Измерительные

Регистр из квадратной трубы. Какие бывают регистры отопления – выбор, расчет, характеристики

Регистр из квадратной трубы. Какие бывают регистры отопления – выбор, расчет, характеристики

На рынке присутствует немалое количество разного рода отопительных приборов, Тем не менее, самодельные радиаторы до сих пор используются. И наиболее часто встречаются регистры из труб. Регистры отопления — сварные или сборные конструкции из горизонтально расположенных труб, соединенных между собой перемычками для циркуляции теплоносителя.

Какие бывают

Отопительные регистры изготавливают из разного материала, имеют они разную форму. У каждой есть плюсы и минусы.

Из чего делают

Если говорить о материалах, то самый распространенный — сталь, а вернее стальные электросварные трубы. Сталь имеет не самую лучшую теплоотдачу, но это компенсируется невысокой ценой, легкостью в обработке, доступностью и большим выбором типоразмеров.

Совсем редко встречаются сделанные из нержавеющей трубы — для приличной мощности требуется большое количество труб, а сколько стоят изделия из нержавейки, вы имеете представление. Если и делали их, то, наверное, давно. Используют еще «оцинковку», но работать с ней сложнее — варить не получится.

Делают иногда медные регистры — они используются в тех сетях, где разводка сделана . Медь отличается высокой теплоотдачей (в четыре раза больше чем у стали) потому размеры у них бывают гораздо более скромные (и по длине и по диаметру использованных труб). К тому же сами трубы разводки (если они не ) отдают достаточное количество тепла. В то же время пластичность этого металла позволяет изгибать трубы без особых ухищрений и усилий, а сварку использовать только в местах соединения разных кусков. Но все эти плюсы нивелируются двумя большими минусами: первый — высокая цена, второй — капризность меди к условиям эксплуатации. По цене все ясно, а по эксплуатации немного пояснений:

  • требуется нейтральный и чистый теплоноситель, без твердых частиц
  • в системе нежелательно присутствие других металлов и сплавов, кроме совместимых — бронза, латунь, никель, хром, потому все фитинги и арматуру нужно будет искать из этих материалов;
  • обязательно тщательно выполненное заземление — без него при наличии воды начинается процессы электрохимической коррозии;
  • мягкость материала требует защиты — нужны кожухи и т.п.

Есть регистры из чугуна. Но они слишком громоздки. К тому же имеют очень большую массу, под них нужно делать не менее массивные стойки. Плюс ко всему чугун отличатся хрупкостью — один удар, и он может расколоться. Получается, что и этот тип регистров нуждается в защитных кожухах, а они снижают теплоотдачу и увеличивают стоимость. Причем устанавливать их — сложная и тяжелая работа. К плюсам можно отнести высокую надежность и химическую нейтральность: этому сплаву все равно, с каким теплоносителем работать.

В общем, медь и чугун — это непросто. Вот и получается, что оптимальный выбор — стальные регистры.

Виды регистров

Самый распространенный вид — регистры из гладких труб, и чаще всего — стальных электросварных. Диаметры — от 32 мм до 100 мм, иногда до 150 мм. Их делают двух типов — змеевидные и регистровые. Причем регистровые могут иметь два типа соединения: нитка и колонка. Нитка — это когда перемычки, по которым из одной трубы в другую перетекает теплоноситель, установлены то справа, то слева. Получается, что теплоноситель последовательно оббегает все трубы, то есть соединение последовательное. При соединении типа «колонка» все горизонтальные участки соединены между собой с обоих концов. В этом случае движение теплоносителя параллельное.

Любой тип регистров может использоваться для любого типа системы: с однотрубной и , с вертикальным и горизонтальным типом подачи. При любой системе большая теплоотдача будет при подключении подачи в верхний патрубок.

В случае использования в системах с естественной циркуляцией требуется соблюдать небольшой уклон в сторону движения теплоносителя порядка 0,5 см на один метр трубы. Такой маленький уклон объясняется большим диаметром (малым гидравлическим сопротивлением).

Делают эти изделия не только их круглых, но и из квадратных труб. Они практически ничем не отличаются, только работать с ними сложнее, да гидравлическое сопротивление чуть больше. Но к плюсам такого исполнения можно отнести более компактные размеры при том же объеме теплоносителя.

Есть еще регистры из труб с оребрением. В таком случае увеличивается площадь соприкосновения металла с воздухом, и теплоотдача повышается. Собственно, до сих пор в некоторых бюджетных новостройках строители ставят именно такие отопительные приборы: всем известная «труба с оребрением». При не самом лучшем внешнем виде они неплохо греют помещения.

Если любой регситр вставить ТЭН, можно получить комбинированный отопительный прибор. Он может быть отдельным, не связанным с системой, или использоваться как дополнительный источник тепла. Если радиатор будет изолированным с нагревом только от ТЭНа, необходимо в верхней точке поставить расширительный бачек (10% от общего объема теплоносителя). При нагреве от расширительный бачок, как правило, встроен в конструкцию. Если его нет (часто бывает в ), то и в этом случае необходима установка расширительного бачка. Если материал для регистров сталь, то бачок нужен закртыого типа.

Электроподогрев может пригодиться в самые сильные холода, когда не хватает. Также такой вариант может выручить в межсезонье, когда загружать и разгонять систему «на полную» нет смысла. Нужно лишь немного прогреть помещение. С котлами на твердом топливе такое невозможно. А такой вот запасной вариант поможет обогреться в межсезонье.

Расчет регистров из гладких труб

Стальные регистры отопления несложно сделать своими руками. Стоимость такой системы отопления будет зависеть от того, кто будет их варить. Если техникой сварки владеете сами, вариант — самый малобюджетный, если сварщику нужно будет платить, особой разницы в стоимости с недорогими не будет.

При этом регистры будут занимать большие площади, чем стандартные отопительные приборы: из-за незначительной поверхности соприкосновения с воздухом эффективность у них невысокая. Увеличивают теплоотдачу, поставив более мощный насос, но есть ограничения по скорости из-за возможных шумов в системе. О том,

Диаметры, как говорилось — от 32 мм до 100-150 мм. Большие размеры труб ведут к увеличению объема системы. При старте и разгоне системы это минус — пока нагреется теплоноситель, пройдет прилично времени. При работе большой объем — скорее плюс: более мягкие условия для котла. С другой стороны — при большом количестве теплоносителя регулировать температуру сложно.

Таблица теплоотдачи стальных труб разного диаметра для разных условий работы системы (кликните по картинке для увеличения ее размера)

Расстояние между двумя трубами в регистре маленьким быть не должно: так снижается теплоотдача. Потому их располагают на расстоянии не меньшем чем 1,5 радиуса. Количество рядов и длина регистра зависят от требуемой мощности, а также от диаметра выбранных труб. В общем случае (для средней полосы России, для помещений со средней теплоизоляцией и высотой потолков 3м) можно считать по теплоотдаче метра стальной трубы. Эти значения приведены в таблице. По ней вы сможете найти размер и количество регистров по площади помещения.

Теплоотдача одного метра стальных труб разного диаметра — для расчета регистра отопления по площади

Для расчета по тепловым потерям помещения есть усредненные данные по тепловой мощности погонного метра стальной трубы. Можно для стандартных условий использовать их. Если система работает на других температурах, требуется внести корректировки в большую или меньшую сторону.

Если эти таблицы вам не помогли, можно сделать расчет регистра по формуле.

Подставив соответствующие значения, вы найдете теплоотдачу одной труб при ваших условиях. Теплоотдача всех последующих (второй и более) будет чуть меньше. Найденное значение нужно умножить на 0,9. Так вы рассчитаете и сможете сделать регистр из гладких труб своими руками.

Как устанавливают

Вариантов установки два: навесить на стену или поставить на стойку. Выбор зависит от габаритов и массы полученной конструкции, а также от типа стен.

Достаточно часто делают комбинированную установку: варят стойки, которые затем крепят к стене. Таким способом можно установить даже очень массивные регистры. Также такой вариант установки обеспечивает высокий уровень безопасности.

Каждый такой отопительный прибор в верхней точке должен иметь . Он нужен для стравливания воздуха из системы.

Достоинства и недостатки

К достоинствам можно отнести простую конструкцию и несложный расчет, доступность материалов. Все это вместе позволяет делать регистры для отопления своими руками.

Следующий положительный моментбольшая часть тепла передается при помощи лучистой энергии, а она воспринимается человеком, как более приятная.

Следующий плюс — гладкая поверхность, что обеспечивает легкую уборку.

Отличное качество — совместимость с любыми системами — и с естественной и с принудительной циркуляцией.

Минусы тоже имеются: небольшая теплоотдача, подверженность коррозии, не самый привлекательный внешний вид, необходимость регулярной окраски ().

Итоги

Регистровое отопление в частных домах сегодня используют нечасто: есть большой выбор отопительных приборов для разных условий. Диапазон цен тоже достаточно широк. Но регистры из гладких труб и труб с оребрением часто используют для обогрева производственных, складских и вспомогательных помещений, теплиц, гаражей, оранжерей и др. То есть там, где внешняя привлекательность не имеет значения.

Регистр отопительной системы представляет собой прибор, изготовленный из гладкостенных трубопроводов. По своим конструктивным особенностям регистр послужил основой для большинства радиаторов. Очень часто данные устройства располагают в технических и промышленных помещениях. К тому же нередки случаи, когда их устанавливают в квартирах в составе автономных отопительных систем. Однако далеко не все знают, как провести расчет теплоотдачи регистра.

Основные виды и технические характеристики

Существует несколько основных разновидностей данных отопительных приборов. Регистры классифицируют по способу монтажа, форме исполнения и материалу. Поэтому перед тем как произвести расчет регистров из гладких труб для отопления, рассмотрим более подробно каждую группу данных устройств.

По форме исполнения

  1. Секционные регистры. Такие теплообменники изготавливают из одного или нескольких гладкостенных трубопроводов диаметром от 25 до 400 мм, соединяемых между собой патрубками и закрываемых заглушками. Теплоноситель через патрубок поступает в верхнюю секцию, а в следующую секцию перетекает на противоположном конце и т. д.
  2. Змеевиковые (S-образные) устройства - трубопроводы соединяются дугами, в результате получается сплошная труба. Подобная форма позволяет задействовать поверхность прибора в целом, что увеличивает эффективную площадь теплообменника. Ниже рассмотрим, как выполнить расчет теплоотдачи регистра из гладких труб.

По способу монтажа

Регистры для отопительных систем делят на переносные и стационарные. Переносные или мобильные устройства, как правило, используют в помещениях, где требуется временная поддержка заданной температуры до устройства основной системы обогрева. К примеру, при возведении нового здания или при проведении ремонтных работ в гараже. В таких системах в качестве теплоносителя используются антифризы или а энергия тепла генерируется посредством электрических ТЭНов.

По материалу

  1. Стальные наиболее популярный вид приборов, изготовленных из стали. Также стоит обратить внимание, что сталь является довольно прочным материалом. Отлично сваривается и при этом обладает хорошей теплопроводностью.
  2. Чугунные устройства. В настоящее время наиболее популярны регистры из чугунных трубопроводов. Но, несмотря на невысокую стоимость, данный материал довольно хрупкий и неустойчивый к механическим повреждениям. Кроме того, чугун плохо сваривается, что затрудняет монтаж.
  3. Алюминиевые регистры. По популярности данные устройства немного уступают регистрам из стальных труб. При этом они обладают рядом преимуществ: привлекательно выглядят, мало весят, хорошо отдают тепло и устойчивы к коррозии. Главный и единственный недостаток алюминиевых регистров - высокая цена.

Расчет теплоотдачи: основные моменты

В процессе монтажа отопительной системы многих интересует расчет регистров из гладких труб. Как расчитать, чтобы их не было чересчур много (будет очень жарко) или слишком мало (будет прохладно)?

  1. Для частного дома или квартиры нет необходимости рассчитывать точную цифру, так как в данном случае неважно конкретное значение температуры. Важно, чтобы температурный режим был оптимальным.
  2. Наиболее простой расчет: на 2 м 2 должна приходиться одна секция (чугун или алюминий), на 1,5 м 2 - одна секция (биметалл).
  3. В случае если потолок более 3 метров, следует добавить одну секцию. При наличии балкона также добавляется одна или две секции, в зависимости от того, утеплен балкон или нет. Добавляется секция, если комната угловая.
  4. Так как температура подачи теплоносителя регулируется для квартир допускается выполнять расчет теплоотдачи регистра независимо от климата.
  5. В частных домах данный расчет не подходит в связи с тем, что в систему поступает слишком Это дает сильный перегрев, если строение располагается в теплых регионах.
  6. Помимо этого расчет теплоотдачи регистра отопления можно выполнить при помощи онлайн-калькуляторов. Для этого потребуется ввести некоторые данные, а затем программа рассчитает требуемое количество труб.

Методика расчета

При выборе данного устройства важно правильно выбрать диаметр трубопроводов, из которых будет выполнен регистр. Наиболее оптимальный диаметр - 32 мм, но допускается устанавливать регистры и другого диаметра, но не более 80 мм. Если диаметр будет более 80 мм, то может попросту не хватить мощности отопительной системы на прогрев такого устройства, так как котел не сможет подать необходимый объем теплоносителя.

Чтобы правильно выбрать данный сантехнический элемент и выполнить расчет теплоотдачи регистра, следует взять во внимание следующие факторы:

  • Материал, из которого изготовлено строение.
  • Толщина стен.
  • Количество оконных и дверных проемов.

Выполняя расчет теплоотдачи регистра, необходимо знать величину теплоотдачи одного погонного метра трубопровода. К примеру, один погонный метр трубопровода диаметром 60 мм может обогреть 1м 2 помещения высотой не более 3 метров.

В таблице, представленной ниже, указан примерный расчет теплоотдачи регистра в зависимости от диаметра трубопроводов.

В таблице приведены данные при высоте потолка не более 3 метров. Другими словами, чтобы обогреть 60 м 2 потребуется 87 метров трубопровода диаметром 40 мм либо 44 метра диаметром 89 мм. После проведения расчетов необходимо сделать чертежи. Также нужно будет обдумать все нюансы размещения регистра в помещении.

Монтаж регистров

При монтаже регистров наиболее дорогостоящими являются сварочные работы, которые в результате станут определяющим фактором при выборе между радиатором и регистром. Однако можно обойтись и без них. Стыки в таком случае соединяются с помощью которые, несмотря на то что несколько уступают соединениям на сварке, способны также прослужить довольно продолжительное время.

В процессе монтажа данных устройств необходимо соблюдать небольшой уклон (0,05‰) по направлению движения теплоносителя.

Заключение

Итак, подводя итоги, стоит отметить, что регистры способны конкурировать с другими разновидностями отопительных приборов. Подбирать наиболее оптимальную конфигурацию устройства следует индивидуально для каждого конкретного случая, с учетом личных пожеланий и особенностей помещения. Однако изготовление отопительных регистров, а также их установку желательно все же доверить профессионалам.

Представляют собой конструкцию из трубопроводов, соединенных между собой перпендикулярными трубами (). Такие приборы широко применяются для промышленных помещений, обогрева организаций, гаражей, складов. Использование таких конструкций для квартир и домов применяется намного реже и только в случае с автономным отоплением.

Одним из самых главных вопросов связанных с установкой системы отопления является вопрос, как рассчитать количество регистров отопления.

От правильных вычислений зависит дальнейшая работа системы. Неправильный подбор может повлечь за собой слабый обогрев помещения, либо перерасход источника отопления.

Основные правила расчета

При использовании трубопроводов с большими диаметрами следует избегать выбора труб более чем 80 мм. Это обусловлено работой котла, который не способен подавать необходимой количество воды в систему для должного обогрева помещения.

Один из самых простых способов расчета таков: устанавливать одну секцию трубопровода регистра для двух квадратных метров. Такой вариант не является точным, расчет достаточно приблизительный, необходимо учитывать возможные теплопотери в помещении.

Для этого определяется:

  • Количество окон и дверей, материал изготовления.
  • Толщина стен и материал изготовления.
  • Нахождение помещения на углу (две или более стены выходят на улицу).
  • Учет наличия балкона или лоджии.
  • Высота потолков.

Учет всех параметров позволит максимально точно подобрать нужное количество регистров для помещения, что обеспечит максимально комфортные температурные условия в любое время года. При необходимости к прибору отопления сваривают дополнительный регистр.

Расчеты по площади

Расчет регистров отопления по площади помещения основывается на показателях теплоотдачи труб.

На трубопровод с сечением 60 мм с длиной в метр приходится один квадратный метр обогреваемого помещения. Расчет ведется для комнат с высотой потолка не превышающих 3 м.

Для коттеджей и частных домов профессионалы рекомендуют придерживаться расчета, где теплопотери помещения делятся на теплоотдачу одного регистра. Такой подход позволяет минимизировать погрешность в расчетах, применить расход теплоносителя в регистре отопления, сделать систему отопления эффективной.

Монтаж оборудования

Регистр, соединенный сваркой

Для установки требуется проведение сварочных работ. Этот момент вызывает некоторую сложность.

При правильно выполненных и качественных элементах выполнение сварки значительно упрощается. При возможности части регистра свариваются вне помещения.

Принято придерживаться при установке трубопровода правила с наклоном регистра на 0,05% по стороне тока воды в системе. Такой метод позволяет эффективно подавать тепло для помещения.

Как проверить герметичность сваренного регистра: можно закрыть нижнее соединение у трубы. После этого полость заполняют водой. Необходимо тщательно осмотреть все стыки на наличие подтеков. Если вода проступает, то требует повторная сварка.

Теплоноситель сливается и проводится работа. После завершения сварки обработанные места зачищаются и окрашиваются.

Надеемся, что материал статьи был вам полезен. Будем благодарны, если поделитесь ей в социальных сетях.

Хорошего вам дня!

Читайте также:


Расчет циркуляционного насоса для отопления: формула, нюансы Расчет мощности котла отопления — нюансы

Многие программисты 1С никогда не сталкивались в своей практике с компонентой «Расчет»,поэтому, когда им приходится сдавать экзамены на Специалиста по Платформе 8.0, где в каждомзадании есть задача по сложным периодическим расчетам, возникают сложности, прежде всего сложности понимания.

Попробуем разобраться с этой компонентой в 8.0. Вместо того чтобы решать различные задачи на расчет попробуем разобраться с этой компонентой так, чтобы можно было решить любую задачу по расчету. Изучив это пособие, вы поймете, как устроены иработают регистры расчета.

Для примера будем использовать каркасную конфигурацию, устанавливаемую на экзаменах.

Честно говоря, я долго пытался придумать, для чего еще нужны расчеты, но не придумал, поэтому будем рассматривать задачу расчета зарплаты.

Что такое расчеты

В принципе, конечный продукт расчета зарплаты - это набор записей регистра расчета вида:

Сотрудник

Период

Вид расчета

Результат

Данные

Комментарий

Измерение

Служебный

Служебный

Реквизит

Значение в колонке «Данные» отражают базовый оклад работника (согласно трудового договора), но эта сумма может быть увеличена премиями, уменьшена штрафами и невыходами и т.п., поэтому реальная сумма к выплате заносится после выполнения расчета в колонку «Результат». В этом и заключается расчет. Сумма по колонке «Ресурс» для данного сотрудника - причитающаяся ему зарплата.

Таким образом регистр расчета - по сути набор записей, по структуре похож на оборотный регистр накопления. Просто для выполнения сложных расчетов для него указываются дополнительные настройки, которые позволяют затем строить много виртуальных таблиц для регистра расчета, хотя, по сути этот регистр - просто набор записей, указанных на рисунке.

Каждая запись регистра расчетов относится к определенному виду расчета и периоду времени.

Виды расчетов

Каждая запись видов расчета имеет служебный реквизит - вид расчетов.

Вид расчетов можно представлять себе как элемент особого справочника типа «План видов расчетов» - он также имеет реквизиты, табличные части, предопределенные и заведенные пользователем элементы. В системе может быть несколько таких «справочников».

Для примера заведем план видов расчета Основной и в нем предопределенные виды расчета оклад , премия , невыход , командировка .

Виды расчета используются функционально для того, чтобы отразить влияние записей регистра расчета друг на друга. Но сокращенно говорят о влиянии видов расчета друг на друга:

Вид расчета

Описание

Пример

По базовому периоду

Результат расчета зависимого периода зависит от результата базового периода. Если результат базового периода изменится, то результат зависимого периода нужно пересчитать.

Премия зависит по базовому периоду от оклада.

Вытеснение по периоду

Период действия зависимого периода вытесняет период действия базового периода, таким образом у базового периода появляется фактический

Невыход влияет на фактический период действия оклада.

Ведущие расчеты

Расчет зависит от ведущего расчета, но не прямо а косвенно, т.е. расчет А зависит от базового расчета Б, а расчет Б зависит от базового расчета В, следовательно А косвенно зависит от В, т.е. А зависит от ведущего расчета В. В самом деле, при изменении расчета В может измениться Б и следовательно может измениться А. Система автоматически не отслеживает такие сложные зависимости, поэтому нужно указывать какие расчеты являются ведущими.

Премия зависит по базе от оклада, но также косвенно зависит и от невыхода.

В силу подобного влияния, период действия записи регистра расчетов делится на четыре периода:

Период

Описание

Период регистрации

В каком периоде зарегистрировано событие, т.е. обычно когда введен документ.

Период действия

В каком периоде действует событие, т.е. к какому периоду относится событие.

Базовый период

Имеет смысл только для периодов, имеющих базовый период - описывает интервал базового периода.

Фактический период действия

Если период действия вытесняется другими видами расчетов, то фактический период действия состоит из нескольких периодов, когда этот вид расчета фактически действует.

Период регистрации задается одним числом - началом периода, соответствующим периодичности регистра расчета. Даже если мы установим в это служебное поле другую дату, он все равно заменится на начало периода. Остальные периоды задаются двумя полями - началом и концом периода.Фактический период действия - это набор периодов, т.к. он может состоять из нескольких интервалов дат.

Графики времени

В системе имеется возможность связывать данные из регистров расчета с графиками времени, чтобы по любому периоду можно было получить количество рабочих часов.

График времени - это простой регистр сведений, одно измерение которого хранит дату, другое связывается с измерением регистром расчета, а один из ресурсов используется для учета времени.

Измерение, которое связывается с регистром расчета обычно носит смысл «вид графика».

Дата

Вид графика

Значение

11.01.05 пт

Пятидневка

11.01.05 пт

Шестидневка

12.01.05 сб

Пятидневка

12.01.05 сб

Шестидневка

Почему используется измерение дата, а не периодический регистр сведений? Все очень просто - если 11 января в пятницу по пятидневке у нас 8 рабочих часов, то это еще не значит, что на следующий день у нас будет опять же 8 рабочих часов. А ведь если бы мы использовали периодический регистр, значение на следующий день бралось бы из предыдущего дня при отсутствии записей.

Таким образом, имея определенный период (фактического действия, регистрации, базовый период и т.п.) мы можем автоматически получить количество часов за этот период по графику.

Перерасчет

Перерасчет чем-то напоминает границу последовательности. Так как у нас есть зависимые расчеты, то при изменении их базовых и ведущих расчетов система должна как-то отметить, что мы должны пересчитать зависимые расчеты.

Для этого и служат перерасчеты.

Если мы рассчитаем базовые записи, то система отметит в перерасчетах, что нам нужно рассчитать зависимые записи. Как только мы рассчитаем зависимые записи, перерасчеты очистятся.

По сути перерасчеты - это список записей регистра расчета, которые нужно перерасчитать .

Если в перерасчетах не заводить ни одного измерения, то при изменении базовых расчетов в список перерасчета занесутся все зависимые записи.

Если мы заведем измерение «Сотрудник» в перерасчете, то при изменении базового расчета по сотруднику в перерасчеты добавятся зависимые записи только по этому сотруднику.

Практическое задание

Достаточно теории. Попробуем изучить детали на практике. За основу возьмем каркасную конфигурацию.

Постановка задачи:

Пусть премия задается фиксированным процентом к окладу (за вычетом невыходов и командировочных).

Командировочные пусть оплачиваются в двойном окладе + фиксированная сумма выплат за каждый день командировки.

Пусть за невыходы с сотрудника взымается штраф в размере половины оклада за период невыхода.

Ход выполнения:

Начальная подготовка

Создадим новый план видов расчета «Основной».

Определим виды расчета и зависимости между ними:

Базовые

Вытесняющие

Ведущие

Оклад

Невыход, Командировка

Премия

Невыход, Командировка

Оклад, Невыход, Командировка

Командировка

Невыход

Занесем эти виды расчета в план видов расчета «Основной» и в свойствахвидов расчета поставим зависимости согласно таблице.

В регистре расчета зарплаты сделаем измерение «Сотрудник» типа «ФизическиеЛица » - чтобы в регистре был разрез аналитики по сотрудникам.

В конфигурации уже имеется документ «Начисление зарплаты».

В нем две даты в шапке - «дата» и «период регистрации», а также по две даты «дата начала» и «датаконца » в каждой строчке.

Подразумевается что дата - это просто дата оформления документа, период регистрации указывает, за какой месяц мы считаем зарплату, а даты в каждой строке описывают период действия каждого вида расчета.

Добавим в модуль документа первоначальную установку реквизита «Данные» - в него будем заносить начальный оклад, установку периода регистрации, периода действия и базового периода.

Модуль документа будет выглядеть примерно так:

Для К аждого ТекСтрокаСписок Из Список Цикл

// регистр Расчеты

Движение = Движения.Р асчеты.Добавить ();

Движение.С торно = Ложь;

Движение.В идРасчета = ТекСтрокаСписок.ВидРасчета ;

Движение.П ериодДействияНачало = НачалоДня (ТекСтрокаСписок.ДатаНачала );

Движение.П ериодДействияКонец = КонецДня ();

Движение.П ериодРегистрации = ПериодРегистрации ;

Движение.Б азовыйПериодНачало = НачалоДня (ТекСтрокаСписок.ДатаНачала );

Движение.Б азовыйПериодКонец = КонецДня (ТекСтрокаСписок.ДатаОкончания );

Движение.С отрудник = ТекСтрокаСписок.Сотрудник ;

Движение.Г рафикРаботы = ТекСтрокаСписок.График ;

Движение.Р езультат = 0;

Движение.Д анные = ТекСтрокаСписок.Размер ;

КонецЦикла ;

Реквизит Сторно нужен чтобы сторнировать записи (аналог минуса).

Проставляем вид расчета, даты приводим к началу и концу дня. Конечно базовый период можно проставлять только у зависимых по базе видов расчета, а Данные можно проставлять только у оклада, но и так все работает.

Все документы датировать будем 20.01.2003, период регистрации будем ставить 02.01.2003 (специально указываю не начальные и конечные данные, здесь это неважно, все равно при записи в ПериодРегистрации преобразуется в начало периода 01.01.2003). Январь 2003 года используем, потому что за этот период заполнены графики работ.

Заведем перерасчет «Перерасчет», добавим в него измерение «Сотрудник», связанное с измерением «Сотрудник».

Играем с Перерасчетами.

Для игры откроем консоль запроса - обработка «ПроизовльныйЗапрос » в каркасной конфигурации. Создадим новый запрос конструктором запроса, добавим туда виртуальную таблицу Перерасчеты.Р асчеты.Перерасчет , текст запроса будет таким:

ВЫБРАТЬ

РасчетыПерерасчет.О бъектПерерасчета ,

РасчетыПерерасчет.В идРасчета ,

РасчетыПерерасчет.С отрудник

ИЗ

РегистрРасчета.Р асчеты.Перерасчет КАК РасчетыПерерасчет

Сформируем три документа - первым начислим оклад сотрудникам А и Б. Сотрудник А работает с 1 по 31 января, Б работает с 1 по 20 января. Вторым начислим премию сотруднику Б за период с 1 по 31 января, третьим назначим невыход сотруднику А с 20 по 25 января.

Играем с Фактическим периодом действия.

Создадим новый запрос - на этот раз в него добавим данные таблицы РегистрыРасчета.Р асчеты.ФактическийПериодДействия .

Сформируем запрос и увидим, что сотруднику А период действия оклада разбит на два периода - с 1 по 19 и с 26 по 31 января. Надеюсь вам понятно, что период был разбит на два, т.к. невыход вытеснил оклад.

Думаю, механизмы работы регистра расчета проясняются на глазах.

Изучаем графики.

Теперь попробуем начислить зарплату по окладу сотрудника.

Создадим новый запрос по регистру расчета используя виртуальную таблицу РегистрыРасчета.Р асчеты.ДанныеГрафика . У этой виртуальной таблицы можно задать параметр - условие отбора записей, например Сотрудник=&ВыбСотрудник и ВидРасчета=&ВидРасчета и График=&ВидГрафика .

Зададим в параметрах запроса конкретных сотрудников, виды расчета и графиков и посмотрим, сколько часов получается в результате.

Колонка результата

Значение

ЗначениеПериодДействия

На какой период действия в часах была запись в регистре.

ЗначениеФактическийПериодДействия

Сколько сотрудник фактически проработал в часах

ЗначениеБазовыйПериод

Для оклада смысла не имеет, для премии - количество рабочих часов в базовом периоде.

ЗначениеПериодРегистрации

Сколько рабочих часов в периоде регистрации (месяц январь)

Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная , правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.

Несмотря на современное разнообразие систем отопления различных типов, лидером по по пулярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто , батареи стоят под окнами и обеспечивают т ребуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты , основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее , можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.

Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов .

Кратко о существующих типах радиаторов отопления

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.

Стальные радиаторы

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударахсварные соединения листов иногда дают при этом течь . Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Чугунные радиаторы

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно .

Возможно, такие батареи МС -140— 500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу.Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.

Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Биметаллические радиаторы отопления

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Цены на популярные радиаторы отопления

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:

  • ТС – трубчатые стальные;
  • Чг – чугунные;
  • Ал – алюминиевые обычные;
  • АА – алюминиевые анодированные;
  • БМ – биметаллические.
Чг ТС Ал АА БМ
Давление максимальное (атмосфер)
рабочее 6-9 6-12 10-20 15-40 35
опрессовочное 12-15 9 15-30 25-75 57
разрушения 20-25 18-25 30-50 100 75
Ограничение по рН (водородному показателю) 6,5-9 6,5-9 7-8 6,5-9 6,5-9
Подверженность коррозии под воздействием:
кислорода нет да нет нет да
блуждающих токов нет да да нет да
электролитических пар нет слабое да нет слабое
Мощность секции при h=500 мм; Dt=70 ° , Вт 160 85 175-200 216,3 до 200
Гарантия, лет 10 1 3-10 30 3-10

Видео: рекомендации по выбору радиаторов отопления

Возможно, вас заинтересует информация о том, что собой представляет

Как рассчитать нужное количество секций радиатора отопления

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.

Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.

Самые простые способы расчета

Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр пл ощади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.

Q = S × 100

Q – требуемая теплоотдача от радиаторов отопления.

S – площадь обогреваемого помещения.

Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет :

N = Q / Qус

N – рассчитываемое количество секций.

Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.

Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.

Таблица секции

Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м ) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя из объема помещения. Для этого применяется усредненный показатель – 41 В т т епловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.

Q = S × h × 40 (34 )

где h – высота потолка над уровнем пола.

Дальнейший расчет – ничем не отличается от представленного выше.

Подробный расчет с учетом особенностей помещения

А теперь перейдем к более серьезным расчетам . Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем , подобные нюансы могут иметь весьма важное значение.

Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:

Q = S × 100 × А × В × С × D × Е × F × G × H × I × J

Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по по рядку:

А – количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А :

  • Одна внешняя стена – А = 1,0
  • Две внешних стены – А = 1,2
  • Три внешний стены – А = 1,3
  • Все четыре стены внешние – А = 1,4

В – ориентация помещения по сторонам света.

Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».

Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.

Отсюда – значения коэффициента В :

  • Комната выходит на север или восток – В = 1,1
  • Южная или западная комнаты – В = 1, то есть, может не учитываться.

С – коэффициент, учитывающий степень утепленности стен.

Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:

  • Средний уровень - стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1,0
  • Внешние стены не утеплены – С = 1,27
  • Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.

D – особенности климатических условий региона.

Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку » — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.

  • — 35 ° С и ниже – D= 1,5
  • — 25÷ — 35 ° С D= 1,3
  • до – 20 ° С D= 1,1
  • не ниже – 15 ° С D= 0,9
  • не ниже – 10 ° С D= 0,7

Е – коэффициент высоты потолков помещения.

Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е :

  • До 2,7 м Е = 1, 0
  • 2,8 3, 0 м Е = 1, 05
  • 3,1 3, 5 м Е = 1, 1
  • 3,6 4, 0 м Е = 1,15
  • Более 4,1 м – Е = 1,2

F– коэффициент, учитывающий тип помещения, расположенного выше

Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещениеF= 1,0
  • утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
  • отапливаемое помещение – F= 0,8

G– коэффициент учета типа установленных окон.

Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G :

Н – коэффициент пл ощади остекления помещения.

Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н :

  • Отношение менее 0,1 – Н = 0, 8
  • 0,11 ÷ 0,2 – Н = 0, 9
  • 0,21 ÷ 0,3 – Н = 1, 0
  • 0,31÷ 0,4 – Н = 1, 1
  • 0,41 ÷ 0,5 – Н = 1,2

I– коэффициент, учитывающий схему подключения радиаторов.

От того, как подключены радиаторы к трубам подачи и обратки , зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:

  • а – диагональное подключение, подача сверху, обратка снизу – I = 1,0
  • б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
  • в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
  • г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
  • д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
  • е – одностороннее нижнее подключение обратки и подачи – I = 1,28

J– коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J :

а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9

б – радиатор прикрыт сверху подоконником или полкой – J= 1,0

в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07

г – радиатор сверху прикрыт подоконником, а с фронтальной стороны части чно прикрыт декоративным кожухом – J= 1,12

д – радиатор полностью прикрыт декоративным кожухом– J= 1,2

⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.

После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.

Наверняка , многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.