Проводка

Железные мосты. Железнодорожный мост

Железные мосты. Железнодорожный мост

Сидоренко В. Т. Время разводить мосты // Донской временник. Год 2007-й / Дон. гос. публ. б-ка. Ростов-на-Дону, 2006. С. 93-96. URL: http://www..aspx?art_id=183

/ История железной дороги на Северном Кавказе и на Дону

ВРЕМЯ РАЗВОДИТЬ МОСТЫ

из истории железнодорожных мостов через реку Дону

В 1917 году в Ростове открылся новый разводной железнодорожный мост через Дон, воплотивший в себе последние достижения инженерной мысли — двухпутный, трёхпролетный, вертикально подъёмной конструкции. Он заметно улучшил условия плавания крупнотоннажных судов в нижнем течении реки, увеличил пропускные способности железной дороги в южном направлении.

Прежний мост, возведенный ещё в 1875 году при прокладке Ростово-Владикавказской железной дороги, к тому времени уже устарел: он не соответствовал возросшей интенсивности перевозок, сдерживал движение поездов по железной дороге и речных судов по оживлённому водному пути. Железнодорожная станция располагалась в низине, в пойме реки Темерник, мост был построен с низким расположением пролётных строений, для пропуска крупных судов пришлось делать его разводным. Он был однопутным, имел пять металлических решётчатых пролётов. Средний имел посредине дополнительную каменную опору (бык), вокруг которой вращалась в горизонтальной плоскости ферма. Эта двухконсольная ферма, развернутая на 90 градусов, зафиксированная в положении вдоль течения, открывала два нешироких прохода для речных судов.

Проектировал мост Эраст Михайлович Зубов — инженер путей сообщения, автор теоретических работ, посвящённых мостостроению . Его имя упоминается в «Истории железнодорожного транспорта России»: «Большой вклад в развитие научной школы мостостроения внесли: Л. Ф. Николаи, Э. М. Зубов, Ф. И. Эрнольд. Их классические труды по расчёту мостовых конструкций явились руководством для многих поколений проектировщиков и строителей мостов» .

Как показала последующая практика, пропуск больших судов и буксирных караванов по узкому проходу разведённого моста таил в себе немалую опасность. При свежих ветрах и в половодье бывали случаи навала судов на мостовые опоры. В целях безопасности движения с 1879 года по инициативе Донского гирлового комитета начали применять так называемую спусковую баржу, которую на время навигации устанавливали у средней опоры поворотной фермы и закрепляли с носа якорями ко дну реки, с кормы — цепями к мостовому быку. Теперь судно, проходившее железнодорожный мост, швартовалось, при необходимости, левым бортом к спусковой барже и с предосторожностью протягивалось по проходу. Баржа, покрытая белой краской, освещалась в ночное время керосино-калильным фонарём в 750 свечей, на мачте вывешивались сигналы (шары и флаги), информирующие о водном режиме реки. Входные быки тоже освещались фонарями и были окрашены в белый цвет. Капитан спусковой баржи обязан был своевременно вывешивать надлежащие сигналы, регулировать очередность следования судов, осуществлять руководство их проводкой.

Редкие судна рисковали проходить под мостом вниз по течению без помощи спусковой баржи, особенно в ветреную погоду и по большой воде при сильном и неправильном течении. К примеру, в 1913 году «спусковою баржею воспользовалось 3607 судов, прошедших вниз по течению, а также 6 судов, прошедших вверх против течения, причём последние были протянуты паровой лебёдкой и ручными шпилями. Кроме того, средствами спусковой баржи снято наваленных течением на носовые цепи баржи 2 судна и вытащено увлеченное течением под мост 1 судно» .

В ночь на 25 января 1915 года разыгралась настоящая драма. Из-за резкого перепада температур и сильного ветра на нижнем Дону вдруг начался ледоход. Он сорвал с якорей суда, зимовавшие на стоянке у причальной линии набережной, и погнал их к железнодорожному мосту. Первые два судна, паровая баржа и пароход «Пётр», разорвав нижний пояс мостовой фермы, ушли дальше вниз по течению. Следовавшая за ними паровая баржа, встав поперёк реки, застряла под мостом и упёрлась носом в бык, мачтою в ферму и кормой — в нагромождения льда. Рядом с нею, против разводного пролёта, в ледяном плену оказались пароход-ледорез «Фанагория», 11 судов, лодки и пристани.

Движение поездов по мосту было тотчас остановлено. Той же ночью управляющий дорогой Э. Б. Войновский-Кригер в служебных комнатах ростовского вокзала созвал экстренное совещание с руководителями служб дороги и предприятий, рассмотревшее меры по ликвидации последствий аварии, определившее объёмы и характер повреждений мостовых ферм и способы их исправления. Изготовление металлических конструкций и производство ремонтных работ поручили Главным ростовским мастерским. На первоочередные восстановительные и ремонтные работы, выполнявшиеся на мосту в 12-градусный мороз при резком ветре, потребовалось 37 часов. К вечеру 26 января движение поездов было восстановлено .

В первом десятилетии XX столетия железнодорожные подходы к Ростовскому узлу со всех трёх направлений (из Таганрога, Новочеркасска и Тихорецкой) были устроены уже двухпутными, и только разводной мост через Дон оставался однопутным. По своей прочности и надёжности он мог бы служить людям не один десяток лет. Однако, оставаясь однопутным, он стал сдерживать всё возрастающий поток поездов. На смену ему в 1912 году приступили к сооружению нового разводного моста по проекту Станислава Игнатьевича Белзецкого, «состоящего для особых поручений при правлении, инженера путей сообщения, профессора, коллежского советника» . В числе принимавших участие в проектировании разные источники называют имена двух знаменитых учёных-мостостроителей — Н. А. Белелюбского и Г. П. Передерия.

При выборе конструкции моста предпочтение отдали вертикально-подъёмной системе, в наименьшей степени стеснявшей водный поток и прилегающую местность. Подъёмная его часть представляла собой ферму пролётом 62 метра и весом 729 тонн, поднимавшуюся за 75 секунд на высоту 38,8 метров с помощью электромоторов и противовесов посредством канатов, составленных из стальных проволок и пеньковой сердцевины, и блоков диаметром 3,5 метра, устроенных на двух высоких башнях. Металлические конструкции для моста были изготовлены в России на Мальцовских заводах, механизм подъёма заказан в Северной Америке. Для надзора за ходом выполнения заказа и приёмки на заводе-изготовителе готовых узлов подъёмного механизма в конце 1915 года из Ростова-на-Дону за океан был командирован инженер П.С. Янушевский, помощник (заместитель) начальника службы тяги Владикавказской дороги (впоследствии — начальник этой службы). Наблюдение за сборкой подъёмника на месте установки осуществлял по договору автор проекта американский инженер Гунтер.

Железнодорожные мосты с разводной частью вертикально-подъёмной конструкции впервые стали строиться в США с конца XIX столетия. Мост через Дон такой конструкции был первым в России и Европе . Ростовские обыватели называли новый мост «американским». Руководили его возведениием инженер путей сообщения К. Н. Симберг и производитель работ В. Д. Солнцев. Раньше Карл Николаевич Симберг участвовал в сооружении перевального Сурамского туннеля в Закавказье, а в 1902-1904 годах руководил строительством туннелей на Кругобайкальской железной дороге. Умер К. Н. Симберг 20 марта 1917 года, считанные месяцы не дожив до официального открытия своего детища.

Краеведам известно, что в начале XX столетия выходило из печати большое число иллюстрированных почтовых открыток с видами Ростова. На многих из них изображён первый железнодорожный мост через Дон в разных видах и ракурсах. В 1990-е годы агентство «Памятники Отечества» совместно с полиграфической фабрикой «Малыш» предприняло выпуск библиотеки репринтных изданий «Книжные редкости Дона» и наборов открыток начала XX века.

С одной из этих открыток получился казус: на ней изображён первый донской мост с поворотной фермой, построенный в 1875 году. В пояснительном же тексте дается описание второго моста с подъёмной фермой. Эти сложные инженерные сооружения отличались одно от другого не только по времени постройки, но и по конструкции, техническим характеристикам, размерам, внешнему виду... Ошибка, допущенная в пояснительном тексте к открытке, стала повторяться, увы, и в других изданиях.

Последующая история разводного моста такова. Он исправно служил до ноября 1941 года. В первые месяцы Великой Отечественной войны в рекордно короткие сроки был возведён рядом с ним ещё один мост — литерный (строился по особому заданию — литеру), — однопутный, неразводной, загромождавший реку большим числом опор и низким расположением пролётных строений. В то же время сдали в эксплуатацию начатый еще в 1940 году железнодорожный мост через Дон в районе Аксая с веткой длиною 31 км (от станции Аксай через Ольгинскую на Батайск). Оба моста сыграли очень важную роль в осуществлении воинских и эвакуационных перевозок во время боевых действий и бомбёжек в районе Ростова, когда основной разводной мост через Дон был выведен из строя.

Поздней ночью 21 ноября 1941 года, при первом оставлении нашими войсками донской столицы, фугасные заряды разрушили левобережную арочную ферму, которая упала в реку вместе с подъёмной башней и противовесом; был повреждён южный конец подъёмной фермы, упавшей с быка и задержавшейся на нём своим верхним поясом; частично повреждены или обрушились быки, устой и железобетонные пролётные балки со стороны Батайска; небольшие повреждения получила и северная арочная ферма. Той же ночью взорвали и литерный мост.

Через неделю, 29 ноября, когда наши войска первый раз освободили Ростов, нужно было в спешном порядке восстанавливать движение поездов через Дон. Литерный мост исправили уже 5 декабря, но движение между Ростовом и Батайском открылось лишь 9 декабря, после устранения серьёзных повреждений каменного пойменного моста.

Были начаты работы и по восстановлению американского моста. Предстояло извлечь из русла реки 1600 тонн обрушенных металлических конструкций, разобрать повреждённую кладку опор и забетонировать их, построить промежуточные опоры и установить малые пролётные строения (вместо разрушенного арочного пролёта), поднять среднюю подъёмную ферму весом более 600 тонн, усилить её и установить на быки, устранить повреждения правобережного арочного пролёта. Восстановительные работы начались в последних числах декабря, велись под непрерывными бомбёжками вражеской авиации. К моменту вторичной оккупации Ростова 24 июля 1942 года работы по восстановлению американского моста были ещё далеки от завершения.

Все эти месяцы движение поездов через Дон шло по однопутным литерному и обходному аксайскому. Литерный мост был низководным, потому военное командование и железнодорожники понимали, какую угрозу его сохранности может составить весенний ледоход и последующий паводок. Весной 1942 года до наступления повсеместной подвижки льда начали с помощью ледокола «Фанагория» ломать лёд в средней части русла от Гниловской до Аксая. Для измельчения крупных льдин и намечавшихся заторов применялся миномётный огонь. Ледоход 1942 года прошёл 3-5 мая без последствий для железнодорожного моста.

Прогноз гидрометеослужбы предвещал в ту весну высокий горизонт паводковых вод; не исключалось, что вода может подняться выше нижнего пояса мостовых ферм. Было принято смелое решение: на время весеннего разлива поднять мост на высоту, превышающую ожидаемый уровень весенних вод. Под каждую ферму подведели по четыре домкрата и все пролётные строения подняли на 38 см. выше их обычного положения. Работы по подъёму велись специалистами железной дороги и мостоотряда № 5; операция длилась 8 часов. На подходах к мосту устроили уклоны, обеспечивающие возможность движения поездов по приподнятому мосту. Паводок высшего уровня достиг 16 мая и прошёл без происшествий.

Летняя кампания 1942 года складывалась для нашей армии неудачно. С конца мая началась вторая волна эвакуации. По двум оставшимся мостовым переходам, имеющим ограниченные пропускные способности, за два месяца были вывезены население, бежавшее с оккупированных территорий, оборудование промышленных предприятий и электростанций, воинские грузы отступающих частей, и в последнюю очередь — железнодорожное имущество: рельсы, шпалы, комплекты стрелочных переводов, проводов связи, демонтированной автоблокировки.

18 июля вражеская авиация массированными бомбёжками полностью разрушила южную горловину станции Ростов-Главный и вывела из строя литерный мост. Отход воинских частей и вывоз грузов за Дон осуществлялись теперь по единственному сохранившемуся мосту — аксайскому. Но 21 июля в полдень прямым попаданием вражеской бомбы был уничтожен и этот мост. 24 июля наши войска оставили Ростов.

14 февраля 1943 года в столицу Дона пришло освобождение. Немецкие войска отступили и закрепились на Миусе. Враг уничтожал после себя всё, оставляя выжженную землю, разрушенные мосты, обгоревшие остовы строений, взорванную технику, вспоротую крюком железнодорожную колею. Нужно было как можно скорее восстанавливать железнодорожную линию от Батайска к Ростову. К делу приступили сразу же. Работы, позволившие открыть движение поездов на этом участке, были закончены к концу марта .

В условиях войны, особенно в прифронтовой зоне, где судьба боевых операций решалась порою сроками подвоза по железной дороге пополнений и боезапаса, восстановительные работы, подчинённые задачам боевой обстановки, велись по временной схеме, с применением подручных материалов. Мосты не были рассчитаны на длительную эксплуатацию, требовали ограничения весовых нагрузок и скоростей движения.

По мере удаления фронта на запад строители и работники Северо-Кавказской дороги развернули работы по замене восстановленных временных мостов постоянными. В 1945 году на смену однопутному литерному мосту был пущен новый — двухпутный, возведённый на опорах бывшего американского. Однако он не имел подъёмного пролёта и потому ограничивал пропуск по реке крупнотоннажных судов.

И только в 1952 году, к открытию судоходного Волго-Донского канала, был сдан в эксплуатацию последний (третий) железнодорожный разводной мост, построенный на месте демонтированного литерного. Своей конструкцией он повторяет американский, но очертания изменились. С той поры прошло уже более полувека, а это произведение инженерной мысли продолжает всё также надёжно нести свою службу на пользу речникам и железнодорожникам. Недавно завершился его капитальный ремонт, выполнены сложные работы по реконструкции, восстановлению и замене изношенных, отслуживших свой век механизмов, узлов и конструкций, надёжность и безопасность которых вызывали опасение. Чуть изменился и его облик, добавилась новая деталь — верхняя перекладина между подъёмными башнями, предназначенная для силовых и связевых кабелей.

Во второй половине XX века были построены ещё два железнодорожных мостовых перехода через Дон, усиливших пропускную способность Ростовского железнодорожного узла. В 1963 году появился однопутный мост через Нахичеванскую протоку и основное русло Дона в районе Зелёного острова (участок Кизитеринка — Батайск), а в 1983 году — высоководный двухпутный мост через Дон в районе Гниловской на западном обходе ростовского узла; он устроен совмещённым с автодорожным.

В наши дни, спустившись ближе к полудню на донскую набережную, вы можете стать свидетелем любопытного зрелища. Невдалеке, справа, хорошо виден большой железнодорожный мост; наступает время разводки, и средняя его ферма медленно поднимается над водой. В это время, будто от нетерпения вздрагивая напряжённо работающими двигателями, крупногабаритные суда с высокими палубными надстройками, быстро набирая скорость, одно вослед другому, спешат донским фарватером вниз в открывшиеся ворота. Дождавшись своего часа, обогнув по излучине Дона Зелёный остров, с десяток самоходных барж, сухогрузов и танкеров торопятся поскорее оставить позади последнее препятствие на своем пути: они ходко устремляются вниз по реке к морским просторам и далее — в неведомые нам портовые города и государства. Пожелайте им счастливого пути!

И тотчас, без промедления, теперь уже снизу, появляется ожидавший своего часа встречный караван судов; проследовав железнодорожный мост, он уходит, не задерживаясь, всё дальше и дальше вверх по реке, пока совсем не скроется с глаз. Судовые команды спешат как можно скорее разъехаться по российским городам и весям, вернуться, наконец, после долгого плавания в родные края, где их давно дожидаются жёны и дети, друзья и знакомые.

ЛИТЕРАТУРА

  1. Русский биографический словарь. Жабокритский-Зяловский. Пг., 1916. С. 548
  2. История железнодорожного транспорта России. СПб.; М., 1994. Т. 1. С. 228.
  3. Отчёт по Ростовскому-на-Дону торговому порту за 1913 год. Ростов н/Д, 1914. С. 16.
  4. Вестник Владикавказской железной дороги (Ростов н/Д). 1915. № 3, 6, 7.
  5. Адрес-календарь служащих Владикавказской железной дороги на 1913 год. Ростов н/Д, 1913. С. 39.
  6. Стрелецкий Н. С. Разводные мосты. Основы проектировки и расчета. М. 1923. С. 247-248, 293.
  7. Опыт работы Северо-Кавказской железной дороги в период Великой Отечественной войны. 1941-43 гг. Рукопись.

Железнодорожный мост через реку Исеть (г. Каменск-Уральский)

Железнодорожный мост - искусственное сооружение, которое строится для укладки полотна через водные препятствия. На небольших водотоках и суходолах устраивают малые мосты, трубы или лотки. Разновидностями мостов являются путепроводы, виадуки и эстакады. В местах пересечения железных и автомобильных дорог или двух железнодорожных линии строят путепроводы. Для пересечения ущелий, глубоких долин и оврагов строят виадуки, для пересечения с городской территорией - эстакады. Эстакады также строят на подходе к большим мостам.

Конструкция моста

Мост состоит из пролётных строений, являющихся основанием для пути и опор, поддерживающих пролётные строения и передающих давление на грунт. Опоры состоят из фундамента и видимой части (тела). Фундаменты опор сооружаются при неглубоком залегании прочных грунтов на естественном основании, а при слабых грунтах - на сваях. Концевые опоры моста называются устоями, а промежуточные - быками. Устои служат подпорной стенкой, для примыкающего к мосту земляного полотна. Пролётные строения опираются на опоры через опорные части, которые позволяют пролётному строению поворачиваться и продольно перемещаться при изгибе под нагрузкой и при изменении температуры. Под одним концом пролётного строения помещают неподвижные опорные части, допускающие только поворот, под другим концом - подвижные, перемещающиеся на катках. Пролётное строение состоит из балок, ферм, связей между ними и мостового полотна.

Материалы пролётного строения

Деревянные мосты широко применялись в первый период строительства железных дорог, а также во время Великой Отечественной войны для быстрого восстановления разрушенных мостов. Достоинствами этих мостов являются простота конструкции, возможность использования местных материалов, дешевизна и быстрота сооружения. Однако они недолговечны, пожароопасны и сложны в содержании.

В XIX в. широкое распространение для строительства железнодорожных мостов получил камень. Каменные мосты долговечны, надёжны и требуют небольших затрат на содержание. Каменные мосты имеют значительную собственную массу, поэтому малочувствительны к увеличению массы поездов, меньше других мостов реагируют на удары при движении поездов, при езде по ним производится меньше шума. Недостатками каменных мостов является большая трудоёмкость строительства и ограниченная длина пролёта. В конце XIX - начале XX вв. каменные мосты уступили место бетонным, железобетонным и стальным мостам.

Металлические мосты получили широкое распространение благодаря высокой прочности при сравнительно малой массе, возможности применения типовых деталей, высокой механизации сборочных работ. Металлические мосты составляют около 70 % общей протяжённости железнодорожных мостов. Их недостатками являются большой расход металла и необходимость тщательного ухода для предотвращения коррозии.

Железобетонные мосты являются основным типом малых мостов. Они более долговечны, чем металлические и требуют меньших затрат на содержание. Железобетонные конструкции также применяются в средних и больших пролётах железнодорожных мостов, однако их большая масса усложняет строительно-монтажные работы и требует более мощных опор.

В сталежелезобетонных мостах железобетонная плита проезжей части или балластного корыта объединена со стальными главными и поперечными балками или фермами и включена в совместную работу с ними.

Мостовое полотно

На железнодорожных мостах применяются два вида мостового полотна: с ездой на балласте и безбалластное. Полотно с ездой на балласте применяется на железобетонных и сталежелезобетонных мостах. Балластная призма используется однослойная щебёночная или двухслойная из асбестового балласта поверх дренирующего щебёночного слоя. Балласт укладывается в балластное корыто, наименьшая толщина балласта под шпалой составляет 25 см, наибольшая толщина не должна превышать 60 см. Из-за большого собственного веса применение мостового полотна с ездой на балласте ограничено пролётами 33 м для железобетонных мостов и 55 м - для сталежелезобетонных.

Мостовое полотно безбалластного типа применяется преимущественно на металлических мостах. Для устройства мостового полотна используются деревянные, металлические или железобетонные поперечины (мостовые брусья), а также сплошные железобетонные плиты. Мостовые брусья укладываются на продольные (главные) балки на расстоянии 10-15 см друг от друга во избежание провала колёс между ними. Вертикальные прогибы пролётных строений могут достигать 1/800 расчётного пролёта. Для обеспечения плавности движения поездов рельсовому пути придают строительный подъём по дуге круга или параболе за счёт изменения высоты мостовых брусьев. Стрела подъёма должна примерно соответствовать величине прогиба от половины нормативной вертикальной нагрузки.

Охранные приспособления

Охранные приспособления предназначены для обеспечения безопасного прохода поезда в случае схода колёсной пары или тележки на мосту или на подходе к нему. Для этого внутри рельсовой колеи у каждого путевого рельса укладывается сплошная линия контррельсов или контруголков. Контррельсы ограничивают боковые смещения подвижного состава, сошедшего с рельсов, предотвращая его падение и опрокидывание. Контррельсы протягивают до задней грани устоев и далее их концы на протяжении не менее 10 м сводят «челноком», заканчивающимся металлическим башмаком. Челнок воспринимает удар от сошедшей колёсной пары и отклоняют её в желоб между рельсами и контррельсами. На мостах с безбалластным полотном из деревянных, металлических или железобетонных брусьев для предотвращения продольного смещения поперечин и провала колеса между ними снаружи путевых рельсов укладываются охранные (противоугонные) уголки иди брусья.

См. также

Литература

  • Железнодорожный путь / Т. Г. Яковлева, Н. И. Карпущенко, С. И. Клинов, Н. Н. Путря, М. П. Смирнов; под ред. Т. Г. Яковлевой. М.: Транспорт. 1999. 405 с.
  • Бройтман, Э. З. Железнодорожные станции и узлы [Текст] : учебник для студентов техникумов колледжей ж/д тр-та / Э. З. Бройтман. - М. : Маршрут, 2004. - 370 с.

Железнодорожные мосты

Металлические мосты.

Металл - наиболее совершенный из материалов, применяемых для постройки современных мостов. Металл обладает хорошими механическими качествами при различных условиях работы под нагрузкой. Вместе с тем он хорошо поддается обработке и позволяет обрабатывать элементы различной формы для конструкций разнообразных систем. Эти качества способствовали широкому использованию металла для постройки мостов. При этом в мостах металлическими делают только пролетные строения. Опоры чаще массивные (из камня, бетона, железобетона) и редко металлические, причем признаком капитального металлического моста являются металлические пролетные строения, поставленные на капитальные опоры. В особо высоких мостах, виадуках, а также в путепроводах и эстакадах иногда делают металлические надземные или надводные части опор.

В балочном пролетном строении основной несущей конструкцией служат главные балки или фермы. Пролеты до 33 и даже 55 метров позволяют применять более простые в изготовлении и эксплуатации балки со сплошной стенкой.

В ферме вместо сплошной стенки поставлены раскосы, иногда со стойками и подвесками, причем относительное (к балкам) облегчение ферм резко возрастает с увеличением пролета.

Уменьшение массы достигается также применением неразрезных и консольных балок и ферм, перекрывающих не один, а более пролетов.

В настоящее время для металлических конструкций мостов применяют строительные углеродистые или низколегированные стали. Ведутся исследования по применению для мостов и более высокопрочных сталей, в частности термообработанных. Имеются также отдельные случаи применения в мостах легких дюралюминевых сплавов.

Металлические пролетные строения могут значительно превосходить по длине пролеты из других материалов.

Существенное преимущество металлических мостов заключается в индустриальности их изготовления и сборки. Все элементы металлических мостов изготавливают на хорошо оборудованных заводах и доставляют на место постройки, где производят сборку. Сборка металлических мостов может быть польностью механизирована, что позволяет вести монтажные работы быстрыми темпами.

Многие системы металлических пролетных строений могут быть легко собраны навесным способом, установлены на место надвижкой или доставлены на плаву. Это облегчает постройку мостов через глубокие горные лощины, многоводные реки и реки с интенсивным судоходством.

Металлические арочные мосты, являясь распорной системой, требуют меньшей затраты металла на пролетные строения, чем мосты балочных систем. Но из-за передачи распора, опоры приходится делать более мощными. При хороших грунтах арочная система часто бывает весьма целесообразной. По своей конструкции арочные мосты имеют арки сплошного сечения или же решетчатые арочные фермы.
Распор арочного пролетного строения может быть воспринят затяжкой. В этом случае пролетное строение превращается в безраспорное балочное.



По условиям своей работы эта система относится к комбинированным.

Вантовые и висячие системы.

Главными несущими элементами служат кабели или ванты, работающие на растяжение, выполняемые из высококачественной стали большой прочности. В случае закрепления этих элементов с помощью оттяжек в грунте или устоях висячие мосты называют распорными.

Для увеличения вертикальной жесткости мосты снабжают балками жесткости. В этом случае система превращается уже в комбинированную.
Если закрепить концы оттяжек к концам балки жесткости и передать ей горизонтальные слагающие усилия в оттяжках, то система становится внешне безраспорной. Другую разновидность внешне безраспорных мостов представляют системы с балкой жесткости, поддерживаемой системой вантов, симметрично или несимметрично расположенных по обе стороны пилонов. Безраспорные системы в отношении опорных реакций аналогичны балочной системе. Так как висячие мосты по сравнению с мостами других систем имеют меньшую жесткость, то их устраивают, как правило, на автомобильных дорогах и в городах. Кроме рассмотренных выше систем, в металлических мостах применяют также комбинированные системы, образованные из балок (или ферм), усиленных нижним дополнительным поясом в виде шпренгеля или гибкой арки.





Железобетонные мосты.

Характерная особенность сталежелезобетонных пролетных строений - жесткое прикрепление железобетонной плиты проезжей части к стальным главным балкам, которое включает плиту в совместную работу с балками, вызывает сжатие железобетонной плиты при изгибе балок, что существенно уменьшает площадь сечения верхних стальных поясов балок, исключает верхние продольные связи, повышает горизонтальную жесткость пролетных строений, снижает расход стали на 12 - 18%.

Сталежелезобетонные пролетные строения с ездой на балласте имеют хорошие эксплуатационные качества, но более высокую стоимость, трудоемкость и продолжительность монтажа.

Мостовое полотно с ездой на балласте состоит из путевых рельсов, контруголков, шпал, балласта и железобетонной плиты с бортиками, тротуарами и металлическими перилами.

Рельсовый путь укладывают со строительным подъемом за счет изменения толщины балластного слоя под шпалами. При этом расстояние от нижней плоскости шпал до верха защитного слоя на водораздельных точках должно быть не менее 20 см.

Габаритные размеры и монтажный вес блоков плиты с изоляцией позволяют перевозить их по железным и автомобильным дорогам и устанавливать на место стреловыми кранами. Железобетонную плиту прикрепляют к стальным балкам с помощью гибких анкеров из арматурных стержней с крюком или петлеобразной формы, жесткими упорами из отрезков уголков с ребрами, швеллеров, тавров, труб или полос, а также высокопрочными болтами.
Стальные балки сталежелезобетонных пролетных строений обычно имеют сварное двутавровое сечение. Высота балок составляет 1/13 - 1/15 расчетного пролета. Вертикальные стенки балок имеют толщину 12-14 мм и для устойчивости укреплены двусторонними вертикальными ребрами жесткости, а при пролетах 45 м и более, - кроме того, продольными ребрами жесткости в сжатой зоне балок. Стальные балки длиной 45 м и более изготовляют крупными блоками, которые соединяют при монтаже высокопрочными болтами с помощью вериткальных и горизонтальных накладок.

Конструкции стальных балок, связей и железобетонных плит максимально унифицированы, что упрощает изготовление пролетных строений. Стальные балки пролетных строений 18,2 - 33,6 м объединяют связями на заводе и перевозят одним блоком, а пролетных строений 45,0 - 55,0 м крупными блоками, которые содиняют на монтаже.



Деревянные мосты.

Деревянные мосты под железные дороги в качестве постоянных сооружений допускаются только при выполнении двух условий:

    система моста должна быть балочно-эстакадной;

    должны использоваться элементы заводского изготовления с обязательной антисептической обработкой.

Во всех остальных случаях под железные дороги строятся только временные деревянные мосты. Применение на автодорогах деревянных мостов (как временных, так и постоянных) не ограничивается никакими условиями. Как правило, деревянные мосты имеют небольшие пролеты (железнодорожные от 2 до 9 метров, автодорожные от 25 до 40 метров).

Для деревянных мостов применяют хвойный лес. Наилучшими породами являются сосна, лиственница, ель, пихта удовлетворяющие требованиям ГОСТов. Для изготовления мелких деталей и соединений применяют древесину твердых лиственных пород, таких как бук, граб, дуб, ясень. Для клееных элементов можно использовать лесоматериалы худшего качества при условии удаления недопустимых пороков (гниль, сучки, трещины).

Деревянные мосты бывают систем:

    балочные;

    подкосные.

по конструктивным особенностям:

    пакетные пролётные строения;

    со сквозными фермами.

В России на мостах и подходах к ним обычно укладывается тот же тип рельсов, что и на перегонах. В настоящее время на мостах эксплуатируются преимущественно термоупрочненные рельсы типа Р65. Имеющиеся незакаленные рельсы Р65 и даже термоупрочненные рельсы Р50 в плановом порядке заменяются на термоупрочненные Р65. В зависимости от климатических и эксплуатационных условий на мостах и подходах к ним может укладываться бесстыковой путь с рельсовыми плетями, перекрывающими мост и подходы, путь с длинными сварными рельсами (длиной не более длины температурного пролета) и звеньевой путь с рельсами длиной 25 м. /1/

Укладка бесстыкового пути на мостах не менее эффективна, чем на земляном полотне. В результате ликвидации стыков уменьшаются динамические напряжения в элементах пролетных строений, снижается интенсивность расстройства их соединений и мостового полотна, а соответственно уменьшаются затраты на содержание как пути на мос­тах, так и самих мостов. Поэтому применение бесстыкового пути на мостах – важная задача. При укладке сварных рельсовых плетей бесстыкового пути и длинных рельсов на мостах должны учитываться особенности совместной работы пути и моста. Основной особенностью здесь является подвижность подрельсового основания, вызванная изменением длины пролетного строения при изменении температуры воздуха и проходе подвижного состава. Подвижность пролетного строения при интенсивном торможении может составлять от 20 до 30 % его температурных перемещений. В то же время сварные рельсовые плети, перекрывающие мост, могут оставаться неподвижными. При наличии связей "рельс-пролетное строение" в рельсовых плетях появляются дополнительные продольные усилия, передающиеся при непрерывной рельсовой нити бесстыкового пути не только на пролетные строения, но и на опорные части и на подходы к мосту. Поэтому до укладки бесстыкового пути мосты обследуют и, если необходимо, капитально ремонтируют.

Как на отечественных, так и на зарубежных железных дорогах, на мостах применяют два типа мостового полотна: балластное (с ездой на балласте) и безбалластное. Мостовое полотно с ездой на балласте (рис. 1) применяется с железобетонными пролетными строениями длиной преимущественно до 33 м и сталежелезобетонными - длиной более 33 м.

На мостах с железобетонными пролетными строениями длиной до 3,6 м с ездой на балласте рельсовые плети работают практически независимо от пролетного строения и не испытывают дополнительных воздействий, связанных с его деформациями. Такие мосты почти не имеют строительного подъема, а изменение температуры пролетного строения вследствие большой массы бетона происходит с 4-5-часовым отставанием от изменения температуры окружающего воздуха. Поэтому при изменениях температуры и проходе поезда продольные деформации (изменения длины) такого пролетного строения бывают невелики. Это позволяет устраивать на железобетонных мостах с про­летными строениями до 33 м и ездой на балласте бесстыковой путь такой же конструкции, как и на земляном полотне. Рекомендуется применять плети такой длины, чтобы они полностью перекрывали весь мост. Концы плетей следует располагать не ближе 50-100 м от шкафных стенок устоев моста.

Рисунок 1. Мостовое полотно с ездой на щебеночном балласте и железобетонных шпалах при балластном корыте, предусматривающем пропуск щебнеочистительных машин

На мостах с ездой на балласте, имеющих полную длину более 50 м, а также на путепроводах с ездой на балласте при полной их длине более 25 м для предупреждения большого поперечного смещения от оси моста подвижного состава в случае его схода требуется укладывать контруголки. На мостах с ездой на балласте путь укладывается на специальных мостовых железобетонных шпалах, к которым можно прикреплять контруголки. Контруголки крепятся к шпалам шурупами, вворачиваемыми в деревянные вкладыши. Контруголки сводятся концами, образуя челнок, острия которого должны быть не ближе 10 м от задней стенки устоя (рис. 2). При укладке на мостах железобетонных шпал в пределах "челноков" располагают шпалы с постепенным уменьшением расстояния между осями деревянных вкладышей (рис. 3).

Рисунок 2. Схемы расположения железобетонных и деревянных шпал при примыкании рельсовых плетей к мостам (а) и перекрытии мостов рельсовыми плетями (6): А - рельсовые плети; Б - железобетонные шпалы; В - деревянные шпалы

Рисунок 3. Схема укладки железобетонных шпал в пределах «челноков» (цифрами обозначены типы шпал от Ш1 до Ш21)

В качестве балласта на мостах и подходах к ним применяется щебень из твердых пород. На отдельных мостах и подходах к ним эксплуатируется путь на асбестовом балласте. Однако в последние годы в плановом порядке асбестовый балласт заменяется щебеночным. Ширина плеча балластной призмы на мостах и подходах к ним устраивается не менее 35 см. При этом она не зависит от класса линии, т. е. является фактором, обеспечивающим устойчивость бесстыкового пути. Толщина балластного слоя под шпалой устраива­ется не менее 25 см. На отдельных мостах из-за габаритов толщина балластного слоя может быть ограничена до 15 и даже 10 см. В таких случаях необходимо принимать все меры для уменьшения динамического воздействия подвижного состава на путь. Это достигается путем ликвидации рельсовых стыков в пределах моста и периодической шлифовкой рельсов.

На мостах старой постройки в процессе эксплуатации высота бал­ластной призмы увеличивалась в результате выправки пути в профиле, а также из-за отсутствия достаточно простых технологий по очистке щебня на мостах. Это приводит к значительному увеличению постоянной нагрузки на мост. Для ограничения ее высота балласта под шпалой не должна превышать типовую более чем на 30 см. При большей высоте ширина лотка становится недостаточной для обеспечения необходимого поперечного профиля призмы. Поэтому в новых проектах ширина лотка понизу составляет 4,9 м. В эксплуатируемых мостах старой постройки во избежание осыпания балласта с пролетного строения приходится наращивать борта лотков. На некоторых дорогах укладывают железобетонные уголки, горизонтальная полка которых размещается под балластом. Во всех случаях необходимо, чтобы нижняя постель шпалы была ниже борта, и дополнительная нагрузка от увеличения собственного веса пролетного строения не превосходила допускаемую.

Довольно часто устраивают мостовое полотно с металлическими ортотропными плитами с ребрами жесткости. Плита имеет одинаковую жесткость в продольном и поперечном направлениях и включается в работу верхнего пояса продольной балки, что упрощает и усиливает конструкцию моста и удешевляет его содержание. На плите укладывают обычное верхнее строения пути (щебень, шпалы и т.д.).Такое мостовое полотно сооружено на мосту через р. Маин во Франкфурте-на-Майне (Германия). Речной пролет этого моста - 168 м. Иногда вместо металлической применяют железобетонную плиту, работающую совместно с верхними поясами главных ферм пролетного строения. Плиты в этом случае, как правило, приклеиваются к балкам клеем на эпоксидной основе. Путь укладывается на щебне. Имеются и другие конструкции балластного мостового полотна. На железных дорогах России, кроме железобетонных мостов, мостовое полотно с ездой на балласте применяется преимущественно на сталежелезобетонных мостах, включающих металлические пролетные строения с установленными на них железобетонными балластными корытами. Балластное корыто на таких мостах работает совместно с верхними поясами продольных балок, на которых оно закрепляется. Однако и на этих мостах влияние продольных подвижек пролетных строений на рельсовые плети снижается за счет балласта. Содержание пути на мостах с ездой на балласте наиболее просто и экономично по сравнению с другими конструкциями мостового полотна и мало отличается от эксплуатации пути на земляном полотне. Тем не менее, на большей части металлических мостов применяется безбалластное мостовое по­лотно.

Безбалластное мостовое полотно может быть на деревянных и ме­таллических поперечинах или на железобетонных плитах.

Мостовое полотно на деревянных поперечинах (мостовых брусьях) устраивается согласно рис. 4. В качестве охранных приспособлений на мостах с деревянными и металлическими поперечинами применяются контруголки сечением 160x160x16 мм. На эксплуатируемых мостах впредь до переустройства или капитального ремонта допускаются контруголки меньшего сечения, но не менее 150x100x14 мм.

Мостовое полотно с металлическими поперечинами эксплуатируется преимущественно на мостах довоенной постройки.

Рисунок 4. Мостовое полотно на мостовых брусьях с костыльным креплением рельсов: слева - охранный уголок прикреплен лапчатым болтом; справа - охранный уголок прикреплен костылями

Примечание. В скобках даны минимально необходимые зазоры между рельсовыми подкладками, охранными уголками и шайбами лапчатых болтов на участках, оборудованных автоблокировкой.

В последние годы резко возросли объемы укладки мостового по­лотна с железобетонными плитами (рис. 5). Изготовление и укладка безбалластных железобетонных мостовых плит производятся по типовым проектам. Сопряжение железобетонных плит с балками пролетных строений может производиться с помощью прокладного слоя из цементно-песчаного раствора с деревянными прокладками, из антисептированных деревянных досок и резины, а также других конструкций.

В качестве охранных приспособлений на мостах с железобетонными плитами применяются контруголки сечением 160x160x16 мм. Охранные приспособления на мостах с безбалластным мостовым полотном (деревянные, металлические поперечины, железобетонные плиты) устанавливают при длине мостового полотна более 5 м или при расположении мостов в кривых радиусом менее 1000 м.

Как известно, одна из основных особенностей работы пути, в том числе и бесстыкового, на мостах заключается в подвижности подрельсового основания. Рельсовые плети бесстыкового пути, перекрывающие мост, не имеют возможности перемещаться вместе с основанием.

Поэтому при наличии связей «рельсовые плети – пролетное строение», вследствие продольных подвижек последнего как в плетях, так и в продольных балках пролетного строения, появляются дополнительные продольные силы. Ввиду того, что площадь поперечного сечения продольных балок, поясов ферм пролетного строения многократно превышает площадь сечения рельса, то наиболее опасными будут дополнительные продольные силы для рельсовых плетей. Дополнительные силы в рельсовой плети в сумме с поперечными силами от подвижного состава, а также от изменения температуры плети не должны вызывать перенапряжений рельсов в зоне моста и подходов. Это требование выполняется при условии непревышения расчетных напряжений над допустимыми.

При этом условии учитывается, что температура рельсов на мостах в летнее время может быть ниже на 8-10 °С температуры рельсов на подходах к ним, а также что в зимнее время продольные деформации пролетного строения, вызванные проходом поезда, противоположны по направлению температурным и уменьшают воздействие последних на плети.

Рисунок 5. Мостовое полотно на безбалластных железобетонных плитах:

1 – безбалластная ж.б. плита, 2 – контруголок, 3 – путевой рельс со скреплениями, 4 – главные балки, 5 – опорная деревянная прокладка, 6 – высокопрочная шпилька крепления плиты, 7 – цементно-песчаная подливка, 8 – овальное отверстие для шпильки и нагнетания раствора под плиту, 9 – шайбы

Для определения дополнительных сил в рельсовых плетях на мос­тах и подходах к ним, вызванных подвижками пролетного строения, необходимо знать длины пролетных строений, значения перемещений и распределение сил сопротивлений (г м) по длине мостового полотна. Точность определения дополнительных сил обуславливается выбором функции, характеризующей взаимосвязь сил сопротивлений и перемещений.

На участках с подвижками пролетного строения более 3 – 5 мм происходит фрикционное проскальзывание его относительно рельсовых плетей, и сопротивления уже не зависят от величины перемещений, т. е.
.

В известных зарубежных работах при определении дополнительных продольных сил в рельсовых плетях принимают
. Это упрощение при перемещениях пролетного строения, вызванных изменениями температуры на 15 °С, почти в 2 раза увеличивает расчетное значение силы по сравнению с ее фактической величиной. При увеличении перепада температуры разность между расчетными и фактическими значениями дополнительных сил уменьшается. Например, для пролетного строения длиной 55 м при перепаде температуры на 45 °С разность между расчетной и фактической величиной дополнительных продольных сил не превышает 7-10 %.

При сплошном закреплении плетей скреплениями КД, КБ на мостах с пролетными строениями длиной 45-55 м, их продольные деформации могут вызвать в рельсовых плетях дополнительные осевые напряжения порядка 50-75 МПа, которые в сумме с изгибными и температурными напряжениями могут превышать допускаемые значения по прочности рельсов. Эти дополнительные напряжения способствуют быстрому расстройству мостового полотна, опорных частей пути в зоне подходов, а в отдельных случаях и выбросу пути в зоне подходов. Поэтому закрепление рельсовых плетей в соответствии с требованиями к их закреплению на земляном полотне неприемлемы для безбалластных мостов.

Самый лучший вариант в плане взаимодействия плетей и пролетных строений - применение скреплений, которые не препятствуют перемещению продольных строений относительно плетей. Закрепле­ние рельсовых плетей без защемления подошвы рельсов на отечественных железных дорогах применяется на безбалластных мостах длиной 33 м и менее, а на зарубежных дорогах - на мостах длиной до 25-30 м. При таком закреплении плетей удлинение или укорочение пролетных строений не вызывает дополнительных сжимающих или растягивающих напряжений в плети, а величина зазора при изломе плети не превышает допускаемого значения. Закрепление плетей на мостах длиной до 33 м осуществляется при помощи костыльных или раздельных скреплений (КД, КБ) с неплотно забитыми костылями или клеммами с подрезанными лапками, что обеспечивает зазор между клеммой и верхом подошвы рельса (рис. 6) При длине мостов больше 33 м во избежание раскрытия большого зазора рельсовые плети закрепляются на ограниченном протяжении мостового полотна в зоне неподвижного конца пролетного строения (0,2-0,25 м). На этом участке рельсовые плети крепятся так же, как и на земляном полотне с нормативной затяжкой гаек клемных болтов. На остальном протяжении мостового полотна плети крепятся без защемления клеммами. При таком закреплении почти исключается появление в плетях дополнительных сил, вызванных подвижками пролетного стро­ения Внедрение такой схемы закрепления плетей позволило расширить полигоны применения бесстыкового пути на отечественных же­лезных дорогах на однопролетных мостах длиной до 55 м и многопролетных - до 66 м.

На целом ряде зарубежных железных дорог бесстыковой путь укладывается на мостах большей длины (табл. 4). Увеличение длин мостов, на которых можно укладывать бесстыко­вой путь, достигается за счет более благоприятных климатических условий, применения новых конструкций прикрепления мостовых брусьев к поясам продольных балок или ферм, исключающих влияние продольных перемещений пролетного строения на напряженное состояние плетей (рис. 7), специальных конструкций рельсовых скреплений. В частности, в Японии применяются скрепления (рис. 8), из которых «А» обеспечи­вает погонные сопротивления продольному сдвигу 100 Н/см, «В» - 50 Н/см, «С» - не оказывает сопротивления продольному сдвигу. Комбинацией этих скреплений достигаются требуемые погонные со­противления. Наряду с выполнением требований по прочности, устойчивости пути, величине зазора, образующегося в случае излома плети, на мостах необходимо соблюдать, чтобы горизонтальные силы, передаваемые рельсовыми плетями на мостовое полотно в момент разрыва плети зимой, не превышали значений расчетных тормозных сил, на которые рассчитываются опорные части и опоры мостов. На однопро­летных мостах свыше 55 м и многопролетных свыше 60 м закрепление плетей только в зоне неподвижных концов пролетных строений в климатических условиях железных дорог России не обеспечивает требование по зазору. На этих мостах укладывается либо звеньевой путь, либо рельсовые плети длиной не более длины температурного пролета моста (рис. 9). Для компенсации температурных удлинений рельсов, а также удлинений, вызванных проходом поезда, на мосту применяются уравнительные приборы (рис. 10).

Т а б л и ц а 4

На практике уравнительные приборы укладываются на мостах с длинами температурных пролетов 100 м и более. Рельсовые плети в пределах таких мостов укладываются типа Р65 с костыльными, раздельными скреплениями К-65 на мостах с деревянными мостовыми брусьями или КБ-65 на мостах с металлическими мостовыми брусьями и железобетонными плитами.

Рисунок 6. Прикрепление рельсовых плетей к мостовым брусьям креплениями КД с укороченными ножками клемм

Рисунок 7. Узел соединения мостового бруса (1) с продольной балкой (2), допускающий их взаимные перемещения

Рисунок 8. Скрепления, предназначенные для укладки на мостах без балласта

Для предупреждения угона пути в пределах моста сварные рельсовые плети закрепляются в зоне неподвижных концов пролетных строений.

Рисунок 9. Температурные пролеты мостов:

А – с разрезными пролетными строениями в однопролетных мостах или при расположении на промежуточной опоре одной подвижной и одной неподвижной опорных частей смежных пролетных строений; б – то же при расположении на промежуточной опоре двух подвижных опорных частей; в, г – с нарезными пролетными строениями при расположении неподвижной опорной части в середине и на конце пролетного строения; д – с консольными пролетными строениями; е – с арочными пролетными строениями; L i – температурный пролет; У р – место установки уравнительного прибора

Рисунок 10. Уравнительный прибор:

1 – передний стык рамного рельса; 2 – рамные рельсы; 3 – начало отгиба рамного рельса;

4 – остряки; 5 – лафеты; 6 – граница соседних температурных пролетов

На мостах с деревянными мостовыми брусьями и костыльными скреплениями рельсовые плети закрепляются винтовыми или, как исключение, пружинными противоугонами, устанавливаемыми в замок. Винтовые противоугоны устанавливаются у брусьев, прикрепленных к противоугонным уголкам, установленным на верхних поясах продольных балок. Количество винтовых и пружинных противоугонов определяется путем деления продольной силы на усилие, которое воспринимается винтовым (рис. 11) или пружинным противоугонами. На мостах с ездой по балласту, с металлическими поперечинами рельсовые плети у неподвижных концов пролетных строений на протяжении, определяемом расчетами, прикрепляются к основанию скреплениями КБ с нормативной затяжкой гаек клеммных болтов. Протяженность участков закрепления плетей в зоне неподвижного конца пролетного строения пружинными противо­угонами или скреплениями КБ с нормативной затяжкой гаек клемм­ных болтов определяется из условия:

,

где Т - продольная сила от временной нагрузки в момент торможения или разгона поезда; - погонные сопротивления продольному сдвигу рельсовой плети в пределах участка закрепления.

На остальном протяжении пролетного строения рельсовые плети крепятся без защемления подошвы рельса.

На безбалластных мостах с металлическими поперечинами железобетонными плитами и с ездой по балласту устанавливаются подрельсовые резиновые или резинокордовые амортизаторы. Для уменьшения коэффициента трения между подошвой рельса и амортизаторами в пределах участков, где плети крепятся без защемления подошвы рельса, устанавливаются металлические П-образные прокладки, изготавливаемые из листовой стали толщиной 0,5 - 2,0 мм (рис 12). В последние десятилетия на многих мостах России с температурными пролетами 100 м и более вместо дорогостоящих уравнительных приборов начали укладывать уравнительные рельсы. Компенсация изменения длины рельсовых плетей на мостах с уравнительными рельсами осуществляется за счет стыковых зазоров, а в необходимых случаях -за счет одного-двух сезонных уравнительных рельсов. Сезонные рельсы - это рельсы для зимних и летних условий. На зимний период это, как правило, рельсы стандартной длины 12,5 м, а на летний период - укороченные, длиной 12,46; 12,45 или 12,44 м. Укладка плетей с уравнительными рельсами выполняется по специально разработанному проекту, который обязательно должен включать схему укладки сварных рельсовых плетей и уравнительных рельсов; расчет зазоров в стыках и определение температурного интервала замены сезонных уравнительных рельсов; схему закрепления рельсо­вых плетей на мостовом полотне и подходах.

Рисунок 11. Винтовой противоугон

Рисунок 12. П-образная металлическая прокладка

Тема 1.2 Элементы, размеры, статические схемы мостов.

По принятому делению к малым мостам относят мосты полной длиной до 25м, к средним – длиной более 25, но не превышающей 100м.

Мост или другое мостовое сооружение (путепровод, виадук, эстакада) состоит из пролетных строений и опор. Пролетное строение - это конструкция моста, перекрывающая пространство между опорами, поддерживающая все проезжающие по мосту нагрузки и передающая их вес и- свой собственный вес на опоры. В зависимости от количества перекрываемых пролетов мосты бывают однопролетными или многопролетными. Опоры воспринимают усилия от пролетного строения и передают его на грунты основания. Крайние опоры, примыкающие к насыпям подходов, называют устоями, все остальные - промежуточными, а массивные промежуточные опоры - быками. Пролетное строение состоит из несущей конструкции (балок, ферм, арок и т.п.) и конструкции проезжей части с тротуарами и всеми вспомогательными элементами. Расстояние между центрами опорных точек пролетного строения называется его расчетным пролетом l.

Высоководный мост должен обеспечивать беспрепятственный пропуск паводковых вод, поэтому низ пролетных строений моста нужно располагать на 0,5-1 м выше уровня или горизонта высоких вод (УВВ или ГВВ). Наивысший уровень воды, возможный на реке в месте мостового перехода называют уровнем или горизонтом высоких вод (УВВ или ГВВ). Расчетный горизонт высоких вод определяют по данным натурных гидрологических наблюдений, в частности по расспросам старожилов из условия, чтобы вероятность появления более высокого уровня не превышала установленной нормами. Если по реке имеется судоходство, то низ пролетных строений должен возвышаться над расчетным судоходным уровнем (РСУ) на высоту большую, чем высота судоходного габарита для данной реки. Расчетный судоходный уровень - это наивысший уровень воды в реке в судоходный период, который обычно несколько ниже УВВ. Уровень воды в реках довольно сильно изменяется. В летнее время, а также зимой вода обычно имеет низкий уровень или средний уровень воды в период между паводками, называемый уровнем или горизонтом меженных вод (УВВ или ГМВ) или просто меженью. Весной при половодье, а также осенью и иногда летом при ливнях приток воды резко увеличивается и горизонт воды повышается.

Длину L по оси моста между гранями устоев, примыкающих к насыпи подходов, называют длиной моста (см. рис.1).

Другими основными размерами моста и его элементов являются (см. рис.13):

Отверстие моста, равное свободной ширине зеркала воды под мостом по уровню высоких вод , где - расстояние между гранями опор в свету. В однопролетном мосту отверстие равно расстоянию в свету между внутренними гранями устоев. В многопролетных мостах отверстие выражается суммой расстояний в свету между опорами отдельных пролетов Σl0, измеренных по расчетному ГВВ;



Высота моста H от поверхности проезжей части до уровня меженных вод;

Свободная высота под мостом между низом пролетных строений и уровнем высоких вод или расчетным судоходным уровнем (если есть судоходство). Свободная высота должна быть достаточна для безопасного пропуска высокой воды, ледохода, а на судоходных реках – для пропуска судов;

Строительная высота h от проезжей части до самых нижних частей пролетного строения;

Расчетный пролет - расстояние между осями опирания пролетного строения на смежные опоры.

Основные размеры моста устанавливают в процессе его проектирования, учитывая назначение моста и весь комплекс местных условий. Отверстие, величины пролетов, высота моста, а также габарит проезда по мосту являются генеральными размерами моста.

1 - насыпь подхода; 2 - конус насыпи; 3 - устой; 4 - пролетное строение с ездой поверху; 5 - пролетное строение с ездой понизу; 6 - промежуточная опора (бык); 7 - фундамент опоры