода механизма, заслонку 7 и рядом с зажигательным приспособлением белый шарик (на рис. VIII. Весь прибор (с крышкой) устанавливается на водяной бане 8, причем отверстие 9 для, цилиндра сделано в бане таким образом, что между ним и стенками цилиндра остается некоторое воздушное пространство. Благодаря этому достигается равномерность нагрева. Аппарат снабжен двумя термометрами: 3 - для наблюдения за температурой нефтепродукта с шаровидным ртутным резервуаром со шкалой от 10 до 55 С, градуированный через каждые 0 5 С, длиной не более 230 мм т 11 - для наблюдения за температурой воды в бане; этот термометр градуирован от 201 до 105 С через каждые 1 С.  

Методы анализа и измерительные устройстве контроля температуры вспышки нефти и нефтепродуктов.  

В зависимости от протяженности, диаметра труб и температуры вспышки нефти и нефтепродукта различают четыре категории магистральных нефтепроводов.  

Поверочные средства представляет собой комплекты химреэкти-вов для контроля температуры вспышки нефти и нефтепродуктов.  

В настоящее время совместными усилиями специалистов УфНИ, ВНИИ Ш, Ново-Уфимского НПЗ разработаны и начинают внедряться в широком масштабе поверочные средства - стандартные образцы для метрологического обеспечения методов анализа и приборов контроля температур вспышки нефти и нефтепродуктов. В лаборатории Технологические измерения и приборы кафедры автоматизации химико - технологических процессов Уфимского нефтяного института и в Башкирском ОКБ НПО Нефтехимавтоматика выполнен комплекс одновременных испытаний по исследованию точностных характеристик отечественных.  

В области методов испытаний и средств контроля качества нефти и продуктов ее переработки разработаны оригинальные методы анализа состава и свойств нефти и продуктов ее переработки в условиях достижения равновесия фаз - содержания солей, содержания воды в нефти, давления насыщенных паров, температуры вспышки нефти и нефтепродуктов. На основе сформулированных им представлений создан прибор экспрессного анализа давления насыщенных паров нефти и нефтепродуктов и освоено его производство.  

Температура вспышки нефти или нефтепродукта - минимальная температура нагреваемых в стандартных условиях нефти или нефтепродукта, при которой смесь паров нефти или нефтепродукта с воздухом в условиях атмосферного давления при поднесении к ней пламени вспыхивает и сразу затухает. Температура вспышки нефти колеблется в широких пределах (от 35 до 120 С) в зависимости от ее фракционного состава. Температура вспышки нефтепродуктов: легковоспламеняющихся бензинов - ниже 28 С, керосинов - 28 - 45 С; горючих нефтепродуктов (моторное и дизельное топливо, мазуты) 45 - 120 С. Кроме того, пары нефти или нефтепродукта обладают взрыво-опасностью. Взрыв паров нефти или нефтепродуктов при наличии открытого огня или искр возможен при определенном их содержании в воздухе. При этом наименьшее и наибольшее содержание паров нефти или нефтепродуктов в воздухе называют соответственно нижним и верхним пределами взрываемости. При концентрации паров выше верхнего предела взрываемости смесь паров нефти и нефтепродуктов с воздухом горит. Пределы взрываемости нефти или нефтепродуктов зависят от их состава и колеблются в широких пределах.  

Температура вспышки нефти в основном зависит от содержания в ней легких бензиновых фракций и поэтому колеблется в довольно значительных пределах. Большей частью ее значение отрицательно (как и для бензинов); например, температура вспышки ромашкипской нефти около - 38 С (при 24 % фракций до 200 С), но для тяжелой ярегской нефти (Коми АССР), практически не содержащей бензина, она составляет 108 С. Определяют температуру вспышки в закрытом тигле (ГОСТ 6356 - 75); если эта температура отрицательна, то с применением охлаждающей смеси. Температура вспышки нефти и нефтепродуктов характеризует их пожарную опасность. При наличии растворенных газов температура вспышки нефтей значительно понижается.  

Температурой вспышки паров легковоспламеняющейся или горючей жидкости называют наинизшую температуру, при которой посторонний источник зажигания вызывает вспышку ее паров, насыщающих пространство, не сопровождающуюся, однако, воспламенением самой жидкости. Пары легковоспламеняющихся и горючих жидкостей относятся к пожароопасным, если температура вспышки их выше 45 С, и к взрывоопасным, если температура вспышки этих паров 45 С и ниже. Температуры вспышки нефти и нефтепродуктов весьма разнообразны и колеблются в широких пределах. Так, например, бензиновые фракции имеют отрицательные температуры вспышки от - 40 до - 30 С; керосиновые-от 28 до 60 С; масляные от 130 до 325 С.  

Нефть представляет сложную смесь алканов, некоторых циклонов, ароматических углеводородов различной молекуллрной массы, а также кислородных, сернистых и азотистых соединений. В пределах большинства нефтяных залежей нет полного единообразия и в характеристике пластовых нефтей, обнаруживаются признаки дифференциации их по физико-химическим показателям. Температура вспышки нефти колеблется в широких пределах (от ниже минус.