Электрооборудование

Резистор школьный. Простая инструкция по применению резистора: для чего он нужен

Резистор школьный. Простая инструкция по применению резистора: для чего он нужен

Электрическая схема практически любого современного прибора имеет резисторы. Они могут быть разных видов. Их функции также разнообразны. Что такое резистор, следует знать каждому даже начинающему радиолюбителю. А также любому человеку, решившему самостоятельно отремонтировать какой-нибудь прибор или бытовую технику.

С английского резистор переводится как сопротивление. Это пассивный элемент цепи, который, благодаря своим свойствам, обеспечивает нужное напряжение и регулирует значение тока.

Чтобы понять, что такое резистор, следует обладать хотя бы самыми общими представлениями об электрике. Сопротивление измеряется в Омах. Оно связано зависимостью с напряжением и силой тока. Проводник обладает сопротивлением 1 Ом, если к концам его приложено напряжение 1 В, и по нему протекает ток силой в 1 А. Поэтому резистор является управлением другими параметрами электрической системы.

Поэтому такой элемент контролирует и ограничивает ток. В цепи резистор может делить напряжение. Характеристиками резистора являются величина номинального сопротивления и мощность, которая показывает, какое количество энергии он способен рассеять без перегрева.

Виды резисторов

Все резисторы разделяют на три большие группы. Они могут быть переменными, постоянными и подстроечными.


Сопротивление резистора постоянного типа существенно не меняется в зависимости от условий извне. Небольшие отклонения от номинального значения могут быть вызваны изменением температуры, внутренними шумами, а также скачками электричества.

Переменные резисторы могут произвольно менять сопротивление. Для этого прибор обычно имеет поворачивающуюся ручку или ползунок (например, в радиоприемнике - регулятор силы звука). Он позволяет плавно менять параметры цепи.

Подстроечный резистор имеет винт со шлицом для регулировки тока в цепи. Его характеристики меняют довольно редко.

Полупроводниковые резисторы

Существуют резисторы, которые меняют свои свойства под воздействием окружающей среды. К ним относятся терморезисторы, варисторы и фоторезисторы. Сопротивление резистора подобного типа меняется только под воздействием определенных факторов.

Терморезистор уменьшает или увеличивает свое сопротивление при увеличении температуры. Это свойство используют в некоторых видах приборов, например, в саморегулирующихся обогревательных кабелях для водопроводов, труб.

Варисторы уменьшают свою проводимость тока при увеличении напряжения. Их применяют для защиты, стабилизации и регулировки электрических величин.

Фоторезисторы реагируют на солнечный свет или на электромагнитное излучение. Чаще всего используют подобные устройства с положительным фотоэффектом. При попадании на него излучения резистор уменьшает свою силу сопротивления. Такие элементы часто применяют в датчиках, реле, счетчиках.

Резистор в цепи является пассивным элементом. Он не накапливает, а поглощает энергию таких двух составляющих, как сила тока и напряжение.

Резистор не меняет параметры в зависимости от частоты протекающего через него тока. Он одинаково работает как в цепи постоянного, так и переменного тока низкой и высокой частотности. Единственным исключением считаются проволочные разновидности, которые обладают индуктивностью.

Резистор - линейный элемент. В зависимости от типа соединения в цепи различают параллельные и последовательные резисторы. Их суммарное сопротивление при последовательном соединении равняется их сумме.

Несколько сложнее производится расчет второго типа соединения. Параллельные резисторы суммируют по величинам обратно пропорциональных сопротивлению. Эти величины еще называют проводимостью.

Все элементы сопротивления электрической системы, выпускаемые по ГОСТу, объединяются в серии. Они составляют номинальный ряд, который увеличивается путем умножения исходного показателя на 1, 10, 100, 1 кОм, 10 кОм и т. д. Если в ряду есть значения 3, 5, то продолжение ряда считается в десятках - 35, в сотнях - 350.

Номиналы резисторов в пределах ряда по количеству серий отвечают типу точности, выбранной производителем. Самая популярная серия Е24 включает в себя 24 базовых показателя сопротивления резистора. Ее точность - ±5%.

Обозначение номиналов резисторов в схеме имеет определенный вид. Так, если сопротивление рассчитано в Омах, то за числом может стоять буква Е или вообще ничего. Если же значение указано в килоомах, то за ним может стоять буква к. Число сопротивления в МОм обозначения имеет букву М.

Маркировка

Резисторы с малой мощностью имеют и небольшие габариты.

А в современной технике используют чаще всего именно такие приборы. Обозначение резисторов можно нанести на корпус, только прочитать его будет крайне тяжело.

Чтобы хоть как-то сократить надпись, стали применять буквенные обозначения, которые ставят сзади числа для десятичных значений и впереди числа для сотен.

Американские резисторы маркируют тремя цифрами. Первые две из них обозначают номиналы резисторов, а третья - количество нулей десятков, добавляемых к значению.

Однако в процессе производства нередки случаи, когда маркировка оказывается нанесенной на сторону, повернутую к плате. Поэтому используют и другие типы обозначений.

Цветовая маркировка

Чтобы свойства, присущие резистору, можно было определить со всех сторон, стали применять цветовую маркировку.

Резисторы с допустимым изменением параметров в 20% обозначают тремя линиями. Если это прибор средней точности (5-10% погрешность), используют всего 4 маркера. Самые точные экземпляры имеют обозначение резисторов в виде 5-6 полос.

Две первые из них соответствуют номиналу детали. Если полос четыре, то третья из них говорит о десятичном множителе первых двух полос. При этом четвертый маркер говорит о точности резистора.

Если полос всего пять, то третья из них - это третий знак сопротивления, четвертая - степень показателя, а пятая - точность. Шестая полоса указывает на температурный коэффициент сопротивления (ТКС).

Считают полосы с той стороны, где они ближе находятся к краю. Если это четырехполосные разновидности, последними всегда идут золотая или серебряная полосы.

Разновидности по технологии изготовления

Чтобы глубже вникнуть в вопрос, что такое резистор, следует рассмотреть его виды по способу производства.

Проволочные резисторы чаще всего имеют высокий уровень индуктивности. Их изготавливают путем намотки на каркас проволоки.

Пленочные металлические резисторы являются наиболее распространенным типом. На пластиковый сердечник наносится тонкая пленка из металла. На концы конструкции надеты колпачки, к которым подведены проволочные выводы. Ток в резисторе этого типа встречает большее сопротивление при прорезе в керамическом сердечнике винтовой канавки.

Металлофольговые экземпляры при производстве выполняют из тонкой ленты. Угольные резисторы используют сопротивление графита. Интегральные виды выполнены на основе слаболегированного проводника. Такие резисторы могут иметь большую нелинейность вольт-амперных показателей. Их применяют в интегральных микросхемах. В этом случае использовать резисторы другого вида не технологично или даже нереально.

Резисторы с низким ТКС и уровнем шумов

К резисторам с низким ТКС относятся углеродистые и бороуглеродистые разновидности.

Углеродистые резисторы работают на основе пленки пиролитического углерода. Они имеют повышенную стабильность параметров. Их небольшой ТКС имеет отрицательный характер. Резисторы стойкие к импульсным нагрузкам.

Бороуглеродистые разновидности имеют в слое проводника некоторое количество бора. Это позволяет максимально уменьшить ТКС.

Низкий уровень шумов имеют металлопленочные и металлоокисные резисторы. У них хорошая частотная характеристика и стойкость к температурным колебаниям. ТКС может быть как положительным, так и отрицательным.

Ознакомившись с понятием, что такое резистор, можно правильно выбрать и применять этот элемент электрической системы. Являясь одними из наиболее часто применяющихся, они встречаются практически во всех сферах деятельности человека. Их функции очень разнообразны. Существующие разновидности предоставляют широкий выбор подобных изделий. При этом, имея некоторое представление о их конструкции, можно будет выполнить ремонт практически любого прибора или бытовой техники.

Резистор (англ. resistor от лат. resisto — сопротивляюсь) —один из самых распространенных радиоэлементов. Даже в простом транзисторном приемнике число резисторов достигает нескольких десятков, а в современном теле-иизоре их не менее двух-трех сотен.

Резисторы используют в качестве нагрузочных и токоограничительных элементов, делителей напряжения, добавочных сопротивлений и шунтов в измерительных цепях и т. д.

Основным параметром резистора является сопротивление , характеризующее его способность препятствовать протеканию электрического тока. Сопротивление измеряется в омах, килоомах (тысяча Ом) и мегаомах (1 000000 Ом).

Постоянные резисторы

Вначале резисторы изображали на схемах в виде ломаной линии — меандра (рис. 1,а, б), которая обозначала высокоомный прокол, намотанный на изоляционный каркас. По мере усложнения радиоприборов число резисторов в них увеличивалось, и, чтобы облегчить начертание, их с шли изображать на схемах в виде зубчатой линии (рис. 1,в).

На смену этому символу пришел символ в виде прямоугольника (рис. 1,г), который стали применять для обозначения любого резистора, независимо от его конструкции и особенностей.

Рис. 1. Постойнные резисторы и их обозначение.

Постоянные резисторы могут иметь один или несколько отводов от резистивного элемента. На условном обозначении такого резиетора дополнительные выводы изображают в том же порядке, как это имеет место в самом резисторе (рис. 2). При большом числе отводов длину символа допускается увеличивать.

Рис. 2. Постоянные резисторы с отводами - обозначение.

Сопротивление постоянного резистора, как говорит само название, изменить невозможно. Поэтому, если в цепи требуется установить определенный ток или напряжение, то для этого приходится подбирать отдельные элементы цепи, которыми часто являются резисторы. Возле символов этих элементов на схемах ставят звездочку * — знак, говорящий о необходимости их подбора при настройке или регулировке.

Нимннальную мощность рассеяния резистора (от 0,05 до 5 Вт) обозначают специальными знаками, помещаемыми внутри символа (рис. 3). Заметим, мм ни таки не должны касаться контура условного обозначения резистора.


Рис. 3. Обозначение мощности резисторов.

На принципиальной схеме номинальное сопротивление резистора указывают рядом с условным обозначением (рис. 4). Согласно ГОСТ 2.702—7S сопротивлении от 0 до 999 Ом указывают числом без единицы измерения (2,2; 33, 120...), от 1 до 999 кОм — числом с бумвой к (47 к, 220 к, 910к и т. д.),свыше 1 мегаома — числом с буквой М (1 М, 3,6М и т. д.).


Рис. 4. Обозначение сопротивления для резисторов на схемах.

На резисторах отечественного производства номинальное сопротивление, допускаемое отклонение от него, а если позволяют размеры, и номинальную мощность рассеяния указывают в виде полного или сокращенного (кодированного) обозначения.

Согласно ГОСТ 11076—69 единицы сопротивления в кодированной системе обозначают буквами Е (ом), К (килоом) и М (мегаом). Так, резисторы сопротивлением 47 Ом маркируют 47Е, 75 Ом —75Е, 12 кОм — 12К, 82 кОм —82К и т. д.

Сопротивления от 100 до 1000 Ом и от 100 до 1000 кОм выражают в долях килоома и мегаома соответственно, причем на месте нуля и запятой ставят соответствующую единицу измерения:

  • 180 Ом = 0,18 кОм = К18;
  • 910 Ом = 0,91 кОм = К91;
  • 150 к0м = 0,15 МОм = М15;
  • 680 к0м = 0,68 МОм = М68 и т. д.

Если же номинальное сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой: 2,2 Ом — 2Е2; 5,1 кОм —5К1; 3,3 МОм — ЗМЗ и т. д.

Кодированные буквенные обозначения установлены и для допускаемых отклонений сопротивления от номинального. Допускаемому отклонению ±1% -соответствует буква Р, ±2%—Л, ±5%—И, ±10% —С, ±20%—В. Таким образом, надпись на корпусе резистора К75И обозначает номинальное сопротивление 750 Ом с допускаемым отклонением ±5%; надпись МЗЗВ — 330 кОм ±20% и т. д.

Переменные резисторы

Переменные резисторы , как правило, имеют минимум три вывода: от концов токопроводящего элемента и от щеточного контакта, который может перемещаться по нему. С целью уменьшения размеров и упрощения конструкции токопроводящий элемент обычно выполняют в виде незамкнутого кольца, а щеточный контакт закрепляют на валике, ось которого проходит через его центр.

Таким образом, при вращении валика контакт перемещается по поверхности токопроводящего элемента, в результате сопротивление между ним и крайними выводами изменяется.

В непроволочных переменных резисторах обладающий сопротивлением то-копроводящий слой нанесен на подковообразную пластинку из гетинакса или текстолита (резисторы СП, СПЗ-4) или впрессован в дугообразную канавку керамического основания (резисторы СПО).

В проволочных резисторах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе. Для надежного соединения между обмоткой и подвижным контактом провод зачищают на глубину до четверти его диаметра, а в некоторых случаях и полируют.

Существуют две схемы включения переменных резисторов в электрическую цепь. В одном случае их используют для регулирования тока в цепи, и тогда регулируемый резистор называют реостатом, в другом — для регулирования напряжения, тогда его называют потенциометром. Показанное на рис. 5 условное графическое обозначение используют, когда необходимо изобразить реостат в общем виде.

Для регулирования тока в цепи переменный резистор можно включить диумя выводами: от щеточного контакта и одного из концов токопроводящего элемента (рис. 6,а). Однако такое включение не всегда допустимо.


Рис. 5. Реостаты и переменные резисторы - условное обозначение.

Если, например, в процессе регулирования случайно нарушится соединение щеточного контакта с токопроводящим элементом, электрическая цепь ока-1 жется разомкнутой, а это может явиться причиной повреждения при

бора. Чтобы исключить такую возможность, второй вывод токопроводящего элемента соединяют с выводом щеточного контакта (рис. 6,б). В этом случае даже при нарушении соединения электрическая цепь не будет разомкнута.

Общее обозначение потенциометра (рис. 6,в) отличается от символа реостата без разрыва цепи только отсутствием соединения выводов между собой.


Рис. 6. Обозначение потенциометра на принципиальных схемах.

К переменным резисторам, применяемым в радиоэлектронной аппаратуре, часто предъявляются требования по характеру изменения сопротивления при повороте их оси.

Так, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между выводом щеточного контакта и правым (если смотреть со стороны этого контакта) выводом токопроводящего элемента изменялось по показательному (обратному логарифмическому) закону.

Только в этом случае наше ухо воспринимает равномерное увеличение громкости при малых и больших уровнях сигнала. В измерительных генераторах сигналов звуковой частоты, где в качестве частотозадающих элементов часто используют переменные резисторы, также желательно, чтобы их сопротивление изменялось по логарифмическому или показательному закону.

Если это условие не выполнить, шкала генератора получается неравномерной, что затрудняет точную установку частоты.

Промышленность выпускает непроволочные переменные резисторы, в основном, трех групп:

  • А — с линейной,
  • Б — с логарифмической,
  • В — с обратно-логарифмической зависимостью сопротивления между правым и средним выводами от угла поворота оси ф (рис. 47,а).

Резисторы группы А используют в радиотехнике наиболее широко, поэтому характеристику изменения их сопротивления на схемах обычно не указывают. Если же переменный резистор нелинейный (например, логарифмический) и это необходимо указать на схеме, символ резистора перечеркивают знаком нелинейного регулирования, возле которого (внизу) помещают соответствующую математическую запись закона изменения.


Рис. 7. Переменный резистор с обратно-логарифмической зависимостью сопротивления.

Резисторы групп Б и В конструктивно отличаются от резисторов группы А только токопроводящим элементом: на подковку таких резисторов наносят токопроводящий слой с удельным сопротивлением, меняющимся по ее длине. В проволочных резисторах форму каркаса выбирают такой, чтобы длина витка высокоомного провода менялась по соответствующему закону (рис. 7,6).

Регулируемые резисторы

Регулируемые резисторы - резисторы, сопротивление которых можно изменять в определенных пределах, применяют в качестве регуляторов усиления, громкости, тембра и т. д. Общее обозначение такого резистора состоит из базового символа и знака регулирования, причем независимо от положения символа на схеме стрелку, обозначающую регулирование, проводят в направлении снизу вверх под углом 45 градусов.

Регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы . Кому из владельцев радиоприемника или магнитофона не приходилось после двух-трех лет эксплуатации слышать шорохи п треоки из громкоговорителя при регулировании громкости.

Причина этого неприятного явления — в нарушении контакта щетки с токопроводящим слоем или износ последнего. Поэтому, если основным требованием к переменному резистору является повышенная надежность, применяют резисторы со ступенчатым регулированием.

Такой резистор может быть выполнен на базе переключателя на несколько положений, к контактам которого подключены ре-, зисторы постоянного сопротивления. На схемах эти подробности не показывают, ограничиваясь изображением символа регулируемого резистора со знаком ступенчатого регулирования, а если необходимо, указывают и число ступеней (рис. 8).

Рис. 8. Изображение символа регулируемого резистора со знаком ступенчатого регулирования.

Некоторые переменные резисторы изготовляют с одним, двумя и даже с тремя отводами. Такие резисторы применяют, например, в тонкомпенсиро-ванных регуляторах громкости, используемых в высококачественной звуковоспроизводящей аппаратуре. Отводы изображают в виде линий, отходящих от длинной стороны основного символа (рис. 9).

Рис. 9. Обозначение переменного резистора с отводами.

Для регулирования громкости, тембра, уровня записи в стереофонической аппаратуре, частоты в измерительных генераторах сигналов и т. д. применяют сдвоенные переменные резисторы, сопротивления которых изменяются одновременно при повороте общей оси (или перемещении движка). На схемах символы входящих в них резисторов стараются расположить возможно ближе друг к другу, а механическую связь показывают либо двумя сплошными линиями, либо одной штриховой (рис. 10,а).


Рис. 10. Внешний вид и обозначение блоков с переменными резисторами.

Если же сделать этого не удается, т. е. символы резисторов оказываются на большом удалении один от другого, механическую связь изображают отрезками штриховой линии (рис. 10,6). Принадлежность резисторов к одному сдвоенному блоку показывают в этом случае и в позиционном обозначении (R1.1—первый — по схеме — резистор сдвоенного переменного резистора R1, R1.2 — второй).

Встречаются и такие сдвоенные переменные резисторы, в которых каждым резистором можно управлять отдельно (ось одного проходит внутри трубчатой оси другого). Механической связи, обеспечивающей одновременное изменение сопротивлений обоих резисторов, в этом случае нет, поэтому и на схемах ее не показывают (принадлежность к сдвоенному резистору указывают только в позиционном обозначении).

В бытовой радиоаппаратуре часто применяют переменные резисторы, объединенные с одним или двумя выключателями. Символы их контактов размещают на схемах рядом с обозначением переменного резистора и соединяют штриховой линией с жирной точкой, которую изображают с той стороны прямоугольника, при перемещении к которой узел щеточного контакта (движок) воздействует на выключатель (рис. 11,а).


Рис. 11. Обозначение переменного резистора совмещенного с переключателем.

При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней. В случае, если символы резистора и выключателя удалены один от другого, механическую связь показывают отрезками штриховых линий (рис. 11,6).

Подстроечные резисторы

Подстроечные резисторы — разновидность переменных. Узел щеточного контакта таких резисторов приспособлен для управления отверткой. Условное обозначение подстроечного резистора (рис. 12) наглядно отражает его назначение: это, по сути, постоянный резистор с отводом, положение которого можно изменять.


Рис. 12. Внешний вид и обозначение подстроечных резисторов.

Общее обозначение подстроечного резистора отличается тем, что вместо знака регулирования использован знак подстроечного регулирования.

Нелинейные резисторы

В радиотехнике, электронике и автоматике находят применение , изменяющие свое сопротивление поя действием внешних электричеоких или неэлектрических факторов: угольные столбы, варисторы, терморезисторы и tj д.

Угольный столб, представляющий собой пакет угольных шайб, изменяет свое сопротивление под действием механического усилия.


Рис. 13. Вид и обозначение нелинейных саморегулирующихся резисторов.

Для сжатия шайб обычно используют электромагнит. Изменяя напряжение на его обмйтке, можно в больших пределах изменять степень сжатия шайб и, следовательно, сопротивление угольного столба.

Используют такие резисторы в стабилизаторах и регуляторах напряжения. Условное обозначение угольного столба состоит из ба-зовцго символа резистора и знака нелинейного саморегулирования с буквой Р, которая символизирует механическое усилие — давление (рис. 13,а).

Терморезисторы , как говорит само название, характеризуются тем, что их сопротивление изменяется под действием температуры. Токопроводящие элементы этих резисторов изготовляют из полупроводниковых материалов.

Сопротивление терморезистора прямого подогрева изменяется за счет выделяющейся в нем мощности или при изменении температуры окружающей среды, а терморезистора косвенного подогрева — под действием тепла, выделяемого специальным подогревателем.

Зависимость сопротивления терморезисторов от температуры имеет нелинейный характер, поэтому на схемах их изображают в виде нелинейного резистора со знаком температуры —1° (рис. 13,6, в).

Знак температурного коэффициента сопротивления (положительный, если с увеличением температуры сопротивление терморезистора возрастает, и отрицательный, если оно уменьшается) указывают только в том случае, если он отрицательный (рис. 13,в).

В условное обозначение терморезистора косвенного подогрева кроме знака нелинейного регулирования входит символ подогревателя, напоминающий перевернутую латинскую букву U (рис. 13,г).

Нелинейные полупроводниковые резисторы, известные под названием варисторов , изменяют свое сопротивление при изменении приложенного к ним напряжения.

Существуют варисторы, у которых увеличение напряжения всего в 2—3 раза сопровождается уменьшением сопротивления в несколько десятков раз. На схемах их обозначают в виде нелинейного саморегулирующегося резистора с латинской буквой U (напряжение) у излома знака саморегулирования (рис. 13,3).

В системах автоматики широко используют фоторезисторы — полупроводниковые резисторы, изменяющие свое сопротивление под действием света. Условное графическое обозначение такого резистора состоит из базового символа, помещенного в круг (символ корпуса полупроводникового прибора), и знака фотоэлектрического эффекта — двух наклонных параллельных стрелок.

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

При создании радиоэлектронных схем применяется множество различных элементов. Одни из наиболее используемых, без которых практически невозможно обойтись, — это резисторы. Что они собой являют? Какие типы есть? Какой их параметр наиболее важен? И какие особенности есть при последовательном и параллельном соединении?

Что такое резистор?

Так называют пассивный элемент который оказывает сопротивление току во время его протекания. В больших схемах они применяются чаще, чем любой другой элемент электроники. Важным является обеспечение режима смещения транзисторов при использовании в усилительных каскадах. Но наиболее значимой функцией признают контроль и регулирование напряжения и значений токов в электрических цепях. Мы позднее рассмотрим, какие их типы бывают. В рамках статьи будет уделено внимание 5 основным, которые чаще всего используются, но могут быть и другие. Когда проводится расчет резисторов, то обязательно следует оценить, какая необходима мощность.

Хотите понять, что необходимо в конкретном случае?


Как узнать, какой резистор нужен при создании схем? Первоначально следует понять, что обязательным является знание силы тока или значение сопротивления нагрузки. В рамках статьи будет рассмотрено два варианта влияния на характеристики схемы:

1) Если ничего неизвестно, то берём и подключаем его последовательно с нагрузкой. Вращаем регулятор до того момента, пока у нас не будет нужное напряжение. Теперь вместо переменного сопротивления подключаем постоянное с необходимыми параметрами. Измерьте ток, что идёт после резистора и перемножает полученное значение с напряжением, что подаётся. Тогда будем знать, сколько и куда подавать.

2) Необходимо знать ранее указанные величины тока и нагрузки. Для повышения точности вычисления желательно также знать и значение источника питания.

Давайте смоделируем немного другие условия действий. Есть один резистор в качестве нагрузки, закон Ома и необходимость рассчитать необходимое для цепи сопротивление. Это довольно интересный момент и он заслуживает, чтобы ему было уделено внимание. Почему была выбрана именно такая формулировка? Дело в том, что люди, которые только начинают заниматься созданием схем, очень часто задают такой вопрос. Но, увы, цепь рассуждений, которой они идут, является немного неверной. Рассчитать необходимое значение с одним законом Ома здесь не выйдет. Необходимо дополнительно воспользоваться формулой вычисления добавочного резистора: СДБ = СН(НИП-НН)/НН=СН(х-1). Разберём формулу:

СДБ - сопротивление добавочного резистора;

НИП - напряжение источника питания;

СН - сопротивление нагрузки;

Х = НИП/НН;

НН - напряжение, что нужно получить на нагрузке.

Воспользуемся этой формулой. Допустим, что при сопротивлении в 1 Ом СДБ будет составлять 0,6 Ом. Если мы поставим 5 Ом, то конечный результат будет 3,3 Ом. Почему всё так? Это из-за того, что чем меньший показатель имеет сопротивление нагрузки, тем большая характеристика тока в цепи. При этом будет просаживаться источник питания, ведь он тоже создаёт определённые помехи для прохождения тока. А учитывая, что с этим будет падать и напряжение, то выходит, что нужен добавочный резистор с меньшими характеристиками для получения желаемого напряжения. Это напряжение буквально «на пальцах». Может быть сложно понять, что и как, но вы попробуйте.

Постоянный резистор


Так называют устройства, которые являются обладателями постоянного значения сопротивления. Эта характеристика резистора не меняется под действием внешних воздействий (температуры, протекающего тока, света, приложенного напряжения) в разумных рамках. Если так разобраться, то про все радиоэлементы можно сказать, что у них есть внутренние шумы и нестабильности из-за стороннего влияния. Но обычно это всё настолько ничтожно, что игнорируется любительской радиоэлектроникой и имеет смысл только при создании действительно сложных систем, которые даже не факт, что где-то собираются сейчас.

Переменный резистор


Так называют устройства, значение сопротивления которых можно изменить с помощью специальной ручки (она может быть ползункового, кнопочного или вращающегося типа). Зачем нужен резистор подобного типа? Хорошим примером применения данного элемента является на звуковых колонках компьютера или мобильного телефона.

Построечный резистор

Так называются устройства, режим работы которых меняется лишь изредка. Чтобы регулировать значения сопротивления, необходимо с помощью отвертки покрутить шлиц, который имеет резистор. Для чего он нужен? Широкое распространение они получили на печатных платах радиосхем в качестве делителя тока или напряжения.

Фоторезистор


Это специальные устройства, которые могут менять значение своего сопротивления под влиянием света. Фоторезисторы производятся из полупроводниковых материалов. Если необходимо реагировать на наличие видимого света, то применяют селенид и сульфид кадмия. Чтобы регистрировать инфракрасное излучение, используют германий.

Терморезистор

Это специальное устройство, с помощью которого можно измерять температуру внешней среды. Терморезистор также используется в цепях термостабилизации для транзисторных каскадов. Как уже можно было догадаться, его сопротивление может меняться под воздействием температуры. В инкубаторах для цыплят, оранжереях, производственных аппаратах — везде можно найти этот резистор. Для чего он нужен? Чтобы при достижении определенной температурной границы включались системы отопления\охлаждения.

Рассеиваемая мощность


Это поглощаемая резистором энергия, которая образовывается током и напряжением. Из-за того, что происходит именно рассеивание, а не сохранение, данное устройство и называется пассивным. Благодаря этому о резисторе можно говорить как об активном элементе, который одинаково может работать в цепях переменного и

Обозначение мощности рассеивания

Как понять, что может сделать постоянный резистор? Для этого необходимо посмотреть на его обозначение:

  1. Когда есть две косые линии, мощность рассеивания составляет 0,125 Вт.
  2. Есть одна косая линия — мощность рассеивания равняется 0,25 Вт.
  3. Одна горизонтальная линия — мощность рассеивания 0,5 Вт.
  4. Одна вертикальная линия — мощность рассеивания 1 Вт.
  5. Две вертикальные линии — мощность рассеивания 2 Вт.
  6. Две косые линии, что создают латинскую букву V, — мощность рассеивания 5 Вт.

Начиная от одного Ватта, для обозначения используются римские цифры.

Последовательное соединение

Когда имеет смысл применять подобный подход? Если надо получить значительное сопротивление, но есть резисторы с малым номиналом, то используют Чтобы оценить, что и как сделано в схеме, то нужно просуммировать их характеристики.

Параллельное соединение

А где необходим такой подход? Здесь общее сопротивление резисторов будет равняться сумме, которая является ему обратно пропорциональной. Эту величину также называют «проводимость». Вам может быть немного сложно понять, о чем автор ведёт речь, поэтому предлагаем взглянуть на такую формулу (С — сопротивление):

1/С общее =1/С 1 +1/С 2 +…+1/С х.

Применение


Вот мы и поняли, что такое резистор, для чего он нужен. Фото, размещённые в статье, позволяют понять, как он выглядит. Но хочется уделить внимание и его применению. Итак, резистор. Для чего он нужен в машине? Как вы знаете, в автомобилях используется значительное количество электроники. Вот для контроля её работы его и применяют. Для чего нужен резистор печки в автомобиле? Видели возможность переключения и настройки температурного режима? Вот для чего нужен резистор отопителя! Ведь без него можно было бы включить только заранее установленные настройки и всё. Теперь подумаем, зачем нужен резистор для светодиода? С его помощью можно регулировать яркость его свечения. Как вы могли догадаться, если внимательно читали статью, ответ на вопрос о том, какие резисторы нужны для светодиодов, — переменные!

Заключение

Как видите, резистор — это необходимая и полезная вещь, которая имеет широкие возможности применения. Теоретически обойтись без резистора можно в простейших схемах, на пару деталей, при том, что источники энергии будут очень точно выбраны. Но такое маловероятно, и для достижения необходимого значения этих показателей придётся длительное время подбирать их. Вот для упрощения процесса и применяются резисторы, ведь они позволяют проводить значительные перепады характеристик, открывая возможность даже кратного их изменения.

Резисторы являются наиболее распространенными элементами в электронных схемах. Они состоят обычно из изоляционного корпуса с выводами соединенными материалом с известным удельным сопротивлением (ρ)

Резисторы обычно имеют вид стержня, трубки, пленки для поверхностного монтажа или проволоки определенной длины (l) и сечения (А).

Поэтому сопротивление резистора можно выразить следующей формулой:

Резисторы (сопротивление) оказывают сопротивление току, протекающему через них. Резисторы используют в основном для получения конкретных значений тока, а также применяются в делителях напряжения. И так основное предназначение резистора – это противодействие протеканию тока. Это действие они оказывают как для постоянного, так и для переменного тока.

Что такое резистор

Резисторы производят, в основном, в виде трубок из фарфора или керамики с металлическими выводами на обоих концах. На поверхности трубок может быть нанесен, например, слой углерода (у углеродных резисторов) или даже очень тонкий слой драгоценного металла (у металлизированных резисторов).

Так же резистор может быть выполнен из проволоки с высоким удельным сопротивлением (проволочные резисторы).

Основным параметром резистора является его постоянное сопротивление. В области больших частот у резистора, помимо сопротивления, появляются такие характеристики, как емкость и . Эти параметры резистора можно представить в виде следующей модели:


  • R = сопротивление резистивного материала,
  • CL = собственная емкость резистора,
  • LR = индуктивность резистора,
  • LS = индуктивность его выводов.

Здесь видно, что резистор имеет помимо собственного сопротивления еще и составляющие индукции и емкости. При применении в цепях переменного тока эти характеристики играют роль реактивного сопротивления, который в сочетании с собственным сопротивлением создают дополнительное сопротивление в схеме, которое в некоторых случаях необходимо учитывать.

Основными параметрами резисторов являются:

  • Номинальное сопротивление — дано с учетом больших допустимых отклонений, содержащихся в диапазоне 0,1…20%.
  • Номинальная мощность – максимально допустимая мощность рассеивания.

Номинальное напряжение – равно наибольшему напряжению, которое не вызывает изменения в свойствах резистора, и, в частности его повреждения. Номинальные значения напряжений для большинства резисторов составляет от нескольких десятков до нескольких сотен вольт.

На основании размера резистивного слоя или сечения проволоки можно определить значение сопротивления. В электронных схемах, в основном, используются резисторы многослойные. В случае работы с большими значениями тока и мощности, используются проволочные резистор.

Резисторы многослойные металлизированные являются термически стабильными, они надежные в работе и имеют низкий уровень шума (важно в профессиональной электронике).

Единицей измерения сопротивления является Ом (символ омега), и в основном на схемах обозначается буквой – R.

Из закона Ома: сопротивление резистора в 1 Ом — это такое сопротивление, когда при напряжении на его выводах в 1 вольт через него протекает ток равный 1 амперу.

Номинальный ряд и цветовая маркировка резисторов

Большинство производимых в мире резисторов имеют сопротивление из так называемого номинального ряда (Е). Каждый из видов номинального ряда поделен на декады, и в каждой десятке есть 6 (ряд E6), 12(ряд E12), (ряд E24) 24 значения.

Эти значения в декаде подобраны так, что с учетом допуска, сопротивления двух соседних значений перекрывают друг друга, и благодаря этому вы можете подобрать любые промежуточные сопротивления.

Стандартные допуски сопротивления резисторов равны 5, 10 или 20%. Соседние значения пересекаются в следующих случаях:

  • для ряда E6 с 20% допуском,
  • для ряда E12 с 10% допуском,
  • для ряда Е24 с 5% допуском.

Величина сопротивления и отклонение отмечаются на резисторе в виде нескольких цветных колец (или точек). Первые цветные кольца (2 или 3) определяют значение в Ом, а последнее кольцо – допуск (отклонение).У небольших резисторов, как правило, величина сопротивления, допуск и температурный коэффициент (ТКС) иногда наносится с помощью 4…6 цветных полос. Более подробно о цветовой маркировки резисторов читайте .

В типоразмер и мощность резисторов

Как известно, напряжение, поданное на резистор, вызывает протекание в нем тока, а значит, на таком резисторе выделяется определенная часть мощности в виде тепла. Для исправного функционирования, это тепло резистор должен рассеивать в окружающее пространство. Эта его способность напрямую зависит его размеров.

Как ни крути, но если Вы не знаете обозначения элементов на схемах и вообще не знаете, что такое радиосхема, то Вы - не электронщик! Но это дело поправимо, не переживайте;-). Начинаю цикл статей про виды и обозначения на схемах радиоэлементов. Начнем с самого распространненого радиоэлемента - резистора .

Радиоэлемент "резистор" имеет важное свойство - сопротивление электрическому току. Резисторы бывают постоянными и переменными. В жизни постоянные резисторы могут выглядеть примерно вот так:



Слева мы видим резистор, который рассеивает очень большую мощность, поэтому он такой большой. Справа мы видим маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию. Про то, как определить сопротивление резистора, можно прочитать в статье Маркировка резисторов . А вот так выглядит постоянный резистор на электрических схемах:

Наше отечественное изображение резистора показывают прямоугольником (слева), а заморский вариант (справа), или как говорят - буржуйский, используется в иностранных радиосхемах.

А вот так выглядит маркировка мощности на них:


Переменные резисторы выглядят как-то так:



Переменный резистор, который управляет напряжением называется потенциометром , а тот, который управляет силой тока - реостатом. Здесь заложен принцип Делителя напряжения и Делителя тока соответственно.

Вот так обозначаются перменные резисторы на схемах:

Соответственно отечественный и зарубежный вариант.

А вот и их цоколевка (расположение выводов):





Переменники, у которых сопротивление можно менять только при помощи отвертки или шестигранного ключика, называются подстроечными переменными резисторами . У них есть специальные пазы, для регулировки сопротивления.



А вот так обозначаются подстроечные резисторы:



Чтобы включить его как реостат , нам нужно два вывода соединить вместе.

Также существуют и другие виды резисторов. Это могут быть термисторы, варисторы, фоторезисторы. Термисторы - это резисторы на основе полупроводниковых материалов. Их сопротивление резко зависит от температуры окружающей среды. Есть такой важный параметр, как ТКС - тепловой коэффициент сопротивления. Грубо говоря, этот коэффициент показывает на сколько изменится сопротивление термистора при изменении температуры окружающей среды. Этот коэффициент может быть как отрицательный, так и положительный. Если ТКС отрицательный, то такой термистор называют термистором:-), а если ТКС положительный, то такой термистор называют позистором. Какой еще нафиг ТКС, что к чему? Не замарачивайтесь, все просто:-). У термисторов при увеличении температуры окружающей среды сопротивление падает. У позисторов с увеличением температуры окружающей среды растет и сопротивление.

Так как термисторы обладают отрицательным коэффициентом (NTC - Negative Temperature Coefficient - отрицательный ТКС), а позисторы положительным коэффициентом (РТС - Positive Temperature Coefficient - положительный ТКС), то и на схемах они будут обозначаться соответствующим образом.



Есть также особый класс резисторов, которые резко изменяют свое сопротивление при увеличении напряжения - это варисторы.

Это свойство варисторов широко используют от защиты перенапряжений в цепи, а также от импульсных скачков напряжения. Допустим у нас скаканула напруга, при этом также сразу же резко уменьшилось сопротивление варистора. Весь электрический ток сразу же начнет протекать через варистор, тем самым защищая основую цепь радиоэлектронного устройства. На схемах варисторы обозначаются вот таким образом:

Большой популярностью также пользуются Фоторезисторы . Весь прикол заключается в том, что они изменяют свое сопротивление, если на них посветить. В этих целях можно применять как солнечный свет, так и искусственный, например от фонарика.



На схемах они обозначаются вот таким образом:

В настоящее время резисторы используются абсолютно во всей радиоаппаратуре. Переменные резисторы регулируют громкость ваших компьютерных колонок. Фоторезисторы и термисторы используются в охранно-пожарной сигнализации, как высокочувствительные датчики. Не знание схемотехники резисторов - это все равно, что не знание таблицы умножения.