Электрооборудование

Что такое котельное оборудование. Оборудование для котельной

Что такое котельное оборудование. Оборудование для котельной

Самолет, находящийся в неподвижном или подвижном относительно него воздушном потоке, испытывает со стороны последнего давление, в первом случае (когда воздушный поток неподвижен) - это статическое давление и во втором случае (когда воздушный поток подвижен) - это динамическое давление, оно чаще называется скоростным напором. Статическое давление в струйке аналогично давлению покоящейся жидкости (вода, газ). Например: вода в трубе, она может находиться в состоянии покоя или движения, в обоих случаях стенки трубы испытывают давление со стороны воды. В случае движения воды давление будет несколько меньше, так как появился скоростной напор.

Согласно закону сохранения энергии, энергия струйки воздушного потока в различных сечениях струйки воздуха есть сумма кинетической энергии потока, потенциальной энергии сил давления, внутренней энергии потока и энергии положения тела. Эта сумма - величина постоянная:

Е кин +Е р +Е вн +Е п =сопst (1.10)

Кинетическая энергия (Е кин) - способность движущегося воздушного потока совершать работу. Она равна

где m - масса воздуха, кгс с 2 м; V -скорость воздушного потока, м/с. Если вместо массы m подставить массовую плотность воздуха р , то получим формулу для определения скоростного напора q (в кгс/м 2)

Потенциальная энергия Е р - способность воздушного потока совершать работу под действием статических сил давления. Она равна (в кгс-м)

E p =PFS, (1.13)

где Р - давление воздуха, кгс/м 2 ; F - площадь поперечного сечения струйки воздушного потока, м 2 ; S - путь, пройденный 1 кг воздуха через данное сечение, м; произведение SF называется удельным объемом и обозначается v , подставляя значение удельного объема воздуха в формулу (1.13), получим

E p =Pv. (1.14)

Внутренняя энергия Е вн - это способность газа совершать работу при изменении его температуры:

где Cv - теплоемкость воздуха при неизменном объеме, кал/кг-град; Т - температура по шкале Кельвина, К; А - термический эквивалент механической работы (кал-кг-м).

Из уравнения видно, что внутренняя энергия воздушного потока прямо пропорциональна его температуре.



Энергия положенияEn - способность воздуха совершать работу при изменении положения центра тяжести данной массы воздуха при подъеме на определенную высоту и равна

En=mh (1.16)

где h - изменение высоты, м.

Ввиду мизерно малых значений разноса центров тяжести масс воздуха по высоте в струйке воздушного потока этой энергией в аэродинамике пренебрегают.

Рассматривая во взаимосвязи все виды энергии применительно к определенным условиям, можно сформулировать закон Бернулли, который устанавливает связь между статическим давлением в струйке воздушного потока и скоростным напором.

Рассмотрим трубу (Рис. 10) переменного диаметра (1, 2, 3), в которой движется воздушный поток. Для измерения давления в рассматриваемых сечениях используют манометры. Анализируя показания манометров, можно сделать заключение, что наименьшее динамическое давление показывает манометр сечения 3-3. Значит, при сужении трубы увеличивается скорость воздушного потока и давление падает.

Рис. 10 Объяснение закона Бернулли

Причиной падения давления является то, что воздушный поток не производит никакой работы (трение не учитываем) и поэтому полная энергия воздушного потока остается постоянной. Если считать температуру, плотность и объем воздушного потока в различных сечениях постоянными (T 1 =T 2 =T 3 ;р 1 =р 2 =р 3 , V1=V2=V3), то внутреннюю энергию можно не рассматривать.

Значит, в данном случае возможен переход кинетической энергии воздушного потока в потенциальную и наоборот.

Когда скорость воздушного потока увеличивается, то увеличивается и скоростной напор и соответственно кинетическая энергия данного воздушного потока.

Подставим значения из формул (1.11), (1.12), (1.13), (1.14), (1.15) в формулу (1.10), учитывая, что внутренней энергией и энергией положения мы пренебрегаем, преобразуя уравнение (1.10), получим

(1.17)

Это уравнение для любого сечения струйки воздуха пишется следующим образом:

Такой вид уравнения является самым простым математическим уравнением Бернулли и показывает, что сумма статического и динамического давлений для любого сечения струйки установившегося воздушного потока есть величина постоянная. Сжимаемость в данном случае не учитывается. При учете сжимаемости вносятся соответствующие поправки.

Для наглядности закона Бернулли можно провести опыт. Взять два листка бумаги, держа параллельно друг другу на небольшом расстоянии, подуть в промежуток между ними.

Рис. 11 Измерение скорости воздушного потока

Листы сближаются. Причиной их сближения является то, что с внешней стороны листов давление атмосферное, а в промежутке между ними вследствие наличия скоростного напора воздуха давление уменьшилось и стало меньше атмосферного. Под действием разности давлений листки бумаги прогибаются вовнутрь.

Вопрос 21. Классификация приборов измерения давления. Устройство электроконтактного манометра, способы его поверки.

Во многих технологических процессах давление является одним из основных параметров, определяющих их протекание. К ним относятся: давление в автоклавах и пропарочных камерах, давление воздуха в технологических трубопроводах и т. п.

Определение величины давления

Давление – это величина, характеризующая действие силы на единицу поверхности.

При определении величины давления принято различать давление абсолютное, атмосферное, избыточное и вакуумметрическое.

Абсолютное давление (р а ) – это давление внутри какой-либо системы, под которым находится газ, пар или жидкость, отсчитываемое от абсолютного нуля.

Атмосферное давление (р в ) создается массой воздушного столба земной атмосферы. Оно имеет переменную величину, зависящую от высоты местности над уровнем моря, географической широты и метеорологических условий.

Избыточное давление определяется разностью между абсолютным давлением (р а) и атмосферным давлением (р в):

р изб = р а – р в.

Вакуум (разрежение) – это такое состояние газа, при котором его давление меньше атмосферного. Количественно вакуумметрическое давление определяется разностью между атмосферным давлением и абсолютным давлением внутри вакуумной системы:

р вак = р в – р а

При измерении давления в движущихся средах под понятием давления понимают статическое и динамическое давление.

Статическое давление (р ст ) – это давление, зависящее от запаса потенциальной энергии газовой или жидкостной среды; определяется статическим напором. Оно может быть избыточным или вакуумметрическим, в частном случае может быть равно атмосферному.

Динамическое давление (р д ) – это давление, обусловленное скоростью движения потока газа или жидкости.

Полное давление (р п ) движущейся среды слагается из статического (р ст) и динамического (р д) давлений:

р п = р ст + р д.

Единицы измерения давления

В системе единиц СИ за единицу давления принято считать действие силы в 1 H (ньютон) на площадь 1 м², т. е. 1 Па (Паскаль). Так как эта единица очень мала, для практических измерений применяют килопаскаль (кПа = 10 3 Па) или мегапаскаль (МПа=10 6 Па).

Кроме того, на практике применяют такие единицы давления:

    миллиметр водяного столба (мм вод. ст.);

    миллиметр ртутного столба (мм рт. ст.);

    атмосфера;

    килограмм силы на квадратный сантиметр (кг·с/см²);

При этом соотношение между этими величинами следующее:

1 Па = 1 Н/ м²

1 кг·с/см² = 0,0981 МПа = 1 атм

1 мм вод. ст. = 9,81 Па = 10 -4 кг·с/см² = 10 -4 атм

1 мм рт. ст. = 133,332 Па

1 бар = 100 000 Па = 750 мм рт. ст.

Физическое объяснение некоторых единиц измерения:

    1 кг·с/см² – это давление столба воды высотой 10м;

    1 мм рт. ст. – это величина уменьшения давления при подъеме на каждые 10м высоты.

Методы измерения давления

Широкое использование давления, его перепада и разрежения в технологических процессах вызывает необходимость применять разнообразные методы и средства измерения и контроля давления.

Методы измерения давления основаны на сравнении сил измеряемого давления с силами:

    давления столба жидкости (ртути, воды) соответствующей высоты;

    развиваемыми при деформации упругих элементов (пружин, мембран, манометрических коробок, сильфонов и манометрических трубок);

    тяжести грузов;

    упругими силами, возникающими при деформации некоторых материалов и вызывающими электрические эффекты.

Классификация приборов измерения давления

Классификация по принципу действия

В соответствии с указанными методами, приборы измерения давления можно разделить, по принципу действия на:

    жидкостные;

    деформационные;

    грузопоршневые;

    электрические.

Наибольшее распространение в промышленности получили деформационные средства измерения. Остальные, в большинстве своем, нашли применение в лабораторных условиях в качестве образцовых или исследовательских.

Классификация в зависимости от измеряемой величины

В зависимости от измеряемой величины средства измерения давления подразделяются на:

    манометры – для измерения избыточного давления (давления выше атмосферного);

    микроманометры (напоромеры) – для измерения малых избыточных давлений (до 40 кПа);

    барометры – для измерения атмосферного давления;

    микровакуумметры (тягомеры) – для измерения малых разряжений (до -40 кПа);

    вакуумметры – для измерения вакуумметрического давления;

    мановакуумметры – для измерения избыточного и вакуумметрического давления;

    напоротягомеры – для измерения избыточного (до 40 кПа) и вакуумметрического давления (до -40 кПа);

    манометры абсолютного давления – для измерения давления, отсчитываемого от абсолютного нуля;

    дифференциальные манометры – для измерения разности (перепада) давлений.

Жидкостные средства измерения давления

Действие жидкостных средств измерений основано на гидростатическом принципе, при котором измеряемое давление уравновешивается давлением столба затворной (рабочей) жидкости. Разница уровней в зависимости от плотности жидкости является мерой давления.

U -образный манометр – это простейший прибор для измерения давления или разности давлений. Представляет собой согнутую стеклянную трубку, заполненную рабочей жидкостью (ртутью или водой) и прикрепленную к панели со шкалой. Один конец трубки соединяется с атмосферой, а другой подключается к объекту, где измеряется давление.

Верхний предел измерения двухтрубных манометров составляет 1…10кПа при приведенной погрешности измерения 0,2…2%. Точность измерения давления этим средством будет определяться точностью отсчета величины h(величины разности уровня жидкости), точностью определения плотности рабочей жидкости ρ и не зависеть от сечения трубки.

Жидкостные средства измерения давления характерны отсутствием дистанционной передачи показаний, небольшими пределами измерений и низкой прочностью. В то же время благодаря своей простоте, дешевизне и относительно высокой точности измерений они широко распространены в лабораториях и реже в промышленности.

Деформационные средства измерения давления

Основаны на уравновешивании силы, создаваемой давлением или вакуумом контролируемой среды на чувствительный элемент, силами упругих деформаций различного рода упругих элементов. Эта деформация в виде линейных или угловых перемещений передается регистрирующему устройству (показывающему или самопишущему) или преобразуется в электрический (пневматический) сигнал для дистанционной передачи.

В качестве чувствительных элементов используют одновитковые трубчатые пружины, многовитковые трубчатые пружины, упругие мембраны, сильфонные и пружинно-сильфонные.

Для изготовления мембран, сильфонов и трубчатых пружин применяются бронза, латунь, хромоникелевые сплавы, отличающиеся достаточно высокой упругостью, антикоррозийностью, малой зависимостью параметров от изменения температуры.

Мембранные приборы применяются для измерения небольших давлений (до 40кПа) нейтральных газовых средств.

Сильфонные приборы предназначены для измерения избыточного и вакуумметрического давления неагрессивных газов с пределами измерений до 40кПа, до 400кПа (как манометры), до 100кПа (как вакуумметры), в интервале -100…+300кПа (как мановакуумметрические).

Трубчато-пружинные приборы принадлежат к числу наиболее распространенных манометров, вакуумметров и мановакуумметров.

Трубчатая пружина представляет собой тонкостенную, согнутую по дуге окружности, трубку (одно- или многовитковую) с запаенным одним концом, которая изготавливается из медных сплавов или нержавеющей стали. При увеличении или уменьшении давления внутри трубки пружина раскручивается или скручивается на определенный угол.

Манометры рассмотренного типа выпускаются для верхних пределов измерения 60…160кПа. Вакуумметры выпускаются со шкалой 0…100кПа. Мановакуумметры имеют пределы измерений: от -100кПа до +(60кПа…2,4МПа). Класс точности для рабочих манометров 0,6…4, для образцовых – 0,16; 0,25; 0,4.

Грузопоршневые манометры применяются как устройства для поверки механических контрольных и образцовых манометров среднего и высокого давления. Давление в них определяется по калиброванным грузам, помещаемым на поршне. В качестве рабочей жидкости применяют керосин, трансформаторное или касторовое масло. Класс точности грузопоршневых манометров 0,05 и 0,02%.

Электрические манометры и вакуумметры

Действие приборов этой группы основано на свойстве некоторых материалов изменять свои электрические параметры под действием давления.

Пьезоэлектрические манометры применяют при измерении пульсирующего с высоко частотой давления в механизмах с допустимой нагрузкой на чувствительный элемент до 8·10 3 ГПа. Чувствительным элементом в пьезоэлектрических манометрах, преобразующим механические напряжения в колебания электрического тока, являются пластины цилиндрической или прямоугольной формы толщиной в несколько миллиметров из кварца, титаната бария или керамики типа ЦТС (цирконат-титонат свинца).

Тензометрические манометры имеют малые габаритные размеры, простое устройство, высокую точность и надежность в работе. Верхний предел показаний 0,1…40Мпа, класс точности 0,6; 1 и 1,5. Применяются в сложных производственных условиях.

В качестве чувствительного элемента в тензометрических манометрах применяются тензорезисторы, принцип действия которых основан на изменении сопротивления под действием деформации.

Давление в манометре измеряется схемой неуравновешенного моста.

В результате деформации мембраны с сапфировой пластинкой и тензорезисторами возникает разбаланс моста в виде напряжения, которое с помощью усилителя преобразуется в выходной сигнал, пропорциональный измеряемому давлению.

Дифференциальные манометры

Применяются для измерения разности (перепада) давления жидкостей и газов. Они могут быть использованы для измерения расхода газов и жидкостей, уровня жидкости, а также для измерения малых избыточных и вакуумметрических давлений.

Мембранные дифференциальные манометры являются бесшакальными первичными измерительными приборами, предназначенными для измерения давления неагрессивных сред, преобразующими измеряемую величину в унифицированный аналоговый сигнал постоянного тока 0…5мА.

Дифференциальные манометры типа ДМ выпускаются на предельные перепады давления 1,6…630кПа.

Сильфонные дифференциальные манометры выпускаются на предельные перепады давления 1…4кПа, они рассчитаны на предельно допустимое рабочее избыточное давление 25кПа.

Устройство электроконтактного манометра, способы его поверки

Устройство электроконтактного манометра

Рисунок - Принципиальные электрические схемы электроконтактных манометров: а – одноконтактная на замыкание; б – одноконтактная на размыкание; в – двухконтактная на размыкание–размыкание; г – двухконтактная на замыкание–замыкание; д – двухконтактная на размыкание–замыкание; е – двухконтактная на замыкание–размыкание; 1 – указательная стрелка; 2 и 3 – электрические базовые контакты; 4 и 5 – зоны замкнутых и разомкнутых контактов соответственно; 6 и 7 – объекты воздействия

Типовая схема функционирования электроконтактного манометра может быть проиллюстрирована рисунке (а) . При росте давления и достижении им определенного значения указательная стрелка 1 с электрическим контактом входит в зону 4 и замыкает с помощью базового контакта 2 электрическую цепь прибора. Замыкание цепи в свою очередь приводит к вводу в работу объекта воздействия 6.

В схеме размыкания (рис. б ) при отсутствии давления электрические контакты указательной стрелки 1 и базового контакта 2 замкнуты. Под напряжением U в находится электрическая цепь прибора и объект воздействия. При повышении давления и прохождении стрелкой зоны замкнутых контактов происходит разрыв электрической цепи прибора и соответственно прерывается электрический сигнал, направляемый на объект воздействия.

Наиболее часто в производственных условиях применяются манометры с двухконтактными электрическими схемами: одна используется для звуковой или световой индикации, а вторая – для организации функционирования систем различных типов управления. Так, схема размыкание–замыкание (рис. д ) позволяет по одному каналу при достижении определенного давления разомкнуть одну электрическую цепь и получить сигнал воздействия на объект 7 , а по второму – с помощью базового контакта 3 замкнуть находящуюся в разомкнутом состоянии вторую электрическую цепь.

Схема замыкание–размыкание (рис. е ) позволяет при увеличении давления одну цепь замкнуть, а вторую – разомкнуть.

Двухконтактные схемы на замыкание–замыкание (рис. г ) и размыкание–размыкание (рис. в ) обеспечивают при повышении давления и достижении одних и тех же или различных его значений замыкание обеих электрических цепей или соответственно их размыкание.

Электроконтактная часть манометра может быть как неотъемлемой, совмещенной непосредственно с механизмом измерителя, так и присоединяемой в виде электроконтактной группы, устанавливаемой на передней части прибора. Производители традиционно используют конструкции, в которых тяги электроконтактной группы монтировались на оси трубки. В некоторых устройствах, как правило, устанавливается электроконтактная группа, соединенная с чувствительным элементом через указательную стрелку манометра. Некоторые производители освоили электроконтактный манометр с микровыключателями, которые устанавливаются на передаточном механизме измерителя.

Электроконтактные манометры производятся с механическими контактами, контактами с магнитным поджатием, индуктивной парой, микровыключателями.

Электроконтактная группа с механическими контактами конструктивно наиболее проста. На диэлектрическом основании фиксируется базовый контакт, представляющий собой дополнительную стрелку с закрепленным на нем электрическим контактом и соединенным с электрической цепью. Другой разъем электрической цепи связан с контактом, который передвигается указательной стрелкой. Таким образом, при росте давления указательная стрелка смещает подвижный контакт до момента его соединения со вторым контактом, закрепленным на дополнительной стрелке. Механические контакты, изготовленные в виде лепестков или стоек, производятся из сплавов серебро–никель (Ar80Ni20), серебро–палладий (Ag70Pd30), золото–серебро (Au80Ag20), платина–иридий (Pt75Ir25) и др.

Приборы с механическими контактами рассчитаны на напряжение до 250 В и выдерживают максимальную разрывную мощность до 10 Вт постоянного или до 20 В×А переменного тока. Малые разрывные мощности контактов обеспечивают достаточно высокую точность срабатывания (до 0,5 % полного значения шкалы).

Более прочное электрическое соединение обеспечивают контакты с магнитным поджатием. Их отличие от механических состоит в закреплении на обратной стороне контактов (клеем или винтами) малых магнитов, что усиливает прочность механического соединения. Максимальная разрывная мощность контактов с магнитным поджатием составляет до 30 Вт постоянного или до 50 В×А переменного тока и напряжением до 380 В. Из-за наличия магнитов в системе контактов класс точности не превышает 2,5.

Способы поверки ЭКГ

Электроконтактные манометры, а также датчики давления должны периодически подвергаться поверке.

Электроконтактные манометры в полевых и лабораторных условиях могут проверяться тремя способами:

    поверка нулевой точки: при снятии давления, стрелка должна возвращаться к «0» отметке, недоход стрелки не должен превышать половины допуска погрешности прибора;

    поверка рабочей точки: к проверяемому прибору подсоединяется контрольный манометр и производится сравнение показаний обоих приборов;

    поверка (калибровка): поверка прибора согласно методики на поверку (калибровку) для данного типа приборов.

Электроконтактные манометры и реле давления проверяются на точность срабатывания сигнальных контактов, погрешность срабатывания должна быть не выше паспортной.

Порядок выполнения поверки

    Выполнить ТО прибора давления:

Проверить маркировку и сохранность пломб;

Наличие и прочность крепления крышки;

Отсутствие обрыва заземляющего провода;

Отсутствие вмятин и видимых повреждений, пыли и грязи на корпусе;

Прочность крепления датчика (работы на месте эксплуатации);

Целостность изоляции кабеля (работы на месте эксплуатации);

Надежность крепления кабеля в водном устройстве (работы на месте эксплуатации);

Проверить затяжку крепежных элементов (работы на месте эксплуатации);

    Для контактных приборов проверить сопротивление изоляции относительно корпуса.

    Собрать схему для контактных приборов давления.

    Плавно повышая давление на входе, снять показания образцового прибора при прямом и обратном (снижении давления) ходе. Отчеты выполнить в 5 равнорасположенных точках диапазона измерений.

Проверить точность срабатывания контактов согласно уставок.

В общем случае газовая котельная установка - это совокупность котла и вспомогательного оборудования. Она включает в себя следующие основные устройства: котлы, экономайзеры и воздухоподогреватели. Котлы являются ее главной частью. Котлы, в которых вырабатывается пар, называют паровыми ; предназначенные для выработки горячей воды - водогрейными ; вырабатывающие водяной пар и горячую воду одновременно - комбинированными . В котлах дымовые газы, образовавшиеся в топочном устройстве при сгорании газообразного топлива, омывают поверхность нагрева котла, отдавая ей часть заключенной в них тепловой энергии, и покидают котел с более или менее высокой температурой. Для дополнительного использования теплоты, содержащейся в дымовых газах, уходящих из котла, за ними устанавливают так называемые хвостовые поверхности нагрева - экономайзер, в котором подогревается питательная или сетевая вода, или воздухоподогреватель, в котором подогревается воздух, идущий на горение в топочное устройство. В зависимости от местных условий экономайзеры и воздухоподогреватели иногда не устанавливают или устанавливают только одно из названных устройств. Схемы и конструкции котлов, экономайзеров и воздухоподогревателей рассмотрены в разделе II.

Кроме перечисленного основного оборудования, теплогенерирующая установка должна иметь вспомогательное оборудование, в состав которого входят: тяговое устройство, дутьевая установка, питательные или сетевые насосы, устройства подготовки питательной воды, идущей на питание паровых котлов, или подпиточной воды, идущей на восполнение утечек в тепловой сети, трубопроводы, контрольно-измерительные приборы, средства регулирования и управления, устройства топливоподачи.

Тяговое устройство предназначено для создания разрежения в газоходах теплогенерирующей установки, необходимого для удаления в атмосферу охлажденных дымовых газов и преодоления сопротивлений при их движении в газоходах установки. К тяговым устройствам принадлежат дымососы (искусственная тяга) и дымовая труба (естественная тяга).

Дутьевая установка состоит из вентиляторов и воздуховодов, служащих для подачи воздуха в топку котельного агрегата.

Питательные насосы служат для подачи воды в паровой котел. В котельной устанавливают баки питательной воды, в которые поступает конденсат пара, возвращаемый от потребителя, и подводится добавочная вода, покрывающая потери пара у потребителя. Питательный насос забирает воду из этих питательных баков и подает ее в паровой котел.

Сетевые (циркуляционные) насосы устанавливают в водогрейных котельных. В таких установках трубопровод обратной воды отопительной системы присоединяют к сетевому насосу, который прокачивает воду через котел и затем по нагнетательному трубопроводу подает ее в отопительную систему. Таким образом, котел включается в контур циркуляции воды через отопительную систему.

Устройства для подготовки питательной или подпиточной воды включают в себя водозаборные устройства, установки хим-водообработки и деаэрации. В установке химводообработки умягчают (удаление соли жесткости, вызывающие отложение накипи на тепловоспринимающих поверхностях котла) исходную сырую воду, а в деаэраторе удаляют коррозионно-активные газы из химобработанной воды. Деаэрированная вода подается на питание паровых котлов питательными насосами и подпитку тепловых сетей подпиточными.

Для контроля и автоматического регулирования процессов, протекающих в котельной установке, служат приборы контроля и автоматики.

Котельную установку топливом (природным газом) обеспечивает оборудование топливоподачи, включающее в себя отвод от магистрального трубопровода и газорегуляторный пункт, в котором снижают давление газа от магистрального до необходимого для работы газовых горелок и поддержания давления газа на входе в горелку в заданных пределах.

В настоящее время существует великое множество котельных систем отопления. Их будущий функционал обуславливает потенциальную комплектацию котельного оборудования, а список комплектующих подобных систем весьма и весьма внушителен. Данная статья расскажет Вам о котельном оборудовании для дома, его особенностях и предназначении в общей системе отопления.

Котёл

Сердце любой отопительной системы - котёл. Тепловой котёл - это устройство, представляющее собой закрытую структуру, где теплоноситель перенимает тепловую энергию у нагревательных элементов или тепло от горящего топлива.

Ниже приведён небольшой список важных особенностей котлов.

Тип топлива

В данный момент на рынке не составит труда найти котлы, приспособленные под жидкое, газовое, твердое топливо, а также под электричество.
Наибольшую популярность завоевали именно газовые котлы. Около 70% составляют именно они, что, впрочем, закономерно, с учётом распространённости газовых магистралей и невысокой стоимостью газа.

Следом гордо шествуют котлы дизельные. Важным фактором их использования является сменная горелка, которая позволяет использовать ее в котлах разных конструкций.

Твердотопливные котлы - самый старший представитель этих механизмов, их преимуществом является автономность от электроснабжения, а также высокая эффективность.

Замыкают перечень электрические отопительные котлы - встроенное Оборудование котельной в доме позволяет корректировать программу температуры, но самостоятельно они используются редко, чаще всего они выступают в роли резерва твердотопливных котлов, на случай прогорания топлива, что эффективно для небольших помещений.

Мощность

Параметр показывает эффективность установки того или иного котла в конкретных условиях. Для её расчёта требуется команда специалистов, сам процесс расчёта зависим от целого ряда факторов, начиная от размеров помещения и заканчивая назначением отапливаемых помещений.

Ещё одним важным параметром является количество контуров. Одноконтурный котёл способен прогревать помещение, но двухконтурный способен обеспечить приготовление горячей воды для бытовых нужд.

Метод установки

Напольные и настенные. Чаще всего эти параметры применяют к газовым котлам. Настенный вариант прекрасно экономит место в помещении, в то же время к ним часто применимо понятие одного или двух контуров. Одноконтурные системы обеспечивают дом теплом, а вкупе с бойлером косвенного нагрева и горячей водой, а двухконтурные способны обеспечивать небольшой дом горячей водой.

Стоит упомянуть универсальные варианты котлов. Примером служит котёл, имеющий камеру сжигания для твёрдого топлива и с дополнительным оборудованием котельной в доме, обеспечивающим сжигание газа или жидкого топлива.

Ещё одним вариантом является древесно-газовый котёл. При сгорании дров в нем происходит процесс, вырабатывающий воспламенимый газ, который, в свою очередь, дожигается в котле, значительно увеличивая КПД.

Бойлер косвенного нагрева

Для обеспечения дома горячей водой в котельной располагают бойлер косвенного нагрева. Нагрев воды в бойлере происходит от того же котла который обогревает жилище. Бойлера косвенного нагрева бывают напольные и настенные.

К преимуществам подобного бойлера относят:

  • высокую производительность при правильной установке;
  • обеспечение водой без предварительного слива;
  • экономичность.

Но у него имеются и недостатки:

  • при частых нагревах снижается количество тепла, отдаваемого для обогрева помещений.

Циркуляционный насос

Многие отопительные системы используют принцип естественной циркуляции теплоносителя, но существуют более совершенный вариант движения жидкости. Он достигается установкой в трубах циркуляционных насосов, так же необходимого оборудования котельной в доме, в результате чего повышается КПД всей системы отопления. Это происходит за счёт увеличения скорости теплоносителя. Из-за ускоряющегося движения теплоносителя максимально быстро происходит нагрев и отдача тепла, в результате чего появляется возможность сокращения диаметра труб и уменьшению нагрузки на котёл.

Структура насоса весьма проста, она представляет собой чаще всего чугунный корпус, внутри которого вращается ротор с закрепленной на нём крыльчаткой. Самое интересное заключается в том, что, несмотря на количество проталкиваемой жидкости, качественный ротор почти не издаёт шума при правильной установке. Одним из главных принципов установки является - строго горизонтальное положение ротора. Рекомендуется обращать внимание на изделия немецкого и итальянского производства, так как они считаются наиболее качественными и сравнительно недорогими.

Распределительный коллектор

Это оборудование котельной дома, контролирующее процессы в каждом отдельно взятом контуре отопления. Данная часть системы прекрасно приспособлена для систем типа и разнообразным видам радиаторов. Эта, замысловатая на первый взгляд система, призвана своим существованием наладить пропорциональное распределение тепловых потоков от котла к теплопотребителям. Благодаря существованию этой системы легко регулируется температура на каждой отдельно взятой части жилплощади.

Внешний вид данного оборудование котельной в доме можно описать так - это металлическая гребёнка с некоторым количеством выводов, к которым подается теплоноситель от котла и которые распределяют теплоноситель по всем контурам отопления. Внешне они разнятся мало, но есть существенная разница в материалах изготовления и сложности конструкции. Чаще всего их изготавливают из стали, меди, латуни и полимеров. Простые гребёнки ограничены в возможностях работы устройства, в то время как модифицируются разнообразными датчиками, блоками контроля, а также электронными клапанами и воздуховыпускными устройствами.

Установка коллекторной системы гарантирует максимально разумное распределение тепла в доме, но следует учитывать, что данная система бесполезна без использования циркуляционных насосов, а сама технология имеет достаточно высокую цену.

Гидрострелка

У гидрострелки, как у представителя оборудования котельной в доме есть целый ряд других наименований, она может называться гидравлическим разделителем, гидродинамическим терморазделителем, «бутылка». Это устройство имеет достаточно простую форму - это цилиндрическая или прямоугольная вертикальная структура с расположенными друг напротив друга патрубками: по два с каждой стороны (впрочем, может быть и больше). Её функционал заключается в разделении температуры и потоков теплоносителя в пределах выхода и входа теплоносителя в котёл, благодаря её работе в значительной мере растёт КПД, но лишь в случае, если она подходит для вашей системы отопления, для чего чаще всего нужны точные и безошибочные расчёты. Важно учитывать, что для функционирования гидрострелки незаменимо наличие в системе циркуляционного насоса, он должен быть закреплен за каждым контуром.

Расширительный бак

Тоже важное оборудование котельной в доме. Котельная система заполнена веществом - теплоносителем, чаще всего это, конечно же, вода, но при нагревании системы может появляться тенденция к образованию избыточного давления на фоне термического расширения жидкости. Во избежание поломок и каких-либо нарушений в целостности системы отопление используется расширительный бак.

Существует два вида баков для оборудования котельной в доме. Первый - открытый, на данный момент почти перестал использоваться, технически он компенсирует изменение объёма теплоносителя, открывая выход в атмосферу, но такая технология является чрезвычайно грубой, она требует постоянного контроля и долива жидкости, её сложно монтировать и часто проявляется её склонность к коррозии.

На смену открытым вскоре пришли закрытые баки (или мембранники). Чаще всего они имеют герметичную цилиндрическую форму, выполненную из стали. Внутренний объём этих баков занимают мембрана, отделяющая инертный газ или лишний воздух от излишков теплоносителя, поступающего из котельной системы при его расширении. Под давление жидкости воздух сжимается, но как только падает температура (а, следовательно, и давление), газ возвращает себе изначальный объём и с помощью мембраны отталкивает теплоноситель обратно в систему для его дальнейшей циркуляции.

Трубы

Следует пристально относиться даже к такой, казалось бы, мелочи оборудования котельной в доме.
Вполне логично, что большую популярность имеют металлические трубы. Чаще всего материалами для них служит сталь и медь. Стальные трубы - прекрасно переносят высокие температуры, выдерживают большое давление, имеют небольшую цену, но, к сожалению, весьма склонны к коррозии. Медные трубы не склонны к разрушению ржавчиной и признаны лучшим вариантом для домашнего отопления, но они весьма дорогие.

Эквиваленты медным трубам - трубы из полипропилена. Они не склонны к ржавчине, чрезвычайно устойчивы к высокой температуре и агрессивным веществам, обладают большим запасом прочности также благодаря их гладкой структуре. Они дешевле медных, потому в данный момент пользуются наибольшей (и следует заметить, вполне заслуженной) популярностью.

Также известны металлопластиковые трубы, по сути, это не что иное, как армированные каким-либо металлом трубы из того же полипропилена, в них буквально сочетаются лучшие из возможных свойств вышеописанных материалов. Более того, они способны менять свою форму и гнуться любым необходимым образом.

Модульные котельные установки (транспортабельные и блочные котельные установки) представляют собой один или несколько блок-модулей (в зависимости от необходимой тепловой мощности) с установленным внутренним технологическим оборудованием и оборудованием для подключения к инженерным сетям. Такие котельные поставляются Заказчику в полной заводской готовности.

Схема и характеристики котельной установки зависят от нескольких факторов: необходимой тепловой мощности, используемого топлива (природный газ, сжиженные газ, попутный нефтяной газ, мазут, дизельное топливо, отработанное масло, уголь, кокс, многотопливные котельные), назначения котельной установки (отопительные или промышленные котельные). Тип топлива является самым главным критерием для дальнейшего подбора оборудования, а именно котлов и горелок. В зависимости от топлива можно выделить , а так же дизельные, нефтяные, мазутные, твердотопливные котельные.

Основные требования к проектированию и строительству котельных с давлением пара не более 3,9 МПа (40 кгс/см 2) и с температурой воды не более 200°С собраны в своде правил .

В соответствии с вышеуказанным нормативным документом все котельные установки делятся на две категории:

  • категория I - котельные установки, которые являются единственным источником тепловой энергии или которые обеспечивают тепловой энергией потребителей без индивидуальных резервных источников тепла
  • категория II - котельные установки, не относящиеся к первой категории

Работа котельных установок

Рассмотрим работу котельной на примере водогрейной котельной установки. В котлах происходит нагрев теплоносителя (в большинстве случаев, воды) для подачи ее потребителю. Установленные насосы способствуют постоянной циркуляции теплоносителя (подача ее потребителю и возврат ее обратно). Вода поступает по трубам в теплоисточник (радиатор, теплые полы, отопительные котлы). В котельной обязательно должна быть предусмотрена регулировка продолжительности работы и температуры теплоносителя. Линия подачи воды потребителя называется прямой линией (или подающей).

Поступив в радиаторы, вода остывает и возвращается обратно. Это является обратной линией котельной.

Оборудование котельной установки

Оборудование для блочно-модульной котельной подбирается и компонуется по Индивидуальному заказу на основе заполненного Опросного листа на ТКУ , в котором указываются основные требования и параметры основного оборудования. Блочно-модульная котельная состоит из:

  • Здание котельной
  • Котельное оборудование (котлы)
  • Горелки
  • Газовое оборудование
  • Насосное оборудование
  • Системы автоматизации, связи и сигнализации, контроля и пожарной безопасности
  • Системы водоочистки и водоподготовки
  • Мембранный расширительный бак
  • Газоходы и дымовые трубы

Блок-модуль котельной

Здание транспортабельной котельной представляет собой блок-модуль (контейнерный модуль). Это одноэтажная каркасная конструкция из негорючих материалов для обеспечения пожарной безопасности и высокой огнестойкости. Необходимая мощность котельной определяет количество модулей каркасного типа, их габаритные размеры (см. ГОСТ 23838-89 "Здания предприятий. Параметры"). В случае возможности установки всего оборудования в один блок-бокс, завод-изготовитель котельной может порекомендовать предусмотреть одно или несколько алюминиевых окон или стальных дверных проемов.

Здание модульной котельной является сварной каркасной конструкцией с основанием в виде платформы, за счет которой увеличивается прочность конструкции и способность ее сопротивляться ветровым и снеговым нагрузкам. Стальные швеллеры служат основой стоек, балок и прогонов каркаса. Прокатные швеллеры или уголки используются для балок пола. В качестве ограждающих конструкций блок-модуль обшиваются сэндвич-панелями из листов рифленой стали. Крышу котельной традиционно делают одно- или двускатную.

Устройство теплоизоляции здания котельной (утеплитель, подшивка) позволяет эксплуатировать котельную при низки температурах. Также все металлоконструкции должны пройти антикоррозионную обработку.

При проектировании здания котельной следует учитывать требования к взрывопожарной безопасности и огнестойкости сооружения в соответствии с СП 12.13130.2009 "Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности (с Изменением N 1)".

Котельное оборудование

Котлы являются одним из важных элементов котельных установок. Именно в них происходит нагрев теплоносителя или получение пара.

В соответствии с "Правилами устройства и безопасной эксплуатации паровых и водогрейных котлов" различают водогрейные, паровые и пароводогрейные котлы. Теплоноситель для котельных (вода или пар) образовывается за счет получаемой тепловой энергии от сжигания топлива (в случае газовых, твердотопливных и жидкотопливных котлов) или за счет преобразования электроэнергии в тепловую (в случае электрических котлов). Корпус котла изготавливается из чугуна или из стали в зависимости от используемого вида топлива. Например, в случае использования твердого топлива на стальных стенках котла происходит отложение серы, из-за чего срок службы котла сокращается. Выходом из этого может стать использование чугунных котлов, но они тоже обладают одним недостатком: являются слишком большими и громоздкими.

При выборе вида и количество котлов производятся технико-экономические расчеты, для которых учитываются следующие факторы:

  • производительность котлов и котельной в целом
  • обеспечение стабильности в работе котлов при минимальной нагрузке в теплый период года
  • количество потребителей
  • расстояние доставки теплоносителя до конечного потребителя
  • требования к КПД котла
  • вид топлива и его химические характеристики (твердое топливо, газ, электричество)
  • автоматизация работы котельной и ее степень
  • габаритные размеры котла
  • прочность котла
  • возможность очистки, промывки и ремонта котла

При выборе количества котлов следует помнить пп. 4.8. и 4.14. , в соответствии с которыми минимальное количество котлов определяется категорией котельной: в котельных первой категории устанавливается минимально два котла, в котельных второй категории - один котел.

Горелки

Одним из важных рабочих элементов котельной является горелка (кроме электрических котлов). Функциями любых горелок (газовых, дизельных) являются подготовка, смешение топлива и воздуха и сжигание полученной горючей смеси в камере сгорания котла, за счет чего происходит нагрев теплоносителя в котле.

Выбор конструкции и типа горелки осуществляется на основании используемого топлива (жидкого топлива или газа), а также анализа требований к мощности и производительности котла, размерам камеры сгорания котла, диапазону и типу регулирования горелки. Так, газовые горелки бывают одноступенчатыми, двуступенчатыми (с возможностью работать в двух режимах), плавно-двухступенчатые (работают в диапазоне заданных режимов) и модулируемые горелки (работают в диапазоне мощностей от 10 до 100%).

Газовое оборудование для котельных

К газовому оборудованию котельных относятся:

Требования к использованию газового оборудования достаточно строгие из-за повышенной горючести газа. Их (требования) Вы можете посмотреть в СП 89.13330.2012 "Котельные установки. Актуализированная редакция СНиП II-35-76". Согласно им, установки ГРУ устанавливаются в здании котельной, а пункты ГРП на площадке котельной. Также, если каждый котел имеет тепловую мощность более 30 МВт, рекомендуется предусматривать две линии редуцирования (т.е. дублирующая нитка редуцирования включается только в случае выхода из строя основной линии редуцирования). Если тепловая мощность котлов в котельной менее 30 МВт, возможна установка одной линии редуцирования (кроме котельных I категории).

Количество трубопроводов подачи газа также регламентируется Сводами Правил СП 89.13330.2012: в котельных I категории мощностью до 30 МВт, которые работают только на газе, газ от ГРУ или ГРП может поступать от двух трубопроводов; в котельных II категории - от одного.

Регуляторы давления газа необходимы для регулирования давления поставляемого газа вне зависимости от расхода: обычно регуляторы давления понижают давление газа.

Фильтры толстой и тонкой очистки газа необходимы для фильтрации газа от примесей, твердых частиц и вкраплений, которые могут засорить трубопроводы, снизить производительность котлов и уменьшить срок службы оборудования.

Запорная и предохранительная арматура устанавливается на газовой линии котельной также для нормальной и безопасной эксплуатации газового оборудования. Основными элементами такой арматуры являются запорные и термозапорные клапаны, контрольные клапаны, обратные клапаны, .

Насосное оборудование котельных

Насосы необходимы для равномерной подачи теплоносителя и его отпуска, транспортировки теплоносителя по трубам к тепловому источнику и циркуляции теплоносителя. В зависимости от специфики котельной и используемого котельного оборудования выбирается тип и конструкция насоса (см. СП 89.13330.2012). Конструктивно насосы изготавливаются и поставляются с паровым или электроприводом. По типу насосы бывают сетевые (для циркуляции теплоносителя в системе), питательные (для подачи воды к котлам), циркуляционные (для обеспечения заданного напора воды у потребителя), антиконденсационные и подпиточные (для восполнения системы водой из внешних источников) насосы. Количество насосов рассчитывается исходя из производительности котельной. При этом в некоторых случаях обязательна установка резервного насоса.

Теплообменная система котельной

Система ГВС котельной состоит из теплообменников, обычно пластинчатых, и водоподогревателей (паровых, водяных, пароводяных). Теплообменное оборудование необходимо для подогрева нагреваемой воды от горячей среды.

Количество водоподогревателей рассчитывается для каждой системы котельной (системы вентиляции, системы отопления) и в зависимости от необходимых параметров отпускаемой воды/пара.

Автоматизация котельных установок, системы связи, сигнализации, контроля и пожарной безопасности

Особенностью является полностью автоматизированная работа котельной без постоянного присутствия персонала, но под постоянной диспетчеризацией и контролем посредством вывода информации о параметрах работы котельной на дистанционном пульте управления.

В случае аварийных ситуаций (прекращение подачи топлива к горелкам, понижение/повышение давления воды/пара/масла, повышение/понижение уровня воды, исчезновение электрического напряжения, повышение/понижение температуры воды/масла на выходе и т.п.) информация о них поступает на пульт управления котельной. Для оповещения о поломке оборудования должна быть предусмотрена система сигнализации (звукая, световая). При этом автоматически происходит отключение вышедшего из строя оборудования и ввод в работу резервного оборудования. Регулирование параметров работы котельной должно осуществляться автоматически, если эти параметры выходят за рамки заданных.

Случаи сигнализации, оповещения и регулирования приведены в СП 89.13330.2012.

Водоподготовка котельных установок, водоочистка

Система водоподготовки в котельных необходима для очистки воды перед поступлением в котлы или тепловые сети от механических примесей и растворенных загрязнителей, деминералиции и умягчения. Это предотвращает образование накипи на котельном оборудовании, образование коррозии и вспенивание котловой воды и унос солей с паром. Для подготовки воды используется несколько методов: механическая фильтрация и нанофильтрация, обратный осмос, известкование, ультрафильтрация, дехлорирование, натрий-катионирование и др.

Вода и пар, используемая в котельной, должна отвечать требованиям:

Среди оборудования, используемого в системах водоподготовки, можно назвать: фильтры, установки обезжелезивания, установка умягчения, вихревые реакторы для реагентного умягчения и т.п.

Выбор водоподготовительных установок должен соответствовать требованиям СП 31.13330.2012 "Водоснабжение. Наружные сети и сооружения. Актуализированная редакция СНиП 2.04.02-84".

Расширительный мембранный бак

Расширительные баки необходимы в составе котельных, так как они предотвращают повышение давления воды (при подогреве воды происходит ее расширение и, соответственно, увеличение ее объема), возможность гидроудара и компенсируют ее объем. Баки также удаляют образовавшийся воздух в результате нагрева теплоносителя. Для выполнения этих функций в котельной устанавливают расширительные баки для разных систем: расширительный бак отопления и расширительный бак горячего водоснабжения.

Конструктивно мембранные баки для отопления и водоснабжения схожи. Они представляют собой вертикальный или горизонтальный цилиндрический или прямоугольный бак, с установленной внутри эластичной мембраной. Эта мембрана разделяет расширительный бак на воздушный и жидкостный отсеки. Принцип работы мембранного бака заключается в том, что излишки воды в системе при ее нагревании попадают в бак. Эту воду можно использовать для водоснабжения и водоподготовки, подавая ее в систему под нужным давлением.

Материал расширительных баков для системы отопления должен быть более устойчивым к высоким температурам. Расширительные баки для систем водоснабжения должны быть сделаны из эластичного материала, чтобы выдерживать большие перепады давления.

Дымовые трубы и газоходы

Дымовые трубы и газоходы относятся к системе дымоудаления (газоотвода) котельных установок. В случае затрудненного естественного рассеивания отработанных газов и дыма (в случае отсутствия естественной тяги) строятся дымовые трубы разных конструкций. Газоходы же тянутся от котлов и крепятся перпендикулярно к дымовым трубам.

Дымовые трубы бывают следующих конструкций:

  • дымовая труба на ферме
  • дымовая труба на растяжках
  • дымовая труба на мачте
  • фасадная дымовая труба
  • самонесущая дымовая труба

Кроме того, в конструкцию одной дымовой трубы может входить несколько вертикальных газоходов.

Материал, высота, диаметр и метод крепления трубы определяются исходя из мощности котельной и на основании аэродинамических подсчетов газового тракта, скорости газа, требований к устойчивости конструкции (в соответствии с требованиями СП 43.13330.2012 "Сооружения промышленных предприятий. Актуализированная редакция СНиП 2.09.03-85").

На котельных установках также устанавливается вспомогательное оборудование для надежной эксплуатации котлов и всей системы в целом. Комплект вспомогательного оборудования зависит от вида используемого топлива, от мощности и от технико-экономических требований Заказчика. Вспомогательное оборудование включает в себя:

  • деаэраторы (вакуумные, атмосферного давления, химические, термические)
  • водоподогреватель (бойлер)
  • баки-аккумуляторы и др.

Специалисты нашей компании выполняют весь комплекс услуг по проектированию, аэродинамическому расчету, изготовлению и вводу в эксплуатацию котельных установок, крышных котельных и дымовых труб. Вся поставляемая продукция имеет все необходимые Разрешения и Сертификаты соответствия.

Заказывая котельные установки у ГК Газовик, Вы можете быть уверены в бесперебойном обеспечении тепловой энергией потребителей.