Электрооборудование

Принципиальная схема индивидуального теплового пункта.

 Принципиальная схема индивидуального теплового пункта.

Тепловой пункт (ТП) - это комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.

Тепловой пункт и присоединённое здание

Назначение

Основными задачами ТП являются:

  • Преобразование вида теплоносителя
  • Контроль и регулирование параметров теплоносителя
  • Распределение теплоносителя по системам теплопотребления
  • Отключение систем теплопотребления
  • Защита систем теплопотребления от аварийного повышения параметров теплоносителя
  • Учет расходов теплоносителя и тепла

Виды тепловых пунктов

ТП различаются по количеству и типу подключенных к ним систем теплопотребления, индивидуальные особенности которых, определяют тепловую схему и характеристики оборудования ТП, а также по типу монтажа и особенностям размещения оборудования в помещении ТП. Различают следующие виды ТП :

  • Индивидуальный тепловой пункт (ИТП). Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.
  • Центральный тепловой пункт (ЦТП). Используется для обслуживания группы потребителей (зданий, промышленных объектов). Чаще располагается в отдельностоящем сооружении, но может быть размещен в подвальном или техническом помещении одного из зданий.
  • Блочный тепловой пункт (БТП). Изготавливается в заводских условиях и поставляется для монтажа в виде готовых блоков. Может состоять из одного или нескольких блоков. Оборудование блоков монтируется очень компактно, как правило, на одной раме. Обычно используется при необходимости экономии места, в стесненных условиях. По характеру и количеству подключенных потребителей БТП может относиться как к ИТП, так и к ЦТП.

Источники тепла и системы транспорта тепловой энергии

Источником тепла для ТП служат теплогенерирующие предприятия (котельные , теплоэлектроцентрали). ТП соединяется с источниками и потребителями тепла посредством тепловых сетей. Тепловые сети подразделяются на первичные магистральные теплосети , соединяющие ТП с теплогенерирующими предприятиями, и вторичные (разводящие) теплосети, соединяющие ТП с конечными потребителями. Участок тепловой сети, непосредственно соединяющий ТП и магистральные теплосети, называется тепловым вводом .

Магистральные тепловые сети, как правило, имеют большую протяженность (удаление от источника тепла до 10 км и более). Для строительства магистральных сетей используют стальные трубопроводы диаметром до 1400 мм. В условиях, когда имеется несколько теплогенерирующих предприятий, на магистральных теплопроводах делаются закольцовки, объединяющие их в одну сеть. Это позволяет увеличить надёжность снабжения тепловых пунктов, а, в конечном счёте, потребителей теплом. Например, в городах, в случае аварии на магистрали или местной котельной, теплоснабжение может взять на себя котельная соседнего района. Также, в некоторых случаях, общая сеть даёт возможность распределять нагрузку между теплогенерирующими предприятиями. В качестве теплоносителя в магистральных теплосетях используется специально подготовленная вода . При подготовке в ней нормируются показатели карбонатной жёсткости, содержания кислорода, содержания железа и показатель pH. Неподготовленная для использования в тепловых сетях (в том числе водопроводная, питьевая) вода непригодна для использования в качестве теплоносителя, так как при высоких температурах, вследствие образования отложений и коррозии, будет вызывать повышенный износ трубопроводов и оборудования. Конструкция ТП предотвращает попадание относительно жёсткой водопроводной воды в магистральные теплосети.

Вторичные тепловые сети имеют сравнительно небольшую протяженность (удаление ТП от потребителя до 500 метров) и в городских условиях ограничиваются одним или парой кварталов. Диаметры трубопроводов вторичных сетей, как правило, находятся в пределах от 50 до 150 мм. При строительстве вторичных тепловых сетей могут использоваться как стальные, так и полимерные трубопроводы. Использование полимерных трубопроводов наиболее предпочтительно, особенно для систем горячего водоснабжения, так как жёсткая водопроводная вода в сочетании с повышенной температурой приводит к интенсивной коррозии и преждевременному выходу из строя стальных трубопроводов. В случае с индивидуальным тепловым пунктом, вторичные тепловые сети могут отсутствовать.

Источником воды для систем холодного и горячего водоснабжения служат водопроводные сети .

Системы потребления тепловой энергии

В типичном ТП имеются следующие системы снабжения потребителей тепловой энергией:

Принципиальная схема теплового пункта

Схема ТП зависит с одной стороны от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Принципиальная схема теплового пункта

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях, на котельных и ТЭЦ существуют системы подпитки , источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего, часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру, вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Тепловой пункт отопительной системы – это место, где магистраль поставщика горячей воды соединяется с системой отопления жилого дома, а также производится подсчет потребленной тепловой энергии.

Узлы подключения системы к источнику тепловой энергии бывают двух типов:

  1. Одноконтурные;
  2. Двухконтурные.

Одноконтурный тепловой пункт – это наиболее распространенный тип подключения потребителя к источнику тепловой энергии. В этом случае для системы отопления дома используется непосредственное соединение с магистралью горячего водоснабжения.

Одноконтурный тепловой пункт имеет одну характерную деталь – его схема предусматривает трубопровод, соединяющий прямую и обратную магистрали, который называется элеватор. Назначение элеватора в системе отопления стоит рассмотреть подробнее.

У котельных системы отопления есть три стандартных режима работы, различающихся температурой теплоносителя (прямого/обратного):

  • 150/70;
  • 130/70;
  • 90–95/70.

Использование перегретого пара в качестве теплоносителя для системы отопления жилого дома не допускается. Поэтому, если по погодным условиям котельная поставляет горячую воду температурой в 150 °C, ее требуется охладить перед подачей в стояки отопления жилого дома. Для этого используется элеватор, через который «обратка» попадает в прямую магистраль.

Элеватор открывается ручным или электрическим (автоматическим) приводом. В его магистраль может быть включен дополнительный циркуляционный насос, но обычно это устройство делают особой формы – с участком резкого сужения магистрали, после которой идет конусообразное расширение. За счет этого оно работает как инжекторный насос, закачивая воду из обратки.

Двухконтурный тепловой пункт

В этом случае теплоносители двух контуров системы не смешиваются. Для передачи тепла от одного контура другому используется теплообменник, обычно пластинчатый. Схема двухконтурного теплового пункта приведена ниже.

Пластинчатый теплообменник – это устройство, состоящее из ряда полых пластин, по одним из которых прокачивается нагревающая жидкость, а по другим – нагреваемая. У них очень высокий коэффициент полезного действия, они надежны и неприхотливы. Количество отбираемого тепла регулируется изменением числа взаимодействующих друг с другом пластин, поэтому забор охлажденной воды из обратной магистрали не требуется.

Как оборудовать тепловой пункт

H2_2

Цифрами здесь обозначены следующие узлы и элементы:

  • 1 - трехходовый кран;
  • 2 - задвижка;
  • 3 - пробковый кран;
  • 4, 12 - грязевики;
  • 5 - обратный клапан;
  • 6 - дроссельная шайба;
  • 7 - V-штуцер для термометра;
  • 8 - термометр;
  • 9 - манометр;
  • 10 - элеватор;
  • 11 - тепломер;
  • 13 - водомер;
  • 14 - регулятор расхода воды;
  • 15 - регулятор подпара;
  • 16 - вентили;
  • 17 - обводная линия.

Установка приборов теплового учета

Пункт приборов теплового учета включает:

  • Термодатчики (устанавливаются в прямую и обратную магистрали);
  • Расходомеры;
  • Тепловычислитель.

Приборы теплового учета устанавливаются как можно ближе к ведомственной границе, чтобы предприятие-поставщик не высчитывало теплопотери по некорректным методикам. Лучше всего, чтобы тепловые узлы и расходомеры имели на своих входах и выходах задвижки или вентили, тогда их ремонт и профилактика не будут вызывать трудностей.

Совет! Перед расходомером должен быть участок магистрали без изменения диаметров, дополнительных врезок и устройств, чтобы уменьшить турбулентность потока. Это увеличит точность измерения и упростит работу узла.

Тепловой вычислитель, получающий данные от термодатчиков и расходомеров, устанавливается в отдельном запирающемся шкафу. Современные модели этого устройства оборудованы модемами и могут соединяться по каналам Wi-Fi и Bluetooth в локальную сеть, предоставляя возможность получать данные дистанционно, без личного визита на узлы теплового учета.

*информация размещена в ознакомительных целях, чтобы поблагодарить нас, поделитесь ссылкой на страницу с друзьями. Вы можете прислать интересный нашим читателям материал. Мы будем рады ответить на все ваши вопросы и предложения, а также услышать критику и пожелания по адресу [email protected]

Собственники жилья знают, какую долю в коммунальных платежах составляют затраты на обеспечение тепла. Отопление, горячая вода - то, от чего зависит комфортное существование, особенно в холодное время года. Однако не все знают, что эти расходы могут быть существенно снижены, для чего необходимо перейти на использование индивидуальных тепловых пунктов (ИТП).

Недостатки централизованного отопления

Традиционная схема централизованного отопления работает так: от центральной котельной по магистралям теплоноситель поступает на централизованный теплопункт, где и распределяется по внутриквартальным трубопроводам потребителям (зданиям и домам). Управление температурой и давлением теплоносителя осуществляется на централизованно, в центральной котельной, едиными значениями для всех зданий.

При этом возможны потери тепла на трассе, когда одинаковое количество теплоносителя передается в здания, расположенные на разном расстоянии от котельной. Кроме того, архитектура микрорайона - это как правило здания различной этажности и конструкции. Поэтому одинаковые параметры теплоносителя на выходе из котельной не означают одинаковые входные параметры теплоносителя в каждом здании.

Использование ИТП стало возможным из-за изменения схемы регулирования теплоснабжения. Принцип ИТП основан на том, что регулирование тепла производится прямо на входе теплоносителя в здание, исключительно и индивидуально для него. Для этого отопительное оборудование располагают в автоматизированном индивидуальном теплопункте - в подвале здания, на первом этаже или в отдельно стоящем сооружении.

Принцип работы ИТП

Индивидуальный тепловой пункт - это совокупность оборудования, с помощью которого осуществляется учет и распределение тепловой энергии и теплоносителя в системе отопления конкретного потребителя (здания). ИТП подключен к распределительным магистралям городской сети теплоэнергии и водопровода.

Работа ИТП построена по принципу автономности: в зависимости от наружной температуры аппаратура изменяет температуру теплоносителя в соответствие с расчетными значениями и подает его в отопительную систему дома. Потребитель больше не зависит от протяженности магистралей и внутриквартальных трубопроводов. Но удержание тепла полностью зависит от потребителя и зависит от технического состояния здания и методов по сбережению тепла.

Индивидуальные теплопункты обладают следующими преимуществами:

  • независимо от протяженности теплотрасс можно обеспечить одинаковые параметры отопления у всех потребителей,
  • возможность обеспечить индивидуальный режим работы (например, для медицинских учреждений),
  • отсутствует проблема потерь тепла на теплотрассе, вместо нее потери тепла зависят от обеспечения утепления дома домовладельцем.

В состав ИТП входят системы горячего и холодного водоснабжения, а также отопления и вентиляции. Конструктивно ИТП - это комплекс устройств: коллекторы, трубопроводы, насосы, различные теплообменники, регуляторы и датчики. Это сложная система, требующая настройки, обязательной профилактики и обслуживания, при этом техническое состояние ИТП напрямую влияет на расход тепла. На ИТП контролируются такие параметры теплоносителя как давление, температура и расход. Этими параметрами может управлять диспетчер, кроме того, данные передаются в диспетчерскую службу теплосети для записи и мониторинга.

Кроме непосредственно распределения тепла, ИТП помогает учесть и оптимизировать затраты на потребление. Комфортные условия при экономном расходовании энергоресурсов - вот основное преимущество использования ИТП.

Тепловым пунктом называется сооружение, которое служит для присоединения местных систем теплопотребления к тепловым сетям. Тепловые пункты подразделяются на центральные (ЦТП) и индивидуальные (ИТП). ЦТП служат для теплоснабжения двух и более зданий, ИТП - для теплоснабжения одного здания. При наличии ЦТП в каждом отдельном здании обязательно устройство ИТП, который выполняет только те функции, которые не предусмотрены в ЦТП и необходимы для системы теплопотребления данного здания. При наличии собственного источника теплоты (котельной) тепловой пункт, как правило, располагается в помещении котельной.

В тепловых пунктах размещается оборудование, трубопроводы, арматура, приборы контроля, управления и автоматизации, посредством которых осуществляются:

Преобразование параметров теплоносителя, например, для снижения температуры сетевой воды в расчетном режиме со 150 до 95 0 С;

Контроль параметров теплоносителя (температуры и давления);

Регулирование расхода теплоносителя и распределение его по системам потребления теплоты;

Отключение систем потребления теплоты;

Защита местных систем от аварийного повышения параметров теплоносителя (давления и температуры);

Заполнение и подпитка систем потребления теплоты;

Учет тепловых потоков и расходов теплоносителя и др.

На рис. 8 приведена одна из возможных принципиальных схем индивидуального теплового пункта с элеватором для отопления здания. Через элеватор система отопления присоединяется в том случае, если надо снижать температуру воды для системы отопления, например, со 150 до 95 0 С (в расчетном режиме). При этом располагаемый напор перед элеватором, достаточный для его работы, должен быть не менее 12-20 м вод. ст., а потеря напора не превышает 1,5 м вод. ст. Как правило, к одному элеватору присоединяется одна система или несколько мелких систем с близкими гидравлическими характеристиками и с суммарной нагрузкой не более 0,3 Гкал/ч. При больших необходимых напорах и теплопотреблении применяются смесительные насосы, которые также используются и при автоматическом регулировании работы системы теплопотребления.

Подключение ИТП к тепловой сети производится задвижкой 1. Вода очищается от взвешенных частиц в грязевике 2 и поступает в элеватор. Из элеватора вода с расчетной температурой 95 0 С направляется в систему отопления 5. Охлажденная в отопительных приборах вода возвращается в ИТП с расчетной температурой 70 0 С. Часть обратной воды используется в элеваторе, а остальная вода очищается в грязевике 2 и поступает в обратный трубопровод теплосети.

Постоянный расход горячей сетевой воды обеспечивает автоматический регулятор расхода РР. Регулятор РР получает импульс на регулирование от датчиков давления, установленных на подающем и обратном трубопроводах ИТП, т.е. он реагирует на разность давлений (напор) воды в указанных трубопроводах. Напор воды может меняться по причине увеличения или уменьшения давления воды в теплосети, что обычно связано в открытых сетях с изменение расхода воды на нужды ГВС.


Например , если напор воды возрастает, то расход воды в системе увеличивается. Во избежание перегрева воздух в помещениях регулятор уменьшит свое проходное сечение, чем восстановит прежний расход воды.

Постоянство давления воды в обратном трубопроводе системы отопления автоматически обеспечивает регулятор давления РД. Падение давления может быть следствием утечек воды в системе. В этом случае регулятор уменьшит проходное сечение, расход воды снизится на величину утечки и давление восстановится.

Расход воды (теплоты) измеряется водомером (теплосчетчиком) 7. Давление и температура воды контролируются, соответственно, манометрами и термометрами. Задвижки 1, 4, 6 и 8 используются для включения или отключения теплового пункта и системы отопления.

В зависимости от гидравлических особенностей тепловой сети и местной системы отопления в тепловом пункте могут также устанавливаться:

Подкачивающий насос на обратном трубопроводе ИТП, если располагаемый напор в тепловой сети недостаточен для преодоления гидравлического сопротивления трубопроводов, оборудования ИТП и систем теплопотребления. Если при этом давление в обратном трубопроводе будет ниже статического давления в этих системах, то подкачивающий насос устанавливается на подающем трубопроводе ИТП;

Подкачивающий насос на подающем трубопроводе ИТП, если давление сетевой воды недостаточно для предотвращения вскипания воды в верхних точках систем потребления теплоты;

Отсекающий клапан на подающем трубопроводе на вводе и подкачивающий насос с предохранительным клапаном на обратном трубопроводе на выходе, если давление в обратном трубопроводе ИТП может превысить допускаемое давление для системы теплопотребления;

Отсекающий клапан на подающем трубопроводе на входе в ИТП, а также предохранительный и обратный клапаны на обратном трубопроводе на выходе из ИТП, если статическое давление в тепловой сети превышает допускаемое давление для системы теплопотребления и др.

Рис 8. Схема индивидуального теплового пункта с элеватором для отопления здания:

1, 4, 6, 8 - задвижки; Т - термометры; М - манометры; 2 - грязевик; 3 - элеватор; 5 -радиаторы системы отопления; 7 - водомер (теплосчетчик); РР - регулятор расхода; РД - регулятор давления

Как было показано на рис. 5 и 6, системы ГВС подсоединяются в ИТП к подающему и обратному трубопроводам через водоподогреватели или непосредственно, через регулятор температуры смешения типа ТРЖ.

При непосредственном водоразборе вода на ТРЖ подается из подающего или из обратного или из обоих трубопроводов вместе в зависимости от температуры обратной воды (рис.9). Например , летом, когда сетевая вода имеет 70 0 С, а отопление отключено, в систему ГВС поступает только вода из подающего трубопровода. Обратный клапан служит для предотвращения перетекания воды из подающего трубопровода в обратный при отсутствии водоразбора.

Рис. 9. Схема узла присоединения системы ГВС при непосредственном водоразборе:

1, 2, 3, 4, 5, 6 - задвижки; 7 - обратный клапан; 8 - регулятор температуры смешения; 9 - датчик температуры смеси воды; 15 - водоразборные краны; 18 - грязевик; 19 - водомер; 20 - воздухоотводчик; Ш - штуцер; Т - термометр; РД - регулятор давления (напора)

Рис. 10. Двухступенчатая схема последовательного присоединения водоподогревателей ГВС:

1,2, 3, 5, 7, 9, 10, 11, 12, 13, 14 - задвижки; 8 - обратный клапан; 16 - циркуляционный насос; 17 - устройство для отбора импульса давления; 18 - грязевик; 19 - водомер; 20 - воздухоотводчик; Т - термометр; М - манометр; РТ - регулятор температуры с датчиком

Для жилых и общественных зданий также широко применяется схема двухступенчатого последовательного присоединения водоподогревателей ГВС (рис.10). В данной схеме водопроводная вода вначале подогревается в подогревателе I-ой ступени, а затем в подогревателе II-ой ступени. При этом водопроводная вода проходит через трубки подогревателей. В подогревателе I-ой ступени водопроводная вода греется обратной сетевой водой, которая после охлаждения идет в обратный трубопровод. В подогревателе II-ой ступени водопроводная вода греется горячей сетевой водой из подающего трубопровода. Охлажденная сетевая вода поступает в систему отопления. В летний период эта вода подается в обратный трубопровод по перемычке (в обвод системы отопления).

Расход горячей сетевой воды на подогреватель II-ой ступени регулирует регулятор температуры (клапан термореле) в зависимости от температуры воды за подогревателем II-ой ступени.

Прежде чем описывать устройство и функции ЦТП (центральный тепловой пункт) приведем общее определение тепловых пунктов. Тепловой пункт или сокращенно ТП это комплекс оборудования расположенный в отдельном помещении обеспечивающий отопление и горячее водоснабжение здания или группы зданий. Основное отличие ТП от котельной заключается в том, что в котельной происходит нагрев теплоносителя за счет сгорания топлива, а тепловой пункт работает с нагретым теплоносителем, поступающим из централизованной системы. Нагрев теплоносителя для ТП производят теплогенерирующие предприятия - промышленные котельные и ТЭЦ. ЦТП это тепловой пункт обслуживающий группу зданий , например, микрорайон, поселок городского типа, промышленное предприятие и т.д. Необходимость в ЦТП определяется индивидуально для каждого района на основании технических и экономических расчетов, как правило, возводят один центральный тепловой пункт для группы объектов с расходом теплоты 12-35 МВт.

Для лучшего понимания функций и принципов работы ЦТП дадим краткую характеристику тепловым сетям. Тепловые сети состоят из трубопроводов и обеспечивают транспортировку теплоносителя. Они бывают первичные, соединяющие теплогенерирующие предприятия с тепловыми пунктами и вторичные, соединяющие ЦТП с конечными потребителями. Из этого определения можно сделать вывод, что ЦТП являются посредником между первичными и вторичными тепловыми сетями или теплогенерирующими предприятиями и конечными потребителями. Далее подробно опишем основные функции ЦТП.

Функции центрального теплового пункта (ЦТП)

Как мы уже писали основная функция ЦТП служить посредником между централизованными теплосетями и потребителями, то есть распределение теплоносителя по системам отопления и горячего водоснабжения (ГВС) обслуживаемых зданий, а так же функции обеспечения безопасности, управления и учета.

Подробнее распишем задачи, решаемые центральными тепловыми пунктами:

  • преобразование теплоносителя, например, превращение пара в перегретую воду
  • изменение различных параметров теплоносителя, таких как давление, температура и т. д.
  • управление расходом теплоносителя
  • распределение теплоносителя по системам отопления и горячего водоснабжения
  • водоподготовка для ГВС
  • защита вторичных тепловых сетей от повышения параметров теплоносителя
  • обеспечение отключения отопления или горячего водоснабжения в случае необходимости
  • контроль расхода теплоносителя и других параметров системы, автоматизация и управление

Итак, мы перечислили основные функции ЦТП. Далее постараемся описать устройство тепловых пунктов и установленное в них оборудование.

Устройство ЦТП

Как правило, центральный тепловой пункт - это отдельно стоящее одноэтажное здание с расположенным в нем оборудованием и коммуникациями.

Перечислим основные узлы ЦТП:

  • теплообменник, в ЦТП является аналогом отопительного котла в котельной, т.е. работает в качестве теплогенератора. В теплообменнике происходит нагрев теплоносителя для отопления и ГВС, но не посредством сжигания топлива, а за счёт передачи тепла от теплоносителя в первичной тепловой сети.
  • насосное оборудование, выполняющее различные функции представлено циркуляционными, повысительными, подпиточными и смесительными насосами.
  • клапаны регуляторы давления и температуры
  • грязевые фильтры на вводе и выходе трубопровода из ЦТП
  • запорная арматура (краны для перекрытия различных трубопроводов в случае необходимости)
  • системы контроля и учета расхода теплоты
  • системы электроснабжения
  • системы автоматизации и диспетчеризации

Подводя итог, скажем, что основная причина, по которой возникает необходимость в строительстве ЦТП, является несоответствие параметров теплоносителя поступающего от теплогенерирующих предприятий параметрам теплоносителя в системах потребителей тепла. Температура и давление теплоносителя в магистральном трубопроводе значительно выше, чем должна быть в системах отопления и горячего водоснабжения зданий. Можно сказать, теплоноситель с заданными параметрами является основным продуктом работы ЦТП.