Энергосберегающие

Оптимальный температурный график. Обоснование пониженного температурного графика регулирования централизованных систем теплоснабжения

Оптимальный температурный график. Обоснование пониженного температурного графика регулирования централизованных систем теплоснабжения

Нормативная температура воды в отопительной системе зависит от температуры воздуха. Поэтому и температурный график подачи теплоносителя в систему отопления рассчитывается в соответствии с погодными условиями. В статье мы расскажем о требованиях СНиП к работе отопительной системы для объектов разного назначения.

из статьи Вы узнаете:

Чтобы экономно и рационально расходовать энергоресурсы в отопительной системе, подача тепла привязывается к температуре воздуха. Зависимость температуры воды в трубах и воздуха за окном выводится в виде графика. Главная задача таких расчетов - поддержание в квартирах комфортных для жильцов условий. Для этого температура воздуха должна составлять около +20…+22ºС.

Температура теплоносителя в системе отопления

Чем сильнее морозы, тем быстрее обогретые изнутри жилые помещения теряют тепло. Для компенсации повышенной теплопотери увеличивается температура воды в системе отопления.

В расчетах используют нормативный показатель температуры. Он подсчитывается по специальной методике и вносится в руководящую документацию. Этот показатель основывается на средней температуре 5 наиболее морозных дней в году. Для вычисления берется 8 самых холодных зим за 50-летний период.

Почему составление температурного графика подачи теплоносителя в систему отопления происходит именно так? Главное здесь - оказаться готовыми к самым сильным морозам, случающимся раз в несколько лет. Климатические условия в конкретном регионе за несколько десятков лет могут поменяться. При пересчете графика это будет учтено.

Значение среднедневной температуры важно также для расчета запаса прочности отопительных систем. При понимании предельной нагрузки можно точно рассчитать характеристики необходимых трубопроводов, запорной арматуры и прочих элементов. Это дает экономию на создании коммуникаций. Учитывая масштабы строительства для городских систем отопления, количество сэкономленных средств будет достаточно большим.

Температура в квартире напрямую зависит от того, насколько сильно разогрет теплоноситель в трубах. Кроме этого, здесь имеют значение и другие факторы:

  • температура воздуха за окном;
  • скорость ветра. При сильных ветровых нагрузках растут потери тепла через дверные проемы и окна;
  • качество заделки стыков на стенах, а также общее состояние отделки и утепления фасада.

Строительные нормы меняются с развитием технологий. Это отражается, в том числе, и на показателях в графике температуры теплоносителя в зависимости от наружной температуры. Если помещения лучше сохраняют тепло, то и энергоресурсов можно тратить меньше.

Застройщики в современных условиях более тщательно подходят к теплоизоляции фасадов, фундамента, подвала и кровли. Это повышает стоимость объектов. Однако одновременно с ростом затрат на строительство снижаются . Переплата на этапе постройки со временем окупается и дает неплохую экономию.

На прогрев помещений непосредственно влияет даже не то, насколько разогрета вода в трубах. Главное здесь - температура радиаторов отопления. Она обычно находится в пределах +70…+90ºС.

На нагрев батарей влияют несколько факторов.

1. Температура воздуха.

2. Особенности отопительной системы. От ее типа зависит показатель, указываемый в температурном графике подачи теплоносителя в систему отопления. В однотрубных системах нормальным считается нагрев воды до +105ºС. Двухтрубное отопление за счет лучшей циркуляции дает более высокую теплоотдачу. Это позволяет снизить температуру до +95ºС. При этом если на входе воду нужно разогреть, соответственно, до +105ºС и +95ºС, то на выходе ее температура в обоих случаях должна быть на уровне +70ºС.

Чтобы теплоноситель не вскипал при разогреве выше +100ºС, в трубопроводы он подается под давлением. Теоретически оно может быть достаточно высоким. Это должно обеспечивать большой запас тепла. Однако на практике далеко не все сети позволяют подавать воду под большим давлением из-за своей изношенности. В результате температура снижается, и при сильных морозах может наблюдаться нехватка тепла в квартирах и других отапливаемых помещениях.

3. Направление подачи воды в радиаторы. При верхней разводке разница составляет 2ºС, при нижней - 3ºС.

4. Тип используемых отопительных приборов. Радиаторы и конвекторы различаются по количеству отдаваемого тепла, а значит, работать они должны в разных температурных режимах. Лучше показатели теплоотдачи именно у радиаторов.

При этом на количество отданного тепла влияет, в том числе, и температура уличного воздуха. Именно она является определяющим фактором в температурном графике подачи теплоносителя в систему отопления.

Когда указывается температура воды +95ºС, речь идет о теплоносителе на входе в жилое помещение. Учитывая потери тепла при транспортировке, котельная должна нагревать ее значительно сильнее.

Чтобы подавать в трубы отопления в квартирах воду нужной температуры, в подвале устанавливается специальное оборудование. Оно смешивает горячую воду из котельной с той, которая поступает из обратки.

Температурный график подачи теплоносителя в систему отопления

График показывает, какой должна быть температура воды на входе в жилое помещение и на выходе из него в зависимости от уличной температуры.

Представленная таблица поможет легко определить степень нагрева теплоносителя в системе центрального отопления.

Температурные показатели воздуха снаружи, °С

Температурные показатели воды на входе, °С

Температурные показатели воды в отопительной системе, °С

Температурные показатели воды после отопительной системы, °С

Представители коммунальных служб и ресурсоснабжающих организаций производят замеры температуры воды при помощи термометра. В 5 и 6 столбиках указаны цифры для трубопровода, по которому подается горячий теплоноситель. 7 столбик - для обратки.

В первых трех столбиках указана повышенная температура - это показатели для теплогенерирующих организаций. Данные цифры приведены без учета потерь тепла, происходящих в процессе транспортировки теплоносителя.

Температурный график подачи теплоносителя в систему отопления нужен не только ресурсоснабжающим организациям. При отличии реальной температуры от нормативной у потребителей появляются основания для перерасчета стоимости услуги. Они в своих жалобах указывают, насколько прогревается воздух в квартирах. Это простейший для замера параметр. Проверяющие органы уже могут отследить температуру теплоносителя, и при ее несоответствии графику заставить ресурсоснабжающую организацию исполнять обязанности.

Повод для жалоб появляется, если воздух в квартире остывает ниже следующих значений:

  • в угловых комнатах в дневное время - ниже +20ºС;
  • в центральных комнатах в дневное время - ниже +18ºС;
  • в угловых комнатах ночью - ниже +17ºС;
  • в центральных комнатах ночью - ниже +15ºС.

СНиП

Требования к работе систем отопления закреплены в СНиП 41-01-2003. Большое внимание в этом документе уделено вопросам безопасности. В случае с отоплением потенциальную опасность несет разогретый теплоноситель, именно поэтому его температура для жилых и общественных зданий ограничивается. Она, как правило, не превышает +95ºС.

Если вода во внутренних трубопроводах системы отопления разогревается выше +100ºС, то на таких объектах предусматриваются следующие меры безопасности:

  • трубы отопления прокладываются в специальных шахтах. В случае прорыва теплоноситель останется в этих укрепленных каналах и не будет источником опасности для людей;
  • трубопроводы в многоэтажках имеют специальные конструктивные элементы или устройства, не позволяющие воде вскипать.

Если в здании проложено отопление из полимерных труб, то температура теплоносителя не должна быть больше +90ºС.

Выше мы уже упоминали, что помимо температурного графика подачи теплоносителя в систему отопления ответственным организациям нужно следить за тем, насколько разогреваются доступные элементы отопительных приборов. Эти правила тоже приведены в СНиП. Допустимые температуры колеблются в зависимости от назначения помещения.

В первую очередь, здесь все определяется все теми же правилами безопасности. Например, в детских и лечебных учреждениях допустимые температуры минимальны. В общественных местах и на различных производственных объектах для них обычно особых ограничений не устанавливается.

Поверхность радиаторов отопления по общим правилам не должна разогреваться выше +90ºС. При превышении этой цифры начинаются негативные последствия. Они заключаются, прежде всего, в обгорании краски на батареях, а также в сгорании находящейся в воздухе пыли. Это наполняет атмосферу в помещении вредно влияющими на здоровье веществами. Кроме того, возможен вред для внешнего вида отопительных приборов.

Другой вопрос - обеспечение безопасности в помещениях с горячими радиаторами. По общим правилам полагается ограждать отопительные приборы, температура поверхности которых выше +75ºС. Обычно для этого используются решетчатые ограждения. Они не мешают циркуляции воздуха. В то же время СНиП предполагает обязательную защиту радиаторов в детских учреждениях.

В соответствии со СНиП, максимальная температура теплоносителя меняется в зависимости от назначения помещения. Она определяется как особенностями отопления разных зданий, так и соображениями безопасности. Например, в лечебных учреждениях допустимая температура воды в трубах самая низкая. Она составляет +85ºС.

Максимально разогретый теплоноситель (до +150ºС) можно подавать на следующие объекты:

Температурный график подачи теплоносителя в систему отопления по СНиП используется только в холодное время года. В теплый сезон рассматриваемый документ нормирует параметры микроклимата лишь с точки зрения вентиляции и кондиционирования.

Температурный график представляет собой зависимость степени нагрева воды в системе от температуры холодного наружного воздуха. После необходимых вычислений результат представляют в виде двух чисел. Первое означает температуру воды на входе в систему теплоснабжения, а вторая на выходе.

Например, запись 90-70ᵒС означает, что при заданных климатических условиях для отопления определенного здания понадобится, чтобы на входе в трубы теплоноситель имел температуру 90ᵒС, а на выходе 70ᵒС.

Все значения представляются для температуры воздуха снаружи по наиболее холодной пятидневке. Данная расчетная температура принимается по СП «Тепловая защита зданий». Внутренняя температура для жилых помещений по нормам принимается 20ᵒС. График обеспечит правильную подачу теплоносителя в трубы отопления. Это позволит избежать переохлаждения помещений и нерационального расхода ресурсов.

Необходимость выполнения построений и расчетов

Температурный график необходимо разрабатывать для каждого населенного пункта. Он позволяет обеспечиться наиболее грамотную работу системы отопления, а именно:

  1. Привести в соответствие тепловые потери во время подачи горячей воды в дома со среднесуточной температурой наружного воздуха.
  2. Предотвратить недостаточный нагрев помещений.
  3. Обязать тепловые станции поставлять потребителям услуги, соответствующие технологическим условиям.

Такие вычисления необходимы, как для крупных отопительных станций, так и для котельных в небольших населенных пунктах. В этом случае результат расчетов и построений будет называться график котельной.

Способы регулирования температуры в системе отопления

По завершении расчетов необходимо добиться вычисленной степени нагрева теплоносителя. Достигнуть ее можно несколькими способами:

  • количественным;
  • качественным;
  • временным.

В первом случае изменяют расход воды, поступающей в отопительную сеть, во втором регулируют степень нагрева теплоносителя. Временный вариант предполагает дискретную подачу горячей жидкости в тепловую сеть.

Для центральной системы теплоснабжения наиболее характерен качественный, способ при этом объем воды, поступающий в отопительный контур, остается неизменным.

Виды графиков

В зависимости от назначения тепловой сети способы выполнения отличаются. Первый вариант - нормальный график отопления. Он представляет собой построения для сетей, работающих только на отопление помещений и регулируемых централизованно.

Повышенный график рассчитывается для тепловых сетей, обеспечивающих отопление и снабжение горячей водой. Он строится для закрытых систем и показывает суммарную нагрузку на систему подачи горячей воды.

Скорректированный график также предназначен для сетей, работающих и на отопление, и на нагрев. Здесь учитываются тепловые потери при прохождении теплоносителя по трубам до потребителя.


Составление температурного графика

Построенная прямая линия зависит от следующих значений:

  • нормируемая температура воздуха в помещении;
  • температура наружного воздуха;
  • степень нагрева теплоносителя при поступлении в систему отопления;
  • степень нагрева теплоносителя на выходе из сетей здания;
  • степень теплоотдачи отопительных приборов;
  • теплопроводность наружных стен и общие тепловые потери здания.

Чтобы выполнить грамотный расчет, необходимо вычислить разницу между температурами воды в прямой и обратной трубе Δt. Чем выше значение в прямой трубе, тем лучше теплоотдача системы отопления и выше температура внутри помещений.

Чтобы рационально и экономно расходовать теплоноситель, необходимо добиться минимально возможного значения Δt. Это можно обеспечить, например, проведением работ по дополнительному утеплению наружных конструкций дома (стен, покрытий, перекрытий над холодным подвалом или техническим подпольем).

Расчет режима отопления

В первую очередь необходимо получить все исходные данные. Нормативные значения температур наружного и внутреннего воздуха принимаются по СП «Тепловая защита зданий». Для нахождения мощности отопительных приборов и тепловых потерь потребуется воспользоваться следующими формулами.

Тепловые потери здания

Исходными данными в этом случае станут:

  • толщина наружных стен;
  • теплопроводность материала, из которого изготовлены ограждающие конструкции (в большинстве случаев указывается производителем, обозначается буквой λ);
  • площадь поверхности наружной стены;
  • климатический район строительства.

В первую очередь находят фактическое сопротивление стены теплопередаче. В упрощенном варианте можно его найти как частное толщины стены и ее теплопроводности. Если наружная конструкция состоит из нескольких слоев, по отдельности находят сопротивление каждого из них и складывают полученные значения.

Тепловые потери стен рассчитываются по формуле:

Q = F*(1/R 0)*(t внутр. воздуха -t наружн. воздуха)

Здесь Q – это тепловые потери в килокалориях, а F – площадь поверхности наружных стен. Для более точного значения необходимо учесть площадь остекления и его коэффициент теплопередачи.


Расчет поверхностной мощности батарей

Удельная (поверхностная) мощность вычисляется как частное максимальной мощности прибора в Вт и площади поверхности теплоотдачи. Формула выглядит следующим образом:

Р уд = Р max /F акт

Расчет температуры теплоносителя

На основе полученных значений подбирается температурный режим отопления и строится прямая теплоотдачи. По одной оси наносятся значения степени нагрева подаваемой в систему отопления воды, а по другой температура наружного воздуха. Все величины принимаются в градусах Цельсия. Результаты расчета сводятся в таблицу, в которой указаны узловые точки трубопровода.

Проводить вычисления по методике достаточно сложно. Для выполнения грамотного расчета лучше всего воспользоваться специальными программами.

Для каждого здания такой расчет выполняется в индивидуальном порядке управляющей компанией. Для примерного определения воды на входе в систему можно воспользоваться существующими таблицами.

  1. Для крупных поставщиков тепловой энергии используют параметры теплоносителя 150-70ᵒС, 130-70ᵒС, 115-70ᵒС.
  2. Для небольших систем на несколько многоквартирных домов применяются параметры 90-70ᵒС (до 10 этажей), 105-70ᵒС (свыше 10 этажей). Может также быть принят график 80-60ᵒС.
  3. При обустройстве автономной системы отопления для индивидуального дома достаточно контроля над степенью нагрева с помощью датчиков, график можно не строить.

Выполненные мероприятия позволяют определять параметры теплоносителя в системе в определенный момент времени. Анализируя совпадение параметров с графиком можно проверять эффективность отопительной системы. В таблице температурного графика указывается также степень нагрузки на систему отопления.

Построить для закрытой системы теплоснабжения график центрального качественного регулирования отпуска теплоты по совмещенной нагрузке отопления и горячего водоснабжения (повышенный или скорректированный температурный график).

Принять расчетные температуры сетевой воды в подающей магистрали t 1 = 130 0 С в обратной магистрали t 2 = 70 0 С, после элеватора t 3 = 95 0 С. Расчетная температура наружного воздуха для проектирования отопления tнро = -31 0 С. Расчетная температура воздуха внутри помещения tв= 18 0 С. Расчетные тепловые потоки принять те же. Температура горячей воды в системах горячего водоснабжения tгв = 60 0 С, температура холодной воды t с = 5 0 С. Балансовый коэффициент для нагрузки горячего водоснабжения a б = 1,2. Схема включения водоподогревателей систем горячего водоснабжения двухступенчатая последовательная.

Решение. Предварительно выполним расчет и построение отопительно-бытового графика температур с температурой сетевой воды в подающем трубопроводе для точки излома =70 0 С. Значения температур сетевой воды для систем отопления t 01 ; t 02 ; t 03 определим используя расчетные зависимости (13), (14), (15) для температур наружного воздуха t н = +8; 0; -10; -23; -31 0 С

Определим, используя формулы (16),(17),(18), значения величин

Для t н = +8 0С значения t 01, t 02 ,t 03 соответственно составят:

Аналогично выполняются расчеты температур сетевой воды и для других значений t н. Используя расчетные данные и приняв минимальную температуру сетевой воды в подающем трубопроводе = 70 0 С, построим отопительно-бытовой график температур (см. рис. 4). Точке излома температурного графика будут соответствовать температуры сетевой воды = 70 0 С, = 44,9 0 С, = 55,3 0 С, температура наружного воздуха = -2,5 0 С. Полученные значения температур сетевой воды для отопительно-бытового графика сведем в таблицу 4. Далее приступаем к расчету повышенного температурного графика. Задавшись величиной недогрева Dt н = 7 0 С определим температуру нагреваемой водопроводной воды после водоподогревателя первой ступени

Определим по формуле (19) балансовую нагрузку горячего водоснабжения

По формуле (20) определим суммарный перепад температур сетевой воды d в обеих ступенях водоподогревателей

Определим по формуле (21) перепад температур сетевой воды в водоподогревателе первой ступени для диапазона температур наружного воздуха от t н = +8 0 С до t" н = -2,5 0 С

Определим для указанного диапазона температур наружного воздуха перепад температур сетевой воды во второй ступени водоподогревателя

Определим используя формулы (22) и (25) значения величин d 2 и d 1 для диапазона температур наружного воздуха t н от t" н = -2,5 0 С до t 0 = -31 0 С. Так, для t н = -10 0 С эти значения составят:



Аналогично выполним расчеты величин d 2 и d 1 для значений t н = -23 0 С и t н = –31 0 С. Температуры сетевой воды и в подающем и обратном трубопроводах для повышенного температурного графика определим по формулам (24) и (26).

Так, для t н = +8 0 С и t н = -2,5 0 С эти значения составят

для t н = -10 0 С

Аналогично выполним расчеты для значений t н = -23 0 С и -31 0 С. Полученные значения величин d 2, d 1, , сведем в таблицу 4.

Для построения графика температуры сетевой воды в обратном трубопроводе после калориферов систем вентиляции в диапазоне температур наружного воздуха t н = +8 ¸ -2,5 0 С используем формулу (32)

Определим значение t 2v для t н = +8 0 С. Предварительно зададимся значением 0 С. Определим температурные напоры в калорифере и соответственно для t н = +8 0 С и t н = -2,5 0 С

Вычислим левые и правые части уравнения

Левая часть

Правая часть

Поскольку численные значения правой и левой частей уравнения близки по значению (в пределах 3%), примем значение как окончательное.

Для систем вентиляции с рециркуляцией воздуха определим, используя формулу (34), температуру сетевой воды после калориферов t 2v для t н = t нро = -31 0 C.

Здесь значения Dt ; t ; t соответствуют t н = t v = -23 0 С. Поскольку данное выражение решается методом подбора, предварительно зададимся значением t 2v = 51 0 С. Определим значения Dt к и Dt

Поскольку левая часть выражения близка по значению правой (0,99»1), принятое предварительно значение t 2v = 51 0 С будем считать окончательным. Используя данные таблицы 4 построим отопительно-бытовой и повышенный температурные графики регулирования (см. рис. 4).

Таблица 4 - Расчет температурных графиков регулирования для закрытой системы теплоснабжения.

t Н t 10 t 20 t 30 d 1 d 2 t 1П t 2П t 2V
+8 70 44,9 55,3 5,9 8,5 75,9 36,4 17
-2,5 70 44,9 55,3 5,9 8,5 75,9 36,4 44,9
-10 90,2 5205 64,3 4,2 10,2 94,4 42,3 52,5
-23 113,7 63,5 84,4 1,8 12,5 115,6 51 63,5
-31 130 70 95 0,4 14 130,4 56 51


Рис.4. Температурные графики регулирования для закрытой системы теплоснабжения (¾ отопительно-бытовой; --- повышенный)

Построить для открытой системы теплоснабжения скорректированного (повышенного) графика центрального качественного регулирования . Принять балансовый коэффициент a б = 1,1. Принять минимальную температуру сетевой воды в подающем трубопроводе для точки излома температурного графика 0 С. Остальные исходные данные взять из предыдущей части.

Решение . Вначале строим графики температур , , , используя расчеты по формулам (13); (14); (15). Далее построим отопительно-бытовой график, точке излома которого соответствуют значения температур сетевой воды 0 С; 0 C; 0 C, и температура наружного воздуха 0 C. Далее приступаем к расчету скорректированного графика. Определим балансовую нагрузку горячего водоснабжения

Определим коэффициент отношения балансовой нагрузки на горячее водоснабжение к расчетной нагрузке на отопление

Для ряда температур наружного воздуха t н = +8 0 С; -10 0 С; -25 0 С; -31 0 С, определим относительный расход теплоты на отопление по формуле (29)`; Например для t н = -10 составит:

Затем, приняв известные из предыдущей части значения t c ; t h ; q ; Dt определим, используя формулу (30), для каждого значения t н относительные расходы сетевой воды на отопление .

Например, для t н = -10 0 С составит:

Аналогично выполним расчеты и для других значений t н.

Температуры сетевой воды в подающем t 1п и обратном t 2п трубопроводах для скорректированного графика определим по формулам (27) и (28).

Так, для t н = -10 0 С получим

Выполним расчеты t 1п и t 2п и для других значений t н. Определим используя расчетные зависимости (32) и (34) температуры сетевой воды t 2v после калориферов систем вентиляции для t н = +8 0 С и t н = -31 0 С (при наличии рециркуляции). При значении t н = +8 0 С зададимся предварительно величиной t 2v = 23 0 C.

Определим значения Dt к и Dt к

;

Поскольку численные значения левой и правой частей уравнения близки, принятое предварительно значение t 2v = 23 0 C ,будем считать окончательным. Определим также значения t 2v при t н = t 0 = -31 0 C. Зададимся предварительно значением t 2v = 47 0 C

Вычислим значения Dt к и

Полученные значения расчетных величин сведем в таблицу 3.5

Таблица 5 - Расчет повышенного (скорректированного) графика для открытой системы теплоснабжения.

t н t 10 t 20 t 30 `Q 0 `G 0 t 1п t 2п t 2v
+8 60 40,4 48,6 0,2 0,65 64 39,3 23
1,9 60 40,4 48,6 0,33 0,8 64 39,3 40,4
-10 90.2 52.5 64.3 0,59 0,95 87.8 51.8 52.5
-23 113.7 63.5 84.4 0,84 1,02 113 63,6 63.5
-31 130 70 95 1 1,04 130 70 51

Используя данные таблицы 5, построим отопительно-бытовой, а также повышенный графики температур сетевой воды.

Рис.5 Отопительно - бытовой ( ) и повышенный (----) графики температур сетевой воды для открытой системы теплоснабжения

Гидравлический расчет магистральных теплопроводов двухтрубной водяной тепловой сети закрытой системы теплоснабжения .

Расчетная схема теплосети от источника теплоты (ИТ) до кварталов города (КВ) приведена на рис.6. Для компенсации температурных деформаций предусмотреть сальниковые компенсаторы. Удельные потери давления по главной магистрали принять в размере 30-80 Па/м.




Рис.6. Расчетная схема магистральной тепловой сети.

Решение. Расчет выполним для подающего трубопровода. Примем за главную магистраль наиболее протяженную и загруженную ветвь теплосети от ИТ до КВ 4 (участки 1,2,3) и приступим к ее расчету. По таблицам гидравлического расчета, приведенным в литературе , а также в приложении №12 учебного пособия, на основании известных расходов теплоносителя, ориентируясь на удельные потери давления R в пределах от 30 до 80 Па/м, определим для участков 1, 2, 3 диаметры трубопроводов d н xS , мм, фактические удельные потери давления R , Па/м, скорости воды V , м/с.

По известным диаметрам на участках главной магистрали определим сумму коэффициентов местных сопротивлений Sx и их эквивалентные длины L э. Так, на участке 1 имеется головная задвижка (x = 0,5), тройник на проход при разделении потока (x = 1,0), Количество сальниковых компенсаторов (x = 0,3) на участке определим в зависимости от длины участка L и максимального допустимого расстояния между неподвижными опорами l . Согласно приложению №17 учебного пособия для D у = 600 мм это расстояние составляет 160 метров. Следовательно, на участке 1 длиной 400 м следует предусмотреть три сальниковых компенсатора. Сумма коэффициентов местных сопротивлений Sx на данном участке составит

Sx = 0,5+1,0 + 3 × 0,3 = 2,4

По приложению №14 учебного пособия (при К э = 0,0005м) эквивалентная длина l э для x = 1,0 равна 32,9 м. Эквивалентная длина участка L э составит

L э = l э × Sx = 32,9 ×2,4 = 79 м

L п =L + L э = 400 + 79 = 479 м

Затем определим потери давления DP на участке 1

DP = R × L п = 42 × 479 = 20118 Па

Аналогично выполним гидравлический расчет участков 2 и 3 главной магистрали (см. табл. 6 и табл.7).

Далее приступаем к расчету ответвлений. По принципу увязки потери давления DP от точки деления потоков до концевых точек (КВ) для различных ветвей системы должны быть равны между собой. Поэтому при гидравлическом расчете ответвлений необходимо стремиться к выполнению следующих условий:

DP 4+5 = DP 2+3 ; DP 6 = DP 5 ; DP 7 = DP 3

Исходя из этих условий, найдем ориентировочные удельные потери давления для ответвлений. Так, для ответвления с участками 4 и 5 получим

Коэффициент a , учитывающий долю потерь давления на местные сопротивления, определим по формуле

тогда Па/м

Ориентируясь на R = 69 Па/м определим по таблицам гидравлического расчета диаметры трубопроводов, удельные потери давления R , скорости V , потери давления DР на участках 4 и 5. Аналогично выполним расчет ответвлений 6 и 7, определив предварительно для них ориентировочные значения R .

Па/м

Па/м

Таблица 6 - Расчет эквивалентных длин местных сопротивлений

№ участка dн х S, мм L, м Вид местного сопротивления x Кол-во åx l э,м Lэ,м
1 630x10 400 1. задвижка 2. сальниковый компенсатор 0.5 0.3 1.0 1 3 1 2,4 32,9 79
2 480x10 750 1. внезапное сужение 2. сальниковый компенсатор 3. тройник на проход при разделении потока 0.5 0.3 1.0 1 6 1 3,3 23,4 77
3 426x10 600 1. внезапное сужение 2. сальниковый компенсатор 3. задвижка 0.5 0.3 0.5 1 4 1 2,2 20,2 44,4
4 426x10 500 1.тройник на ответвление 2. задвижка 3. сальниковый компенсатор 4. тройник на проход 1.5 0.5 0.3 1.0 1 1 4 1 4.2 20.2 85
5 325x8 400 1. сальниковый компенсатор 2. задвижка 0.3 0.5 4 1 1.7 14 24
6 325x8 300 1. тройник на ответвление 2. сальниковый компенсатор 3. задвижка 1.5 0.5 0.5 1 2 2 3.5 14 49
7 325x8 200 1.тройник на ответвление при разделении потока 2.задвижка 3.сальниковый компенсатор 1.5 0.5 0.3 1 2 2 3.1 14 44

Таблица 7 - Гидравлический расчет магистральных трубопроводов

№ участка G, т/ч Длина, м dнхs, мм V, м/с R, Па/м DP, Па åDP, Па
L Lп
1 2 3 1700 950 500 400 750 600 79 77 44 479 827 644 630x10 480x10 426x10 1.65 1.6 1.35 42 55 45 20118 45485 28980 94583 74465 28980
4 5 750 350 500 400 85 24 585 424 426x10 325x8 1.68 1.35 70 64 40950 27136 68086 27136
6 400 300 49 349 325x8 1.55 83 28967 28967
7 450 200 44 244 325x8 1.75 105 25620 25620

Определим невязку потерь давления на ответвлениях. Невязка на ответвлении с участками 4 и 5 составит:

Невязка на ответвлении 6 составит:

Невязка на ответвлении 7 составит.

Подогрев воды происходит в сетевых подогревателях, отборным паром, в пиковых водогрейных котлах, после чего сетевая вода поступает в подающую линию, а далее - к абонентским установкам отопления, вентиляции и горячего водоснабжения.

Отопительная и вентиляционная тепловые нагрузки однозначно зависят с температуры наружного воздуха tн.в. Поэтому необходимо регулировать отпуск теплоты в соответствии с изменениями нагрузки. Применяете преимущественно центральное регулирование, осуществляемое на ТЭЦ дополняемое местными автоматическими регуляторами.

При центральном регулировании, возможно, применять либо количественное регулирование, сводящееся к изменению расхода сетевой воды в подающей линии при неизменной ее температуре, либо качественное, при котором расход воды остается постоянным, а меняется ее температура.

Серьезным недостатком количественного регулирования является вертикальная разрегулировка отопительных систем, означающая неодинаковое перераспределение сетевой воды по этажам. Поэтому применяется обычно качественное регулирование, для которого должны быть рассчитаны температурные графики тепловой сети для отопительной нагрузки в зависимости от наружной температуры.

Температурный график для подающей и обратной линий характеризуется значениями расчетных температур в подающей и обратной линиях τ1 и τ2 и расчетной наружной температуре tн.o. Так, график 150-70°С означает, что при расчетной наружной температуре tн.o. максимальная (расчетная) температура в подающей линии составляет τ1 = 150 и в обратной линии τ2 - 70°С. Соответственно расчетная разность температур равна 150-70 = 80°С. Нижняя расчетная температура температурного графика 70 °С определяется необходимостью подогрева водопроводной воды для нужд горячего водоснабжения до tг. = 60°С, что диктуется санитарными нормами.

Верхняя расчетная температура определяет минимально допустимое давление воды в подающих линиях, исключающее вскипание воды, а следовательно, и требования к прочности, и может меняться в некотором диапазоне: 130, 150, 180, 200 °С. Повышенный температурный график (180, 200 °С) может потребоваться при присоединении абонентов по независимой схеме, что позволит во втором контуре сохранить обычный график 150-70 °С. Повышение расчетной температуры сетевой воды в подающей линии приводит к снижению расхода сетевой воды, что снижает затраты на тепловую сеть, но также снижает выработку электроэнергии на тепловом потреблении. Выбор температурного графика для системы теплоснабжения должен быть подтвержден технико-экономическим расчетом по минимуму приведенных затрат для ТЭЦ и тепловой сети.

Теплоснабжение промплощадки ТЭЦ-2 осуществляется по температурному графику 150/70 °С со срезкой на 115/70 °С, в связи с чем регулирование температуры сетевой воды автоматически осуществляется только до температуры наружного воздуха «- 20 °С». Расход сетевой воды завышен. Превышение фактического расхода сетевой воды над расчетным приводит к перерасходу электрической энергии на перекачку теплоносителя. Температура и давление в обратном трубопроводе не соответствует температурному графику.

Уровень тепловых нагрузок потребителей, подключенных в настоящее время к ТЭЦ, значительно ниже, чем было предусмотрено проектом. В результате на ТЭЦ-2 имеется резерв тепловой мощности, превышающий 40 % от установленной тепловой мощности.

Из-за повреждений разводящих сетей, принадлежащих ТМУП ТТС, осуществляемого слива из систем теплоснабжения из-за отсутствия необходимого перепада давления у потребителей и неплотностей поверхностей нагрева водоподогревателей ГВС имеет место увеличенный расход подпиточной воды на ТЭЦ, превышающий расчетную величину в 2,2 - 4,1 раза. Давления в обратной тепломагистрали также превышают расчетное значение в 1,18-1,34 раза.

Указанное выше свидетельствует, что система теплоснабжения внешних потребителей не отрегулирована и требует регулировки и наладки.

Зависимость температур сетевой воды от температуры наружного воздуха

Таблица 6.1.

Значение температур

Значение температур

Наружно го воздуха

подаю щей магистр али

После элеватора

обратн ой магистр

Наружн ого воздуха

подаю щей магистр

После элеватора

В обратно й магистр али