Электрооборудование

Преобразование тепла в электрическую энергию. Преобразование тепловой энергии в электрическую

Преобразование тепла в электрическую энергию. Преобразование тепловой энергии в электрическую


Преобразование электрической энергии в тепловую пли электронагрев имеет четыре основные разновидности, по которым классифицируются промышленные электропечи; 1) электронагрев через сопротивление; 2) дуговой электронагрев; 3) смешанный электронагрев; 4) индукционный нагрев.
Электронагрев металлургических печей имеет существенные преимущества по сравнению с нагревом в результате сжигания углеродистого топлива: возможность получения весьма высоких температур до 3000° и более при концентрации зон высоких температур в определенных участках рабочего пространства печей; легкость и плавность регулирования величины и распределения температуры в рабочем пространстве; чистота рабочего пространства и возможность избежать загрязнения его золой, серой, газами и различными примесями: низкие потерн металлов со шлаками, пылью, газами и вследствие угара; высокий термический к. п. д., достигающий 70-85%; малое количество газов и пыли; возможность комплексной механизации и автоматизации; культура и чистота рабочих мест; возможность применять любую газовую среду и вакуум.
К недостаткам электронагрева относятся: высокое потребление электроэнергии, значительно превосходящее потребление в других отраслях народного хозяйства, и конструктивное ограничение производительности и мощности для некоторых типов электропечей. в дальнейшем в связи с увеличением мощности и числа электростанций, снижением стоимости электроэнергии и увеличением мощности и производительности электропечей перечисленные недостатки утратят свое значение.
Общая активная, или ваттная мощность трехфазной электропечной установки Р определяется по формуле

Электронагрев через сопротивление


Этот тип электронагрева имеет несколько разновидностей. По способу выделения тепла различают косвенный и прямой нагрев; наибольшее значение и распространение в печной технике имеет косвенный нагрев, характеризующийся тем, что тепло выделяется в специальных нагревательных элементах (сопротивлениях) и передается от них к обрабатываемому материалу теплоотдачей. По температуре рабочего пространства печей различают нагрев; низкотемпературный в интервале 100-700°, среднетемпературный 700-1200° и высокотемпературный 1200-2000°.
При низкотемпературном нагреве весьма большое значение имеет теплообмен между нагревателем и материалом конвекцией, которая всемерно интенсифицируется принудительной циркуляцией с большими скоростями газа или воздуха внутри печен. При среднетемпературном и высокотемпературном нагреве, особенно при отсутствии принудительной циркуляции газов, основное количество тепла передается от нагревателей к обрабатываемым материалам излучением. Для электрических печей сопротивления высокотемпературный нагрев имеет лишь ограниченное значение.
Электронагрев сопротивлением нашел наибольшее применение для сушки и обжига материалов, нагрева и термической обработки металлов и сплавов, плавки легкоплавких металлов - олова, свинца, цинка, алюминия, магния и их сплавов, а также для лабораторных и бытовых нужд. Поскольку, однако, при косвенном нагреве размер нагревательных элементов увеличивается, а размещение их в рабочем пространстве печи оказывается затруднительным, верхний предел мощности электрических печей сопротивления ограничивают величиной 600-2000 квт.
Для нормального протекания процесса преобразования электрической энергии в тепловую и длительной устойчивой работы нагревательные элементы должны обладать следующими качествами: большим удельным электрическим сопротивлением, допускающим достаточное поперечное сечение элементов и ограниченную их длину; малым электрическим температурным коэффициентом, ограничивающим разницу в электрическом сопротивлении нагретого и холодного нагревателя, постоянством электрических свойств во времени; жаростойкостью и неокисляемостью; жаропрочностью, т. е. достаточной механической прочностью при высоких температурах; постоянством линейных размеров; хорошей обрабатываемостью материала (свариваемость, пластичность и др.). Этим требованиям наиболее удовлетворяют сплавы никеля, хрома, железа (нихром, фехраль и жаропрочная сталь), применяемые в электропечах сопротивления в виде проволоки или ленты, и углеродистые материалы, применяемые в виде угольных, графитовых или карборундовых стержней.
Определение размеров нагревательных элементов можно научно обосновать совместным решением двух основных уравнений, описывающих существо работы нагревателей - уравнения мощности и уравнения теплообмена. Поскольку нагревательный элемент является составной частью электрической цели, то для получения необходимой мощности он должен обладать определенными размерами и сопротивлением. С другой стороны, вся тепловая энергия, полученная в нагревательном элементе в результате преобразования электроэнергии, должна быть передана теплоотдачей к перерабатываемым материалам и футеровке печи, для чего необходимо иметь определенную поверхность, температуру и коэффициент теплоотдачи. Если теплоотдача нагревательного элемента не соответствует происходящему в нем тепловыделению - элемент будет перегреваться, а его температура может превысить допустимые для материала пределы, что приведет к разрушению нагревателя.
На основании решения уравнения мощности для нагревательных элементов любой формы и материала выведена общая формула

При расчете размеров нагревателя величина w должна точно соответствовать его удельной теплоотдаче, которую находят решением соответствующего уравнения теплообмена нагревателя, кладки и материала А.Д. Свенчанский проанализировал условия теплоотдачи для различных реальных нагревателей и составил графики и таблицы, с помощью которых можно находить величину w.

Дуговой электронагрев


Этот вид электронагрева применяется в высокотемпературных электрических печах большой мощности преимущественно для плавки различных материалов. Если дуга горит между электродом и перерабатываемым в печи материалом, то такие печи называются печами прямого действия с зависимой дугой: открытой - видимой (рис. 20, а) или закрытой - невидимой дугой, погруженной в слой шихты или расплава (рис. 20, б). Если дуга горит между электродами и непосредственно не соприкасается с перерабатываемыми в печи материалами и продуктами, то такие печи называются печами косвенного действия с независимой дугой (рис. 20, в). Наибольшим термическим к. п. д. обладают дуговые печи прямого действия, особенно с закрытой дугой, поскольку в них имеются наилучшие условия для теплообмена между дугой и материалом, позволяющие быстро и с ограниченными потерями тепла нагревать материал до весьма высокой температуры.

Дуговые печи прямого действия получили наибольшее применение для выплавки стали и ферросплавов, плавки и рафинирования меди и никеля и переработки различного рудного сырья. При плавке металлов или сплавов с высокой (металлической) электропровадностью можно работать только с открытой дугой, горящей на поверхности материала, так как погружение электродов в слой материала поведет к короткому замыканию. Работа с закрытой дугой возможна, когда перерабатываемые материалы и продукты имеют ограниченную (не металлическую) электропроводность. Дуговые печи непрямого действия применяются в тех случаях, когда соприкосновение перерабатываемого материала с дугой ухудшает качество продуктов или увеличивает потери, например при плавке некоторых цветных металлов и сплавов (латунь, бронза и др.). Следует особо подчеркнуть, что дуговой электронагрев в отличие от нагрева сопротивлением не имеет каких-либо ограничений по общей мощности печей.
Дуговой электронагрев слагается из процесса преобразования электроэнергии в тепловую, протекающего в горящей дуге, и процесса теплообмена между дугой, материалом и футеровкой. Описание закономерностей первого процесса является предметом так называемой теории дуги и особенно дуги переменного тока большой мощности. Значительный вклад в разработку теории дуги внесли В.В. Петров, В.Ф. Миткевич, С.И. Тельный, И.Т. Жердев, К.К. Хренов, Г.А. Сисоян и др. Вопросами теплообмена между дугой, материалом и футеровкой занимались Д.А. Диомидовский, Н.В. Окороков и др.
Электрическая дуга может быть получена при постоянном и переменном токе, но все промышленные печи работают обычно на переменном токе. Для устойчивого горения дуги и ограничения толчков тока при коротких замыканиях последовательно с ней в электрическую цепь включается индуктивное сопротивление, поглощающее небольшую долю активной мощности. При переменном токе в течение каждого полупериода напряжение сети и сила тока достигают максимума и проходят через нуль. На рис. 21, а показаны теоретические кривые мгновенного значения силы тока и напряжения дуги Iд и Uд и напряжения питающего источника Uист. Когда напряжение источника после перехода через нуль начинает расти, дуга зажигается только при достижении величины напряжения зажигания U1. С этого момента в цепи появляется ток, возрастающий по периодической кривой, отличной От синусоиды. Дуга затухает при напряжении затухания т. е. раньше перехода через нуль напряжения источника, и в этот момент прекращается ток. После перехода через нуль все описанные явления повторяются. Таким образом, ток в дуге идет прерывисто и дуга то зажигается, то погасает. Длительность перерывов в горении дуги зависит от многих факторов и, в частности, от материала электродов, степени разогрева печного пространства и др. Понятно, что прерывистая дуга снижает эффективность дугового нагрева и поэтому должны создаваться условия, обеспечивающие непрерывное горение дуги переменного тока. Основным средством для непрерывного горения дуги переменного тока является последовательное включение в цепь дуги индуктивного сопротивления, что видно из рис. 21, б и в.
Исследование дифференциального уравнения дуги переменного тока, имеющей в цепи активное и индуктивное сопротивления, определило соотношение величин индуктивного X и активного R сопротивлений, обеспечивающее непрерывное горение дуги при заданных напряжениях источника Uист и дуги Uд (рис. 22).

Эффективность дугового нагрева в весьма большой степени зависит от электрического режима горящей дуги и, в первую очередь, от величин напряжения и силы тока.
В настоящее время еще не создана научно обоснованная методика определения наивыгоднейшего напряжения для питания дуговых печей. Поэтому напряжение выбирают по данным заводской практики в пределах от 100 до 600 в, причем более высокое напряжение обычно принимается для дуговых печей большой мощности и для печей с закрытой дугой. Связь максимального рабочего напряжения Uлин и номинальной мощности печи Рном принято выражать эмпирической формулой

где k и n - эмпирические коэффициенты, имеющие различные значения в зависимости от типа печи и характера процесса. Например для дуговых сталеплавильных печей к = 15; n = 0,33. Работа на повышенном напряжении более рациональна, так как снижает потери электроэнергии и увеличивает длину и тепловое излучение дуги. Верхний предел напряжения (600 в) обусловлен в основном условиями электрической изоляции печи и безопасности обслуживающего персонала.
После определения величины напряжения выбор других показателей электрического режима электропечной установки с дуговым нагревом - оптимальной силы тока, cos φ и к. п. д. - производится по ее рабочим характеристикам. Рабочие характеристики дуговых печей нaxодят построением круговых диаграмм: для действующих заводских печей снимают с натуры, для вновь проектируемых печей - по расчетным данным.
Для теории дугового нагрева и расчета дуговых печей весьма большое значение имеет процесс теплообмена между горящей дугой и перерабатываемыми в печи материалами. Однако теория теплообмена в рабочем пространстве дуговых печей находится еще в начальной стадии своего развития и требует дальнейшей углубленной разработки.

Смешанный электронагрев


Этот тип нагрева, являющийся результатом совместного тепловыделения в электрической дуге и в сопротивлении слоя шихты или расплавов, имеет основное значение для рудно-термических печей, выплавляющих ферросплавы, чугун и перерабатывающих рудное сырье и полупродукты цветной металлургии и химической промышленности.
в наиболее сложном случае электрический ток, проходящий через дугу и слои шихты, шлака и металла, преобразуется в них в тепловую энергию Qдуги, Qшихты, Qшлака, Q металла, печи Робщ представляет сумму перечисленных тепловыделений. Принципиальная схема расчета всех этих тепловыделений и связь их с геометрией горна рудно-термических печей была в свое время освещена автором но для точного расчета тепловыделений не достает еще очень многих данных по термической характеристике дуги, электросопротивлениям шихты и расплавов, форме и размерам токопроводящих участков и т. п. Соответственно предложенный автором методом расчета руднотермических электропечей носит пока ориентировочный характер и имеет ограниченное применение.
Для цветной металлургии наибольшее значение имеют рудно-термические печи, работающие с электродами, погруженными в толстый слой шлака, в которых происходит смешанный электронагрев, складывающийся из двух основных составляющих: Qдуги и Qшлака.
М.С. Максименко предложил разделять все электротермические процессы на две основные группы; 1) процессы, в которых доля энергии, поглощаемая в дуге р, больше доли энергии, поглощаемой в шихте и расплавах 2) процессы, у которых р

Индукционный электронагрев


Индукционный электронагрев осуществляется по принципу трансформатора, у которого вторичная обмотка замкнута на. себя, в результате чего индуктируемый электрический ток преобразуется в тепловую энергию. Роль вторичной обмотки играет обычно сам нагреваемый материал. Электрическая энергия, подводимая в первичную обмотку (индуктор), совершает сложный переход в энергию быстропеременного магнитного поля, которая, в свою очередь, вновь переходит во вторичной цепи в электрическую энергию, преобразуемую здесь за счет сопротивления цепи в тепловую энергию. Если нагреваемый материал ферромагнитен, те часть энергии переменного магнитного поля преобразуется в тепловую энергию непосредственно, без перехода в электрическую энергию.
Наибольшее распространение в технике имеют два типа индукционных печей: 1) печи с железным сердечником; 2) печи без сердечника - высокочастотные.

Печи с железным сердечником имеют принципиальную схему (рис. 23, а), похожую на схему обычного трансформатора, у которого первичная обмотка насажена на железный сердечник, а вторичная представлена замкнутым кольцом расплавленного металла, т. е. совмещена с нагрузкой. В результате энергичной циркуляции металл, нагреваемый в кольцевом канале, поднимается вверх в рабочее пространство печи и, соприкасаясь с находящейся там шихтой, нагревает и расплавляет ее.
Печи без сердечника по своей схеме представляют воздушный трансформатор (рис. 23, б), первичной обмоткой которого является медная катушка - индуктор, а вторичная-сама металлическая шихта, загруженная в тигель.
Действующее значение индуктируемой электродвижущей силы Е. в, зависит от амплитудной величины полезного магнитного потока Фм, вб, частоты переменного тока f, пер/сек, числа витков обмотки w, и выражается формулой

В печах с железным сердечником величина достаточно большая благодаря концентрации полезного магнитного потока в сердечнике, а в печах без сердечника величина мала из-за большого магнитного рассеивания. Вследствие этого в индукционных печах с железным сердечником необходимая величина электродвижущей силы Е легко достигается на переменном токе с нормальной и пониженной частотой (f Основные преимущества индукционного нагрева следующие: выделение тепла прямо в массе нагреваемого материала, что уменьшает роль теплообменных процессов, обеспечивает более равномерный прогрев материала и значительно повышает термический к. п. д. индукционных печей; исключительная чистота рабочего пространства печей (обусловленная отсутствием загрязняющих его продуктов горения топлива, материалов нагревательных элементов и электродов), позволяющая получать особо чистые металлы и сплавы; возможность полной изоляции рабочего пространства печей от окружающего воздуха и ведения плавки в вакууме или в газовой защитной атмосфере; возможность получения весьма высокой температуры, лимитируемой только свойствами нагреваемого материала и огнеупорной кладки; энергичное перемешивание расплавов электромагнитными и тепловыми потоками, позволяющее получать сплавы равномерного химического состава; высокая удельная производительность индукционных печей; большая скорость нагрева и плавления; малые потери металлов от угара; высокая техническая культура печных агрегатов, отсутствие пыли и газов.
К недостаткам индукционного нагрева относятся: пониженный коэффициент мощности, поскольку для печей с железным сердечником соs φ = 0,3/0,8 и для бессердечниковых печей соs φ = 0,03/0,1; ограниченные размеры, мощность и емкость индукционных печей по сравнению с другими агрегатами; сложность электрического оборудования бессердечниковых печей, требующих специальных источников переменного тока высокой частоты и конденсаторных батарей значительной емкости; ограниченная стойкость футеровки каналов печей с железным сердечником и тиглей бессердечниковых печей: низкая температура нагрева шлаков.
Преимущества индукционного нагрева обусловили его широкое распространение. Индукционные печи с железным сердечником являются в настоящее время основным агрегатом для плавки и литья цветных металлов и производства цветных сплавов. Индукционные печи без сердечника применяются для плавки цветных и благородных металлов и для получения качественных стальных отливок. В металлургии меди, никеля и цинка также применяются индукционные печи, работающие на конечных переделах. Индукционный нагрев широко применяется на машиностроительных заводах при термической обработке различных металлических заготовок и изделий.
Теория индукционных печей с железным сердечником базируется на теории однофазного двухобмоточного трансформатора с железным сердечником. Отличие обычного трансформатора от индукционной печи с железным сердечником заключается в том, что у трансформатора вторичная обмотка и сеть потребления (нагрузка) находятся на значительном расстоянии одна от другой, а в индукционной печи вторичная обмотка совмещена с нагрузкой и представлена кольцом расплавленного металла.
Преобразуемая мощность Рпр может быть выражена через вторичный ток I2 и фактическое активное сопротивление металла в канале r2 формулой

Мощность, теряемая в индукторе (электрические потери) Рэл, выражается через первичный ток I1 и фактическое активное сопротивление обмотки индуктора

Полная активная (ваттная) мощность индукционной печи с железным сердечником Р будет

В теории индукционных печей без железного сердечника эти печи рассматриваются как воздушные трансформаторы, у которых в результате отсутствия замкнутого железного магнитопровода магнитные потоки проходят по перерабатываемой шихте и по воздуху.
Частота питающего индуктор переменного тока f зависит от емкости (мощности) индукционной печи и удельного сопротивления перерабатываемой шихты р2. Исследования показывают, что чем больше емкость печи и ее размеры, в частности диаметр шихты d, см, и чем меньше удельное сопротивление расплавленного металла р2. ом/см3, тем меньше может быть минимальная частота fмин, гц; указанная зависимость выражается формулой

Каждой емкости печи и сопротивлению соответствует определенная оптимальная частота питающего тока, при которой к. п. д. печи достигает возможного максимального значения. Для бессердечниковых печей большой емкости (мощности) оказалось возможным применять пониженную частоту переменного тока, вплоть до нормальной 50 гц.
Активная мощность бессердечниковой печи Ра состоит из мощности, преобразуемой в шихте, и мощности, теряемой в индукторе, и выражается формулой

На основании закономерностей процессов горения топлива и преобразования электрической энергии в тепловую могут решаться следующие наиболее важные задачи по теории, эксплуатации и проектированию металлургических печей:
а) выбор системы нагрева печей (углеродистое топливо или электроэнергия);
б) выбор типа и сорта топлива и системы его сжигания;
в) выбор параметров электроэнергии и системы ее преобразования в тепловую энергию;
г) расчеты процессов горения топлива;
д) выбор и расчет топочных устройств;
е) расчет и конструирование электрических печей.

Добавить сайт в закладки

Как происходит преобразование тепловой энергии в электрическую

Непосредственное преобразование тепловой энергии в электриче­скую можно осуществить, используя явления в контакте двух метал­лов или полупроводников, где действуют сторонние силы, которыми обусловлена диффузия заряженных частиц.

Величина контактной разности потенциалов зависит не только от свойств контактирующих материалов, но и от температуры контакта, так как с температурой связаны энергия свободных электронов и их концентрация.

Рассматривая замкнутую цепь из двух разных металлов (рис. 1а), можно убедиться в том, что при одинаковой темпера­туре контактов 1 и 2 электрический ток в цепи не получится, так как контактные разности потенциалов, определяемые формулой

U k = (A 1 – A 2) : e 0

в обоих контактах одинаковы, но направлены в противоположные сто­роны по цепи:

U k 1 - U k 2 = (A 1 – A 2) + (A 2 - A 1) : e 0 = 0

Если один из контактов, например 1, нагреть (t 1 > t 2), то равнове­сие нарушится - в контакте 1 появится дополнительный скачок потенциала, связанный с нагревом. В этом случае U k1 > U K2 . В цепи образуется термоэлектродвижущая сила (термо-э. д. с.), абсолютное значение которой пропорционально разности температур контактов:

E т = U Kl - U K2 = E 0 (t 1 - t 2),

где Е 0 - величина, зависящая от свойств металлов, образующих контакт.

Рисунок 1 . а) замкнутая цепь из двух разных металлов, б) цепь с измерителем термо-э. д. с.

Таким образом, термо-э. д. с. возникает в цепи, состоящей из раз­ных металлов, при разной температуре мест соединения.

Термо-э. д. с. в рассматриваемой цепи поддерживается благодаря нагреванию спая 1, т. е. при постоянном расходе тепловой энергии. В свою очередь, термо-э. д. с. является причиной электрического тока.

Однако концентрация свободных электронов в металлах велика и при переходе из одного металла в другой меняется очень мало. В связи с этим контактная разность потенциалов оказывается незначитель­ной и мало зависит от температуры. По этой причине металлические термоэлементы имеют очень малые э. д. с. (в спае платины и железа - 1,9 мВ при разности температур горячего и холодного спаев 100° С), а к. п. д. их не превышает 0,5%. Такие термоэлементы применяют для измерения температур (термопары).

Для этого в цепь термопары включается измеритель термо-э. д. с. - милливольтметр (рис. 1, 6). Термопара в этом случае является источником электрической энергии, а измерительный прибор - приемником.

Кроме контакта 1 основных металлов термопары между собой образуются контакты их с соединительными проводами (Рис. 1 - 2, 3). В этих контактах тоже имеются контактные разности потенциалов, но они не изменяют термо-э. д. с., если их температура поддерживается одинаковой.

При наличии произвольного числа контактов разных металлов сумма контактных разностей потенциалов в замкнутой цепи остается равной нулю, если все контакты имеют одинаковую температуру. В этом можно убедиться, составив уравнение, аналогичное вышеприведенному. Независимо от числа контактов, термо-э. д. с. пропорциональна разности температур более нагретого контакта и всех других контактов, находящихся при одинаковой температуре.

Рисунок 2. n,p- полупроводники.

В отличие от металлов, в полупроводниках при увеличении температуры сильно увеличиваются концентрации свободных электронов и дырок. Это свойство полупроводников позволяет получить более высокие термо-э. д. с. (до 1 мВ на 1° С разности температур) и к. п. д. термоэлементов до 7%.

Полупроводниковый термоэлемент состоит из двух полупроводников (п и р на рис. 2). Один из них имеет электронную, а другой дырочную электропроводность. При нагревании полупроводников в месте соединения их металлической пластинкой сильно увеличивается концентрация свободных носителей заряда. Поэтому в полупроводниках возникает диффузия их от горячего конца к холодному. В полупроводнике с электронной электропроводностью к холодному концу перемещаются электроны, в результате чего этот конец заряжается отрицательно. В другом полупроводнике к холодному концу перемещаются дырки, образуя положительный заряд. Возникшая разность потенциалов противодействует диффузии, и при некотором значении ее устанавливается равновесие сил электрического поля и сторонних сил, под действием которых идет процесс диффузии носителей заряда. Эта разность потенциалов и является термо-э. д. с. полупроводникового термоэлемента.

Если к холодным концам полупроводников подключить токопроводящий элемент, например, резистор, то образуется замкнутая цепь и электрический ток в ней.

ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2121246

СПОСОБ ПРЕОБРАЗОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В ТЕПЛОВУЮ
И СОЗДАНИЯ ТЕПЛООБМЕНА

Имя изобретателя: Кукушин Виктор Пантелеевич
Имя патентообладателя: Кукушин Виктор Пантелеевич
Адрес для переписки:
Дата начала действия патента: 1997.04.16

Способ осуществляется использованием в качестве нагревательного элемента одного или более замкнутых витков проводника электрического тока, образующих вторичную обмотку электрического трансформатора, и введением теплоносителя в контакт с поверхностями проводника. Изобретение позволяет повысить надежность преобразования электрической энергии при теплообмене.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к технологии преобразования электрической энергии в тепловую и создания теплообмена. Оно может быть использовано при нагреве жидкости в системах предпускового подогрева двигателей внутреннего сгорания, отопления и горячего водоснабжения промышленных предприятий и жилых зданий, для нагрева плазмы и других веществ.

Известен способ преобразования электрической энергии в тепловую и создания теплообмена , основанный на прямом пропускании электрического тока через теплоноситель, создаваемого за счет подачи напряжения питающей сети через токоподводы к электродам (см. А.П. Альтгаузен и др., "Низкотемпературный электронагрев", Москва, Энергия, 1968 ). Он используется для нагрева жидкости, бетона, для оттаивания грунтов, руды, песка и других веществ. Основными недостатками этого способа являются повышенная электроопасность из-за относительно высоких напряжений (380 В или 220 В ), а также зависимость электронагрева и теплообмена от электрического сопротивления теплоносителя. В частности, в нагреваемую воду вносят специальные добавки, чтобы обеспечить заданное значение электрического сопротивления.

Известен способ преобразования электрической энергии в тепловую и создания теплообмена между нагревательным элементом и теплоносителем , включающий подводку электропитания к нагревательному элементу, представляющему собой металлическую трубку, внутри которой находится нагревательная спираль, запрессованная в специальном наполнителе, пропускание электрического тока через нагревательную спираль (см. А.П. Альтгаузен и др., "Низкотемпературный электронагрев", Москва, Энергия, 1968 ). Такой способ получил широкое распространение в различных областях народного хозяйства. Трубчатый электрический нагреватель (ТЭН ) можно помещать в воду, соли, жидкий металл, пресс-форму, картер двигателя внутреннего сгорания и т.д. Однако к нагреваемой спирали подводится электрическое напряжение непосредственно от питающей сети, а снизить подаваемое напряжение не позволяет относительно высокое электрическое сопротивление спирали, что влечет необходимость электроизоляции спирали для обеспечения электробезопасности и что в свою очередь снижает теплопроводность между спиралью и металлической трубкой, а следовательно, ухудшает теплообмен между ТЭН (ом) и теплоносителем в целом. Электроизоляция спирали не исключает вероятность ее электрического пробоя и попадания на металлическую трубку ТЭН(а) высокого электрического потенциала, что приводит к необходимости ее заземления. Кроме того, ТЭН (ы) имеют ограниченный срок службы из-за перегорания спирали.

Известен способ преобразования электрической энергии в тепловую и создания теплообмена , получивший название "Контактная сварка" (см. Н.С. Кабанов, "Сварка на контактных машинах", Москва, изд. "Высшая школа", 1985; Ю.Н. Бобринский и Н.П. Сергеев, "Устройство и наладка контактных сварочных машин", Москва, изд. "Машиностроение", 1967; В.Г. Геворкян, "Основы сварочного дела", Москва, изд. "Высшая школа", 1991 ). В данном способе нагревательным элементом и теплоносителем является свариваемый металл, который замыкает вторичную обмотку сварочного трансформатора, в результате чего по замкнутой цепи протекает электрический ток, достаточный для нагрева и сварки металла. При этом каждый виток вторичной обмотки трансформатора является отдельным источником электроэнергии, так как он охватывает один и тот же магнитный поток, создаваемый в магнитопроводе первичной обмоткой трансформатора.

Этот способ является прототипом. Недостаток способа заключается в том, что он применим только лишь для теплоносителей с относительно низким электрическим сопротивлением. В случае применения жидкости, например воды, пришлось бы отказаться от понижения напряжения с помощью трансформатора, и способ превратился бы в рассмотренный первый со всеми его недостатками.

Безопасность и надежность преобразования электрической энергии в тепловую, эффективность теплообмена в предлагаемом способе достигаются путем использования в качестве нагревательного элемента замкнутого витка проводника электрического тока или нескольких витков, образующих вторичную обмотку трансформатора, и введения теплоносителя в контакт с поверхностями проводника. При замыкании витка проводника, охватывающего магнитопровод трансформатора, в нем наводится ЭДС меньше от подводимой к первичной обмотке в число ее витков, что обеспечивает электробезопасность, а протекающий по замкнутому витку ток резко возрастает из-за малого электрического сопротивления витка и осуществляет его нагрев независимо от электрического сопротивления теплоносителя. В то же время непосредственный контакт теплоносителя с поверхностями замкнутого витка проводника повышает эффективность теплообмена за счет резкого снижения тепловых потерь. Могут быть созданы условия, исключающие возможность перегорания витка, что обеспечивает надежность преобразования.

На чертеже приведен пример оборудования, реализующего предлагаемый способ.

Способ осуществляется следующим образом. С помощью переключателя K первичную обмотку трансформатора с числом витков W 1 подключают к сети переменного тока. В магнитопроводе 1 возникает переменный магнитный поток, который наводит ЭДС в замкнутых витках проводников 2 и 3 и вызывает в них электрический ток, нагревающий их. Проводник 2 выполнен в виде трубы, проводник 3 - из замкнутого пучка медных проводов. На вход A вводят холодный теплоноситель, например воду, которая попадает внутрь проводника 2 и омывает снаружи проводник 3. Через поверхности раздела проводников 2 и 3 и теплоносителя происходит теплообмен, теплоноситель нагревается и за счет конвекции поступает на выход Б. В одном частном случае проводник 3 может отсутствовать (он нужен тогда, когда электрическое сопротивление проводника 2 не согласуется с мощностью трансформатора). В другом частном случае, чтобы не допускать рассеяние тепла с наружной поверхности проводника 2, вместо проводника 2 может быть использована электроизоляционная труба, и тогда тепло в теплоноситель будет поступать только из проводника 3. В третьем случае проводником может являться сам теплоноситель, помещенный внутрь изоляционной трубы или в объем другой формы, охватывающей магнитопровод.

ПРИМЕР КОНКРЕТНОГО ВЫПОЛНЕНИЯ СПОСОБА

Был взят радиатор стальной штампованный марки 2М3-500 (см. стр. 189, Справочник по специальным работам под редакцией Н.А. Коханенко, Москва, изд. литературы по строительству, 1964) с эквивалентной поверхностью нагрева 3,53 экм (эквивалент 11 - секционного чугунного радиатора М-140 по ГОСТ 8690-58 ) с емкостью 13,3 л . Из стальной трубы диаметром 3/4"" был изготовлен замкнутый виток, охватывающий магнитопровод трансформатора питания мощностью 1,5 кВт . Вход витка А был соединен с выходом (патрубок в нижней части радиатора, установленного вертикально), а выход витка Б - с входом радиатора (патрубок в верхней части) с помощью резиновых шлангов. В верхней части радиатора был установлен расширительный бачок емкостью 0,25 л . Затем система (радиатор - виток) была заполнена водой и первичная обмотка трансформатора включена в сеть с напряжением 220 В . Температура, окружающая радиатор до включения трансформатора, была 4,5 o C в объеме помещения 300 м 3 . После включения трансформатора были измерены электрическое напряжение на витке 0,8 В и электрический ток, проходящий по витку, который составил 1875 А . Через 20 мин температура воды в радиаторе возросла до 96 o C (первоначальная температура воды составляла 12 o C ), после чего с помощью тиристорной системы управления потребляемая из сети мощность была уменьшена вначале до 800 Вт 82 o C , а затем через 2 часа до 500 Вт , что обеспечило поддержание температуры воды на уровне 60 o C . В результате 4-часового испытания температура в помещении достигла 18 o C . На следующий день система была включена на потребляемую мощность 1,5 кВт . Через 4 часа температура в помещении достигла 23 o C , после чего система была переведена на потребление 500 Вт и эксплуатируется в течение 1 месяца как обогревательное устройство.

Были проведены испытания по нагреву системы отопления с емкостью 150 л по предлагаемому способу с потреблением мощности 800 Вт . В процессе испытаний был установлен нагрев воды от 16 o C до 58,5 o C за 7 часов, после чего система была переведена в режим, поддерживающий температуру на уровне 58 o C при потреблении мощности 500 Вт .

Были проведены испытания по введению внутрь замкнутого витка из стальной трубы пучка из медных проводов, замкнутых с помощью пайки (проводник 3). В результате испытаний установлена возможность с помощью проводника 3 уменьшать эквивалентное электрическое сопротивление замкнутых витков практически в любых пределах и увеличивать потребляемую мощность до полной загрузки трансформатора.

Испытания показали возможность снижения потребляемой электроэнергии в 1,5 -2 раза при использовании предлагаемого способа в сравнении с традиционными.

ФОРМУЛА ИЗОБРЕТЕНИЯ

    Способ преобразования электрической энергии в тепловую и создания теплообмена между нагревательным элементом и теплоносителем, использующий в качестве нагревательного элемента вторичную обмотку электрического трансформатора, выполненную в виде замкнутого витка проводника в виде трубы со входом и выходом теплоносителя, отличающийся тем, что обеспечивают конвенцию теплоносителя через нагревательный элемент соединением его входа с выходом теплоносителя из радиатора, а выхода теплоносителя из нагревательного элемента - со входом радиатора, соединения выполняют шлангами, радиатор устанавливают вертикально таким образом, чтобы выход теплоносителя из радиатора находился в его нижней части, в верхней части радиатора устанавливают расширительный бачок и всю систему заполняют теплоносителем и подключают трансформатор в сеть.

    Способ по п.1, отличающийся тем, что замкнутый виток в виде трубы выполняют из электроизоляционного материала, а внутрь его устанавливают один или более замкнутых витков проводника.

Количество цифровых гаджетов постоянно увеличивается. К сотовому телефону добавились мобильная радиостанция, GPS-навигатор и фотоаппарат.

Таскать с собой полный котелок запасных аккумуляторов для всей этой электронной братии тяжело, а в холодное время года еще и бессмысленно – их емкость и мощность при низких температурах сильно сокращаются.

Поэтому каждый путешественник хотел бы обзавестись устройством, преобразующим в электричество доступную в походе энергию.

Весьма практичными оказались термогенераторы – источники, для работы которых необходимо тепло. На чем основан принцип их работы и как можно сделать термогенераторы электричества своими руками – об этом пойдет речь в этой статье.

Термоэлектродвижущая сила возникает в замкнутом контуре при соблюдении двух условий:

  1. Если он состоит хотя бы из двух проводников, изготовленных из различных материалов.
  2. Если все входящие в состав контура разнородные участки имеют различную температуру (хотя бы в области соединения).

В физике данное явление называют эффектом Зеебека.

Величина термоЭДС зависит от вида материалов и разности их температур.

Определяют ее по формуле:

Е = к (Т1 – Т2),

  • Где Т1 и Т2 – температура проводников;
  • К – коэффициент Зеебека.

Наибольшей производительностью обладают контуры, состоящие из разнородных полупроводников (обладающих р- и n-проводимостью). В металлах эффект Зеебека проявляется незначительно, за исключением некоторых переходных металлов и их сплавов, например, палладия (Pd) и серебра (Ag).

Теплообменники широко применяются в быту. Довольно легко можно сделать – инструкция по сборке представлена в статье.

Пошаговая инструкция по облицовке камина своими руками представлена .

Знаете ли вы, что напряжение всего в 12 Вольт может служить источником тепла? По ссылке инструкция по изготовления обогревателя 12 Вольт своими руками.

Принцип работы

Решать задачу по производству электричества из тепловой энергии приходится, как принято говорить в науке, от обратного. Противоположным эффекту Зеебека является эффект Пельтье, который состоит в изменении температур двух объединенных в замкнутый контур разнородных полупроводников при пропускании через них постоянного тока: один из них нагревается, второй – остывает.

Если направление тока изменить, изменится и направление теплового потока: первый полупроводник будет остывать, а второй – нагреваться. В качестве полупроводников чаще всего применяют твердую смесь кремния с германием и теллурид висмута.

Эффект Пельтье

Эффект, открытый Жаном Пельтье, получил широкое применение в различных сферах человеческой жизнедеятельности, где требуются холодильные машины, но нет возможности применить компрессорный тепловой насос на фреоне. Поэтому именно его именем назвали выпускаемые для этой цели устройства – элементы Пельтье.

Но если на такой элемент или, как его еще называют, термоэлектрический охладитель оказать воздействие с противоположной стороны, то есть создать на его полупроводниках разность температур, то мы получим эффект Зеебека: элемент Пельтье превратится в источник постоянного тока.

Конструкция термогенератора

Итак, идея термогенератора довольно проста: необходимо взять элемент Пельтье и сильно нагреть одну из его поверхностей. В генераторах заводского изготовления для этого применяются газовые горелки. Но создать такой прибор в домашних условиях довольно сложно – трудно обеспечить стабильное горение пламени в течение длительного времени.

Поэтому народные умельцы отдают предпочтение более простой версии термогенератора, о которой мы сейчас и расскажем.

Изготовление своими руками

Схематично устройство самодельной термоэлектростанции можно представить так:

  1. Элемент Пельтье положим на дно глубокой посудины – миски или кружки.
  2. Далее в эту посудину вставим еще одну: если используются миски, то понадобится такая же; если ваш выбор пал на кружки, то вторая должна быть чуть меньше первой.
  3. К выведенным от элемента Пельтье проводам присоединим преобразователь напряжения.
  4. Внутреннюю посудину заполним снегом или холодной водой, после чего всю конструкцию поставим на огонь.

Через какое-то время снег растает, превратится в воду и закипит. Производительность генератора при этом понизится, но зато турист получит возможность выпить горячего чайку. После чаепития можно будет заправить генератор новой порцией снега.

Чем больше термоэлементов (их еще называют ветвями) будет у приобретенного вами элемента Пельтье, тем лучше. Можно применить прибор марки TEC1-127120-50 – их у него 127. Данный элемент рассчитан на токи до 12А.

Порядок работ

Теперь рассмотрим процесс создания самодельного термогенератора в деталях:

  1. Поверхность каждой посудины в месте контакта с элементом Пельтье следует выровнять и зачистить, что обеспечит максимальный теплообмен. Для идеального прилегания можно отполировать донышки смазанным пастой ГОИ куском войлока, закрепленным в шпинделе электродрели.
  2. Присоединяем к контактам элемента Пельтье провода от электроплиты, снабженные термостойкой изоляцией. За неимением таковых можно применить, к примеру, провод МГТФЭ-0,35, обернув его термостойкой тканью.
  3. Смазав дно одной из посудин термопроводящей пастой, например, КПТ-8, укладываем на него элемент Пельтье. Подсоединенные к нему провода следует расположить так, чтобы их концы оказались вне емкости.
  4. Сверху элемент Пельтье снова смазываем термопастой и вставляем в нашу кружку или миску вторую емкость подходящего размера (у кружки нужно будет отрезать ручку).
  5. Пространство между емкостями необходимо заполнить термоустойчивым герметиком (можно купить в автомагазине состав для ремонта выхлопных труб). Он послужит теплоизоляцией между горячей и холодной сторонами генератора и дополнительной защитой для проводов.

Походный генератор электричества

Выступающие концы проводов можно приклеить к бортику кружки матерчатой изолентой.

Изготовление преобразователя

В ходе эксперимента установленный на электроплитку термогенератор при наличии снега во внутренней емкости обеспечил ЭДС в 3В и ток в 1,5А. После превращения снега в воду и ее закипания мощность генератора упала в три раза (напряжение составило 1,2В).

Чтобы использовать такой прибор в качестве зарядного устройства для телефона или другого гаджета, которому требуется стабильное напряжение в 5 В или 6,5 В, его необходимо оснастить преобразователем напряжения.

Рассмотрим два варианта.

Вариант 1

Проще всего применить в качестве преобразователя микросхему КР1446ПН1, снабженную DIP-корпусом.

Производится она в России и ее легко можно найти в магазине радиодеталей или на радиорынке.

Воспользоваться не возбраняется и более мощными аналогами, но все они выпускаются в миниатюрных корпусах для поверхностного монтажа, так что придется помучиться с распайкой.

На вход микросхемы подается напряжение с элемента Пельтье, а сама она включается в режиме «5 Вольт» (штатный). Параллельно с элементом Пельтье на вход преобразователя напряжения следует припаять достаточно мощный шунтирующий диод. Он предотвратит движение тока в обратном направлении, если на генератор будет оказано противоположное температурное воздействие.

К примеру, будучи заполненным горячей водой он может быть по неосторожности установлен на какую-нибудь холодную поверхность.

К выходу преобразователя нужно припаять кабель от старого зарядного устройства, подходящего для нашей модели телефона или фотоаппарата, а также светодиодный индикатор на 5 В.

Недостаток этого варианта: предложенная в качестве преобразователя микросхема ограничивает мощность генератора, поскольку ток на ее выходе не превышает 100 мА. Таким образом, элемент Пельтье используется приблизительно на 20%, чего будет достаточно только для телефонов устаревших моделей.

Чтобы иметь возможность заряжать более мощные устройства, необходимо применить усложненную версию преобразователя напряжения.

Вариант 2

Более мощный преобразователь можно собрать по двухкаскадной схеме с применением пары микросхем MAX 756. Чтобы при отключении потребителя генерируемый ток не пропадал зря, оснастим преобразователь встроенными аккумуляторами. Соединенные последовательно, они включены в нагрузку первого каскада через выключатель, диод и токоограничивающий резистор. Сам каскад настроен на режим выхода «3,3 Вольт».

К выходу каскада №1 подключаем каскад №2, настроенный на режим выхода «5 Вольт». Оба каскада реализованы согласно схеме, приведенной в документации на микросхему MAX 756 (опубликована в Сети). Единственное отличие – цепь обратной связи каскада №2 (между выходом каскада и ногой №6 его микросхемы) дополняется последовательностью из 3-х кремниевых диодов, расположенных анодом к выходу.

Простейший походный термогенератор

Такое усовершенствование позволит получать на холостом ходу напряжение величиной 6,5 В (требуется для зарядки некоторых электронных устройств).

Чтобы упростить схему, можно применить микросхему MAX 757, которая снабжена отдельным выходом обратной связи.

Интерфейс этого преобразователя соответствует типу USB Type A. Но если к нему предполагается подключать USB-устройство, то последовательность диодов из цепи обратной связи 2-го каскада лучше убрать, чтобы выходное напряжение вернулось на уровень 5 В.

Эту версию преобразователя нельзя подключать к портам типа USB-Host.

Вариация на тему…

Элемент Пельтье можно просто прикрепить к колышку, втыкаемому в землю поблизости от костра.

Чтобы создать достаточный температурный градиент, обе его поверхности нужно оснастить ребристыми радиаторами.

На поверхности со стороны пламени радиатор должен иметь увеличенную площадь, а его ребра устанавливаются горизонтально.

На противоположной стороне элемента установлен меньший радиатор, а его оребрение – вертикальное.

Батареи отопления могут устанавливаться по-разному в зависимости от типа отопительной системы – однотрубной или двухтрубной. и советы по месту их установке – читайте внимательно.

Как отремонтировать циркуляционный насос своими руками? Основные типы поломок и методы их устранения представлены .

Видео на тему

Тепловая энергия занимает особое место в человеческой деятельности, поскольку она используется во всех секторах экономики, сопровождает большинство промышленных процессов и жизнедеятельность людей. В большинстве случаев отработанное тепло теряется безвозвратно и без какой-либо экономической выгоды. Этот потерянный ресурс уже ничего не стоит, поэтому повторное его использование будет способствовать как уменьшению энергетического кризиса, так и защите окружающей среды. Поэтому новые способы преобразования тепловой в электрическую энергию и конверсия отработанного тепла в электричество сегодня как никогда актуальны.

Преобразование природных источников энергии в электричество, тепло или кинетическую энергию требует максимальной эффективности, особенно на газовых и угольных электростанциях, чтобы снизить объемы выбросов СО 2 . Существуют различные способы преобразование тепловой энергии в электрическую, зависящие от типов первичной энергии.

Среди ресурсов энергии уголь и природный газ используются для выработки электроэнергии путем сжигания (тепловая энергия), а уран путем ядерного деления (ядерной энергии), чтобы использовать энергию пара для вращения паровой турбины. Десять крупнейших стран производителей электроэнергии на 2017 год представлены на фото.

Таблица эффективности работы существующих систем преобразование тепловой энергии в электрическую.

Выбор метода преобразования тепловой энергии в электрическую и его экономическая целесообразность зависят от потребностей в энергоносителях, наличия природного топлива и достаточности площадки строительства. Вид генерации варьируется во всем мире, что приводит к широкому диапазону цен на электроэнергию.

Технологии преобразования тепловой энергии в электрическую, такие как ТЭС, АЭС, КЭС, ГТЭС, ТЭП, термоэлектрические генераторы, МГД-генераторы имеют разные преимущества и недостатки. Исследовательский институт электроэнергетики (EPRI) иллюстрирует плюсы и минусы технологий генерации на природных энергетических ресурсах, рассматривая такие критические факторы, как строительство и затраты на электроэнергию, на землю, требования к воде, выбросы CO 2 , отходы, доступность и гибкость.

Результаты EPRI подчеркивают, что при рассмотрении технологий производства электроэнергии нет единого подхода к решению всех проблем, но при этом все же больше преимуществ у природного газа, который является доступным для строительства, имеет низкую себестоимость электроэнергии, создает меньше выбросов, чем уголь. Однако не все страны имеют доступ к обильному и дешевому природному газу. В некоторых случаях доступ к природному газу находится под угрозой из-за геополитической напряженности, как это было в случае с Восточной Европой и некоторыми странами Западной Европы.

Технологии возобновляемых источников энергии, такие как солнечные фотоэлектрические модули производят эмиссионное электричество. Однако для них, как правило, требуется много земли, результаты их эффективности являются неустойчивыми и зависят от погоды. Уголь, основной источник тепла, является самым проблемным. Он лидирует по выбросам CO 2 , требует много чистой воды для охлаждения теплоносителя и занимает большую площадь под строительство станции.

Новые технологии направлены на снижение ряда проблем, связанных с технологиями производства электроэнергии. Например, газовые турбины, объединенные с резервным аккумулятором, обеспечивают резерв на случай непредвиденных обстоятельств без сжигания топлива, а периодически возникающие проблемы в области возобновляемых ресурсов могут быть смягчены за счет создания доступного крупномасштабного хранилища энергии. Таким образом, сегодня нет ни одного безупречного способа преобразования тепловой энергии в электрическую, который мог бы обеспечить надежную и экономически эффективную электроэнергию с минимальным воздействием на окружающую среду.

Тепловые электростанции

На ТЭС пар высокого давления и температуры, полученный от нагрева воды при сжигании твердого топлива (главным образом угля), вращает турбину, подключенную к генератору. Таким образом он преобразует свою кинетическую энергию в электрическую. Рабочие компоненты тепловой электростанции:

  1. Котел с газовой топкой.
  2. Паровая турбина.
  3. Генератор.
  4. Конденсатор.
  5. Охлаждающие башни.
  6. Циркуляционный водяной насос.
  7. Насос подачи воды в котел.
  8. Принудительные вытяжные вентиляторы.
  9. Сепараторы.

Типовая схема представлена ниже.

Паровой котел служит для преобразования воды в пар. Этот процесс осуществляется путем нагрева воды в трубах с нагревом от сжигания топлива. Процессы горения непрерывно проводятся в камере сгорания топлива с подачей воздуха извне.

Паровая турбина передает энергию пара для вращения генератора. Пар с высоким давлением и температурой толкает лопатки турбины, установленных на валу, так, что он начинает вращаться. При этом параметры перегретого пара, поступающего в турбину, снижается до насыщенного состояния. Насыщенный пар попадает в конденсатор, а роторная мощность применяется для вращения генератора, вырабатывающего ток. Сегодня почти все паровые турбины представляют собой конденсаторный тип.

Конденсаторы - это устройства для преобразования пара в воду. Пар течет снаружи труб, а охлаждающая вода течет внутри труб. Такая конструкция называется поверхностным конденсатором. Скорость передачи тепла зависит от потока охлаждающей воды, площади поверхности труб и разности температур между водяным паром и охлаждающей водой. Процесс изменения водяного пара происходит при насыщенном давлении и температуре, в этом случае конденсатор находится под вакуумом, потому что температура охлаждающей воды равна внешней температуре, максимальная температура конденсата воды вблизи температуры наружного воздуха.

Генератор преобразует механическую энергию в состоит из статора и ротора. Статор состоит из корпуса, который содержит катушки, а магнитная полевая роторная станция состоит из сердечника, содержащего катушку.

По виду вырабатываемой энергии ТЭС делятся на конденсационные КЭС, которые производят электрическую энергию и теплоэлектроцентрали ТЭЦ, совместно выпускающие тепловую (пар и горячая вода) и электрическую энергию. Последние, имеют возможности преобразования тепловой энергии в электрическую с высоким КПД.

Атомные электростанции

АЭС используют тепло, выделяемое во время ядерного деления, для нагрева воды и производства пара. Пар используется для вращения больших турбин, которые генерируют электричество. При делении атомы расщепляются, образуя более мелкие атомы, высвобождая энергию. Процесс протекает внутри реактора. В его центре находится ядро, в котором содержится уран 235. Топливо для АЭС получают из урана, имеющего в своем составе изотоп 235U (0,7%) и неделящегося 238U (99,3 %).

Ядерный топливный цикл представляет собой серию промышленных этапов, связанных с производством электроэнергии из урана в ядерных энергетических реакторах. Уран - относительно распространенный элемент, который встречается во всем мире. Он добывается в ряде стран и обрабатывается до использования в качестве топлива.

Виды деятельности, связанные с производством электроэнергии, в совокупности относятся к ядерному топливному циклу по преобразованию тепловой энергии в электрическую на АЭС. Ядерный топливный цикл начинается с добычи урана и заканчивается удалением ядерных отходов. При переработке использованного топлива в качестве опции для ядерной энергии, его этапы образуют настоящий цикл.

Чтобы подготовить топливо для использования на АЭС, осуществляются процессы по добыче, переработке, конверсии, обогащению и выпуску твэлов. Топливный цикл:

  1. Выгорание урана 235.
  2. Шлакование - 235U и (239Pu, 241Pu) из 238U.
  3. В процессе распада 235U расход его уменьшается, а из 238U при выработке э/энергии получаются изотопы.

Себестоимость твэлов для ВВР примерно 20 % себестоимости вырабатываемого электричества.

После того как уран проведет около трех лет в реакторе, используемое топливо может пройти еще один процесс использования, включая временное хранение, переработку и рециркуляцию до удаления отходов. АЭС обеспечивает прямое преобразование тепловой энергии в электрическую. Тепло, выделяемое во время ядерного деления в активной зоне реактора, используется для превращения воды в пар, который вращает лопасти паровой турбины, приводя в действие генераторы, вырабатывающие электричество.

Пар охлаждается, превращаясь в воду в отдельной структуре на силовой установке, называемой градирней, которая использует воду из прудов, рек или океана для охлаждения чистой воды паросилового контура. Затем охлажденную воду повторно используют для получения пара.

Доля выработки электроэнергии на АЭС, по отношению к общему балансу выработки их разных видов ресурсов, в разрезе некоторых стран и в мире - на фото ниже.

Принцип работы газотурбинной электростанции аналогичен работе паротурбинной электростанции. Единственное различие заключается в том, что на паротурбинной электростанции для вращения турбины используется сжатый пар, а в газотурбинной силовой установке - газ.

Рассмотрим принцип преобразования тепловой энергии в электрическую в газотурбинной электростанции.

В газотурбинной электростанции воздух сжимают в компрессоре. Затем этот сжатый воздух проходит через камеру сгорания, где образуется газовоздушная смесь, повышается температура сжатого воздуха. Эта смесь с высокой температурой и высоким давлением проходит через газовую турбину. В турбине она резко расширяется, получая кинетическую энергию достаточную для вращения турбины.

В газотурбинной электростанции вал турбины, генератор переменного тока и воздушный компрессор являются общими. Механическая энергия, создаваемая в турбине, частично используется для сжатия воздуха. Газотурбинные электростанции часто используются в качестве резервного поставщика вспомогательной энергии на гидроэлектростанции. Он генерирует вспомогательную мощность во время запуска гидроэлектростанции.

Конструкция газотурбинной электростанции намного проще, чем паротурбинная электростанция. Размер газотурбинной электростанции меньше, чем у паротурбинной электростанции. На нет котельного компонента, и, следовательно, система менее сложная. Отсутствует пар, поэтому не требуются конденсатор и градирня.

Проектирование и строительство мощных газотурбинных электростанций намного проще и дешевле, капитальные затраты и эксплуатационные расходы в значительной степени меньше стоимости аналогичной паротурбинной электростанции.

Постоянные потери на газотурбинной электростанции значительно меньше по сравнению с паротурбинной электростанцией, поскольку в паровой турбине силовая установка котла должна работать непрерывно, даже когда система не подает нагрузку в сеть. Газотурбинная электростанция может быть запущена практически мгновенно.

Недостатки газотурбинной электростанции:

  1. Механическая энергия, создаваемая в турбине, также используется для запуска воздушного компрессора.
  2. Поскольку основная часть механической энергии, создаваемой в турбине, используется для управления воздушным компрессором, общая эффективность газотурбинной электростанции не такая высокая, как эквивалентная паротурбинная электростанция.
  3. Выхлопные газы в газотурбинной электростанции сильно отличаются от котла.
  4. До фактического запуска турбины воздух должен быть предварительно сжат, что требует дополнительного источника питания для запуска газотурбинной электростанции.
  5. Температура газа достаточно высока на газотурбинной электростанции. Это приводит к тому, что срок службы системы меньше, чем у эквивалентной паровой турбины.

Из-за более низкой эффективности газотурбинная электростанция не может использоваться для коммерческого производства электроэнергии, она обычно используется для подачи вспомогательной энергии на другие обычные электростанции, например, такие как гидроэлектростанция.

Термоэмиссионные преобразователи

Они также называются термоэлектронным генератором или термоэлектрическим двигателем, которые непосредственно преобразуют тепло в электричество, используя термоэмиссию. Тепловая энергия может быть преобразована в электроэнергию с очень высокой эффективностью через индуцированный температурой процесс электронного потока, известный как термоэлектронное излучение.

Основным принципом работы термоэлектронных преобразователей энергии является то, что электроны испаряются с поверхности нагретого катода в вакууме и затем конденсируются на более холодном аноде. После первой практической демонстрации в 1957 году термоэлектронные преобразователи энергии использовались с различными источниками тепла, но все они требуют работы при высоких температурах - выше 1500 К. В то время как работа термоэлектронных преобразователей энергии при относительно низкой температуре (700 К - 900 К) возможна, эффективность процесса, которая обычно составляет > 50%, значительно уменьшается, поскольку количество излучаемых электронов на единицу площади от катода зависит от температуры нагрева.

Для традиционных катодных материалов, таких как металлы и полупроводники, число испускаемых электронов пропорционально квадрату температуры катода. Однако недавнее исследование демонстрирует, что температура тепла может быть снижена на порядок при использовании графена в качестве горячего катода. Полученные данные показывают, что катодный термоэлектронный преобразователь на основе графена, работающий при 900 К, может достичь КПД 45%.

Принципиальная схема процесса электронной термоэлектронной эмиссии представлена на фото.

TIC на основе графена, где Tc и Ta - температура катода и температура анода, соответственно. Основываясь на новом механизме термоэлектронной эмиссии, исследователи предполагают, чтобы конвертер энергии катода на основе графена мог найти свое применение при повторном использовании тепла промышленных отходов, которое часто достигает температурного диапазона от 700 до 900 K.

Новая модель, представленная Ляном и Энгом, может принести пользу конструкции преобразователя энергии на основе графена. Твердотельные преобразователи энергии, которые в основном являются термоэлектрическими генераторами, обычно работают неэффективно в низкотемпературном диапазоне (с КПД менее 7%).

Утилизация отходов энергии стала популярной целью для исследователей и ученых, которые придумывают инновационные методы для достижения этой цели. Одним из наиболее перспективных направлений является термоэлектрические устройства на основе нанотехнологий, которые выглядят, как новый подход к экономии энергии. Прямое преобразование тепла в электричество или электричество в тепло известно, как термоэлектричество, основанное на эффекте Пельтье. Если быть точным, эффект называется именем двух физиков - Жана Пельтье и Томаса Зеебека.

Пельтье обнаружил, что ток, посылаемый в два разных электрических проводника, которые соединены на двух переходах, приведет к нагреву одного соединения, в то время как другое соединение охладится. Пельтье продолжил исследования, установил, что каплю воды можно заставить замерзнуть на стыке висмута-сурьмы (BiSb), просто изменив ток. Пельтье также обнаружил, что электрический ток может протекать, когда имеет место разность температур размещается поперек соединения разных проводников.

Термоэлектричество является чрезвычайно интересным источником электроэнергии из-за его способности преобразовывать тепловой поток непосредственно в электричество. Он представляет собой преобразователи энергии, которые легко масштабируются и не имеют движущихся частей или жидкого топлива, что делает их применимыми практически в любой ситуации, когда большое количество тепла, как правило, направляется в отходы, от одежды до крупных промышленных объектов.

Наноструктуры, используемые в материалах полупроводниковых термоэлементах, помогут поддерживать хорошую электропроводность и уменьшить теплопроводность. Таким образом, производительность термоэлектрических устройств может быть увеличена за счет использования материалов на основе нанотехнологий, с применением эффекта Пельтье. Они обладают улучшенными термоэлектрическими свойствами и хорошими поглощающими способность солнечной энергии.

Применение термоэлектричества:

  1. Поставщики энергии и датчики в диапазонах.
  2. Сжигающая масляная лампа, управляющая беспроводным приемником для удаленной связи.
  3. Нанесение небольших электронных устройств, таких как MP3-плееры, цифровые часы, чипы GPS/GSM и импульсные счетчики с теплотой тела.
  4. Быстро охлаждающие сиденья в роскошных автомобилях.
  5. Уборка отработанного тепла в автомобилях путем преобразования его в электричество.
  6. Преобразование отработанного тепла на заводах или промышленных объектах в дополнительную мощность.
  7. Солнечные термоэлектрики могут быть более эффективнее, чем фотоэлектрические элементы для выработки электроэнергии, особенно в районах с меньшим солнечным светом.

Магнитогидродинамический генератор мощности генерируют электроэнергию посредством взаимодействия движущейся жидкости (обычно ионизированный газ или плазма) и магнитного поля. С 1970 года в нескольких странах были проведены исследовательские программы МГД с особым акцентом на использование угля в качестве топлива.

Основополагающий принцип генерации MHD-технологий элегантен. Как правило, электропроводящий газ образуется при высоком давлении путем сжигания ископаемого топлива. Затем газ направляется через магнитное поле, в результате чего внутри него действует электродвижущая сила в соответствии с законом индукции Фарадея (названным в честь английского физика и химика XIX века Майкла Фарадея).

Система МГД представляет собой тепловой двигатель, включающий расширение газа от высокого до низкого давления так же, как и в обычном газовом турбогенераторе. В системе МГД кинетическая энергия газа преобразуется непосредственно в электрическую энергию, так как ей разрешено расширяться. Интерес к генерированию МГД был первоначально вызван открытием того, что взаимодействие плазмы с магнитным полем может происходить при гораздо более высоких температурах, чем это возможно во вращающейся механической турбине.

Предельные характеристики с точки зрения эффективности в тепловых двигателях были установлена в начале XIX века французским инженером Сади Карно. Выходная мощность МГД-генератора для каждого кубического метра его объема пропорциональна продукту газопроводности, квадрату скорости газа и квадрату силы магнитного поля, через который проходит газ. Для того, чтобы МГД-генераторы работали конкурентоспособно, с хорошей производительностью и разумными физическими размерами, электропроводность плазмы должна быть в диапазоне температур выше 1800 К (около 1500 С или 2800 F).

Выбор типа МГД-генератора зависит от используемого топлива и применения. Обилие запасов угля во многих странах мира способствуют развитию углеродных систем МГД для производства электроэнергии.