Электрооборудование

Два раза брошена игральная кость. Решение задач (2019)

Два раза брошена игральная кость.  Решение задач (2019)

Задачи на вероятность игральной кости не менее популярны, чем задачи о подбрасывании монет. Условие такой задачи обычно звучит так: при бросании одной или нескольких игральных костей (2 или 3), какова вероятность того, что сумма очков будет равна 10, или число очков равно 4, или произведение числа очков, или делится на 2 произведение числа очков и так далее.

Применение формулы классической вероятности является основным методом решения задач такого типа.

Одна игральная кость, вероятность.

Достаточно просто обстоит дело с одной игральной костью. определяется по формуле: P=m/n, где m - это число благоприятствующих событию исходов, а n - число всех элементарных равновозможных исходов эксперимента с подбрасыванием кости или кубика.

Задача 1. Один раз брошена игральная кость. Какова вероятность выпадения четного числа очков?

Поскольку игральная кость собой представляет кубик (или его еще называют правильной игральной костью, на все грани кубик выпадет с одинаковой вероятностью, так как он сбалансированный), у кубика 6 граней (число очков от 1 до 6, которые обычно обозначаются точками), это значит, что в задаче общее число исходов: n=6. Событию благоприятствуют только исходы, при которых выпадает грань с четными очками 2,4 и 6, у кубика таких граней: m=3. Теперь можем определить искомую вероятность игральной кости: P=3/6=1/2=0.5.

Задача 2. Брошен один раз игральный кубик. Какова вероятность, что выпадет не менее 5 очков?

Решается такая задача по аналогии с примером, указанным выше. При бросании игрального кубика общее число равновозможных исходов равно: n=6, а удовлетворяют условие задачи (выпало не менее 5 очков, то есть выпало 5 или 6 очков) только 2 исхода, значит m=2. Далее находим нужную вероятность: P=2/6=1/3=0.333.

Две игральные кости, вероятность.

При решении задач с бросанием 2-х игральных костей, очень удобно пользоваться специальной таблицей выпадения очков. На ней по горизонтали откладывается число очков, выпавших на первой кости, а по вертикали - число очков, которое выпало на второй кости. Заготовка имеет такой вид:

Но возникает вопрос, что же будет в пустых ячейках таблицы? Это зависит от задачи, которую потребуется решить. Если в задаче речь идет о сумме очков, тогда туда записывается сумма, а если про разность - значит записывается разность и так далее.

Задача 3. Брошены одновременно 2 игральные кости. Какова вероятность выпадения суммы менее 5 очков?

Для начала необходимо разобраться какое будет общее число исходов эксперимента. Все было очевидно при бросании одной кости 6 граней кубика - 6 исходов эксперимента. Но когда уже две кости, то возможные исходы можно представить как упорядоченные пары чисел вида (x, y), где х показывает сколько на первой кости выпало очков (от 1 до 6), а у - сколько выпало очков на второй кости (от 1 до 6). Всего таких числовых пар будет: n=6*6=36 (в таблице исходов им как раз соответствуют 36 ячеек).

Теперь можно заполнить таблицу, для этого в каждую ячейку заносится число суммы очков, которые выпали на первой и второй кости. Заполненная таблица выглядит так:

Благодаря таблице определим число исходов, которые благоприятствуют событию " выпадет в сумме менее 5 очков". Произведем подсчет числа ячеек, значение суммы в которых будет меньше числа 5 (это 2, 3 и 4). Такие ячейки для удобства закрашиваем, их будет m=6:

Учитывая данные таблицы, вероятность игральной кости равняется: P=6/36=1/6.

Задача 4. Было брошено две игральные кости. Определить вероятность того, что произведение числа очков будет делиться на 3.

Для решения задачи составим таблицу произведений очков, которые выпали на первой и на второй кости. В ней сразу же выделим числа кратные 3:

Записываем общее число исходов эксперимента n=36 (рассуждения такие же как в предыдущей задаче) и число благоприятствующих исходов (число ячеек, которые закрашены в таблице) m=20. Вероятность события равняется: P=20/36=5/9.

Задача 5. Дважды брошена игральная кость. Какова вероятность, что на первой и второй кости разность числа очков будет равна от 2 до 5?

Чтобы определить вероятность игральной кости запишем таблицу разностей очков и выделим в ней те ячейки, значение разности в которых будет между 2 и 5:

Число благоприятствующих исходов (число ячеек, закрашенных в таблице) равно m=10, общее число равновозможных элементарных исходов будет n=36. Определит вероятность события: P=10/36=5/18.

В случае простого события и при бросании 2-х костей, требуется построить таблицу, затем в ней выделить нужные ячейки и их число поделить на 36, это и будет считаться вероятностью.

Цели урока:

Учащиеся должны знать:

  • определение вероятности случайного события;
  • уметь решать задачи на нахождение вероятности случайного события;
  • уметь применять теоретические знания на практике.

Задачи урока:

Образовательные: создать условия для овладения учащимися системы знаний, умений и навыков с понятиями вероятности события.

Воспитательные: формировать у учащихся научное мировоззрение

Развивающие: развивать у учащихся познавательный интерес, творческие способности, волю, память, речь, внимание, воображение, восприятие.

Методы организации учебно-познавательной деятельности:

  • наглядные,
  • практические,
  • по мыслительной деятельности: индуктивный,
  • по усвоению материала: частично-поисковый, репродуктивный,
  • по степени самостоятельности: самостоятельная работа,
  • стимулирующие: поощрения,
  • виды контроля: проверка самостоятельно решенных задач.

План урока

  1. Устные упражнения
  2. Изучение нового материала
  3. Решение заданий.
  4. Самостоятельная работа.
  5. Подведение итогов урока.
  6. Комментирование домашнего задания.

Оборудование: мультимедийный проектор (презентация), карточки (самостоятельная работа)

Ход урока

I. Организационный момент.

Организация класса в течение всего урока, готовность учащихся к уроку, порядок и дисциплина.

Постановка целей учения перед учащимися, как на весь урок, так и на отдельные его этапы.

Определить значимость изучаемого материала, как в данной теме, так и во все курсе.

II. Повторение

1. Что такое вероятность?

Вероятность – возможность исполнения, осуществимости чего-нибудь.

2. Какое определение дает основатель современной теории вероятностей А.Н. Колмогоров?

Вероятность математическая – это числовая характеристика степени возможности появления какого-либо определенного события в тех или иных определенных, могущих повторяться неограниченное число раз условиях.

3. Какое классическое определение вероятности дают авторы школьных учебников?

Вероятностью Р(А) события А в испытании с равновозможными элементарными исходами называется отношение числа исходов m, благоприятствующих событию А, к числу n всех исходов испытания.

Вывод: в математике вероятность измеряется числом.

Сегодня мы с вами продолжим рассматривать математическую модель “игральная кость”.

Предметом исследования в теории вероятностей являются события, появляющиеся при определенных условиях, которые можно воспроизводить неограниченное количество раз. Каждое осуществление этих условий называют испытанием.

Испытание – бросание игральной кости.

Событие – выпадение шестерки или выпадение четного числа очков.

Выпадение каждой грани при многократном бросании кубика имеет одинаковую вероятность (игральная кость правильная).

III. Устное решение задач.

1. Игральную кость (кубик) бросили один раз. Какова вероятность того, что выпало 4 очка?

Решение. Случайный эксперимент – бросание кубика. Событие – число на выпавшей грани. Граней всего шесть. Перечислим все события: 1, 2, 3, 4, 5, 6. Значит п = 6. Событию А = {выпало 4 очка} благоприятствует одно событие: 4. Поэтому т = 1. События равновозможные, поскольку подразумевается, что кубик честный. Поэтому Р(А) = т/п = 1/6 = 0,17.

2. Игральную кость (кубик) бросили один раз. Какова вероятность того, что выпало не более 4 очков?

п = 6. Событию А = {выпало не более 4 очков} благоприятствует 4 события: 1, 2, 3, 4. Поэтому т = 4. Поэтому Р(А) = т/п = 4/6 = 0,67.

3. Игральную кость (кубик) бросили один раз. Какова вероятность того, что выпало менее 4 очков?

Решение. Случайный эксперимент – бросание кубика. Событие – число на выпавшей грани. Значит п = 6. Событию А = {выпало менее 4 очков} благоприятствует 3 события: 1, 2, 3. Поэтому т = 3. Р(А) = т/п = 3/6 = 0,5.

4. Игральную кость (кубик) бросили один раз. Какова вероятность того, что выпало нечетное число очков?

Решение. Случайный эксперимент – бросание кубика. Событие – число на выпавшей грани. Значит п = 6. Событию А = {выпало нечетное число очков} благоприятствует 3 события: 1,3,5. Поэтому т = 3. Р(А) = т/п = 3/6 = 0,5.

IV. Изучение нового

Сегодня рассмотрим задачи, когда в случайном эксперименте используются две игральные кости или выполняются два, три броска.

1. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что сумма выпавших очков равна 6. Ответ округлите до сотых.

Решение. Исход в этом опыте – упорядоченная пара чисел. Первое число выпадет на первом кубике, второе – на втором. Множество исходов удобно представить таблицей.

Строки соответствуют количеству очков на первом кубике, столбцы – на втором кубике. Всего элементарных событий п = 36.

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Напишем в каждой клетке сумму выпавших очков и закрасим клетки, где сумма равна 6.

Таких ячеек 5. Значит, событию А = {сумма выпавших очков равна 6} благоприятствует 5 исходов. Следовательно, т = 5. Поэтому, Р(А) = 5/36 = 0,14.

2. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 3 очка. Результат округлите до сотых.

п = 36.

Событию А = {сумма равна 3} благоприятствуют 2 исходов. Следовательно, т = 2.

Поэтому, Р(А) = 2/36 = 0,06.

3. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет более 10 очков. Результат округлите до сотых.

Решение. Исход в этом опыте – упорядоченная пара чисел. Всего событий п = 36.

Событию А = {в сумме выпадет более 10 очков} благоприятствуют 3 исхода.

Следовательно, т

4. Люба дважды бросает игральный кубик. В сумме у неё выпало 9 очков. Найдите вероятность того, что при одном из бросков выпало 5 очков.

Решение Исход в этом опыте – упорядоченная пара чисел. Первое число выпадет при первом броске, второе – при втором. Множество исходов удобно представить таблицей.

Строки соответствуют результату первого броска, столбцы – результату второго броска.

Всего событий, при которых сумма очков 9 будет п = 4. Событию А = {при одном из бросков выпало 5 очков} благоприятствует 2 исхода. Следовательно, т = 2.

Поэтому, Р(А) = 2/4 = 0,5.

5. Света дважды бросает игральный кубик. В сумме у неё выпало 6 очков. Найдите вероятность того, что при одном из бросков выпало 1 очко.

Первое бросание

Второе бросание

Сумма очков

Равновозможных исходов – 5.

Вероятность события р = 2/5 = 0,4.

6. Оля дважды бросает игральный кубик. В сумме у нее выпало 5 очков. Найдите вероятность того, что при первом броске выпало 3 очка.

Первое бросание

Второе бросание

Сумма очков

+ =
+ =
+ =
+ =

Равновозможных исходов – 4.

Благоприятствующих исходов – 1.

Вероятность события р = 1/4 = 0,25.

7. Наташа и Витя играют в кости. Они бросают игральную кость по одному разу.

Выигрывает тот, кто выбросил больше очков. Если очков выпало поровну, то наступает ничья. В сумме выпало 8 очков. Найдите вероятность того, что Наташа выиграла.

Сумма очков

+ =
+ =
+ =
+ =
+ =

Равновозможных исходов – 5.

Благоприятствующих исходов – 2.

Вероятность события р = 2/5 = 0,4.

8. Таня и Наташа играют в кости. Они бросают игральную кость по одному разу. Выигрывает тот, кто выбросил больше очков. Если очков выпало поровну, то наступает ничья. В сумме выпало 6 очков. Найдите вероятность того, что Таня проиграла.

Таня Наташа Сумма очков
+ =
+ =
+ =
+ =
+ =

Равновозможных исходов – 5.

Благоприятствующих исходов – 2.

Вероятность события р = 2/5 = 0,4.

9. Коля и Лена играют в кости. Они бросают игральную кость по одному разу. Выигрывает тот, кто выбросил больше очков. Если очков выпало поровну, то наступает ничья. Первым бросил Коля, у него выпало 3 очка. Найдите вероятность того, что Лена не выиграет.

У Коли выпало 3 очка.

У Лены равновозможных исходов – 6.

Благоприятствующих проигрышу исходов – 3 (при1 и при 2 и при 3).

Вероятность события р = 3/6 = 0,5.

10. Маша трижды бросает игральный кубик. Какова вероятность того, что все три раза выпадут чётные числа.

У Маши равновозможных исходов – 6 · 6 · 6 = 216.

Благоприятствующих проигрышу исходов – 3 · 3 · 3 = 27.

Вероятность события р = 27/216 = 1/8 = 0,125.

11. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 16 очков. Результат округлите до сотых.

Решение.

Вторая Третья Сумма очков
+ + =
+ + =
+ + =
+ + =
+ + =
+ + =

Равновозможных исходов – 6 · 6 · 6 = 216.

Благоприятствующих исходов – 6.

Вероятность события р = 6/216 = 1/36 = 0,277… = 0,28. Следовательно, т = 3. Поэтому, Р (А) = 3/36 = 0,08.

V. Самостоятельная работа.

Вариант 1.

  1. Игральную кость (кубик) бросили один раз. Какова вероятность того, что выпало не менее 4 очков? (Ответ:0,5)
  2. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат округлите до сотых. (Ответ:0,11)
  3. Аня дважды бросает игральный кубик. В сумме у нее выпало 3 очка. Найдите вероятность того, что при первом броске выпало 1 очко. (Ответ:0,5)
  4. Катя и Ира играют в кости. Они бросают игральную кость по одному разу. Выигрывает тот, кто выбросил больше очков. Если очков выпало поровну, то наступает ничья. В сумме выпало 9 очков. Найдите вероятность того, что Ира проиграла. (Ответ:0,5)
  5. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 15 очков. Результат округлите до сотых. (Ответ:0,05)

Вариант 2.

  1. Игральную кость (кубик) бросили один раз. Какова вероятность того, что выпало не более 3 очков? (Ответ:0,5)
  2. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 10 очков. Результат округлите до сотых. (Ответ:0,08)
  3. Женя дважды бросает игральный кубик. В сумме у нее выпало 5 очков. Найдите вероятность того, что при первом броске выпало 2 очка. (Ответ:0,25)
  4. Маша и Даша играют в кости. Они бросают игральную кость по одному разу. Выигрывает тот, кто выбросил больше очков. Если очков выпало поровну, то наступает ничья. В сумме выпало 11 очков. Найдите вероятность того, что Маша выиграла. (Ответ:0,5)
  5. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 17 очков. Результат округлите

VI. Домашняя работа

  1. В случайном эксперименте бросают три игральные кости. В сумме выпало 12 очков. Найдите вероятность того, что при первом броске выпало 5 очкаов Результат округлите до сотых.
  2. Катя трижды бросает игральный кубик. Какова вероятность того, что все три раза выпадут одинаковые числа?

VII. Итог урока

Что нужно знать для нахождения вероятности случайного события?

Для вычисления классической вероятности нужно знать все возможные исходы события и благоприятные исходы.

Классическое определение вероятности применимо только к событиям с равновозможными исходами, что ограничивает область его применения.

Для чего в школе изучаем теорию вероятности?

Многие явления окружающего нас мира поддаются описанию только с помощью теории вероятностей.

Литература

  1. Алгебра и начала математического анализа.10-11 классы: учеб. для общеобразовательных учреждений: базовый уровень / [Ш.А.Алимов, Ю.М.Колягин, М.В.Ткачева и др.]. – 16-е изд., перераб. – М.: Просвещение, 2010. – 464 с.
  2. Семенов А.Л. ЕГЭ: 3000 задач с ответами по математике. Все задания группы В / – 3-е изд., перераб. и доп. – М.: Издательство “Экзамен”, 2012. – 543с.
  3. Высоцкий И.Р., Ященко И.В. ЕГЭ 2012. Математика. Задача В10. Теория вероятностей. Рабочая тетрадь /Под ред. А.Л.Семенова и И.В.Ященко. – М.: МЦШМО, 2012. – 48 с.

Начальный уровень

Теория вероятностей. Решение задач (2019)

Что такое вероятность?

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность - это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры, а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей, нужная дверь. Вероятность угадать, позвонив в первую дверь: . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком - когда не совпадает.

Как видишь всего возможно вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего . То есть раза из ты угадаешь, позвонив в дверь раз, т.е. .

Это и есть вероятность - отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение - это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за - количество благоприятных исходов, а за - общее количество исходов.

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на:

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие - это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что, то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть варианта, из которых - благоприятны. То есть вероятность равна.

А почему не?

Рассмотренная нами ситуация - пример зависимых событий. Первое событие - это первый звонок в дверь, второе событие - это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно, .

Но если есть зависимые события, то должны быть и независимые ? Верно, бывают.

Хрестоматийный пример - бросание монетки.

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно - , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только.
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же. Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на раз будет все также. Вариантов всегда, а благоприятных - .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится раз (раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет - независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта. Из них нас устраивает только. То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на.

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из конфет - с орехами, с коньяком, с вишней, с карамелью и с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов? .

То есть, взяв одну конфету, она будет одной из, имеющихся в коробке.

А сколько благоприятных исходов?

Потому что в коробке только конфет с орехами.

Ответ:

Пример 3.

В коробке шаров. из них белые, - черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего шаров. Из них белых.

Вероятность равна:

б) Теперь шаров в коробке стало. А белых осталось столько же - .

Ответ:

Полная вероятность

Вероятность всех возможных событий равна ().

Допустим, в ящике красных и зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар

Зеленый шар:

Красный или зеленый шар:

Как видишь, сумма всех возможных событий равна (). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит фломастеров: зеленых, красных, синих, желтых, черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.

Вероятность всех событий. А вероятность событий, которые мы считаем неблагоприятными (когда вытащим красный фломастер) - .

Таким образом, вероятность вытащить НЕ красный фломастер - .

Ответ:

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Допустим мы хотим знать, какова вероятность того, что бросая монетку раза, мы два раза увидим орла?

Мы уже считали - .

А если бросаем монетку раза? Какова вероятность увидеть орла раза подряд?

Всего возможных вариантов:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я раза ошибся, составляя этот список. Ух! А подходит нам только вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в испытании? . Теперь мы бросаем монетку раз.

Какова вероятность выпадения раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при бросках подряд, мы поступили бы также.

Вероятность выпадения решка - , орла - .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий.

Так стоп! Новое определение.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий. - это несовместные события.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки - это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности) (или любой другой), то мы пользуемся правилом умножения вероятностей.
Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно раз, т.е. варианты и, то мы должны сложить вероятности этих последовательностей.

Всего вариантов, нам подходит.

То же самое мы можем получить, сложив вероятности появления каждой последовательности:

Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Возвратимся к примеру, когда мы подбросили монетку раза, и хотим узнать вероятность увидеть орла раз.
Что должно произойти?

Должны выпасть:
(орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел).
Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит карандашей. красных, зеленых, оранжевых и желтых и черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Что должно произойти? Мы должны вытащить (красный ИЛИ зеленый).

Теперь понятно, складываем вероятности этих событий:

Ответ:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить очков?

(и) или (и) или (и) или (и) или (и).

Вероятность выпадения одной (любой) грани - .

Считаем вероятность:

Ответ:

Тренировка.

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой карты, из них пик, червей, 13 треф и 13 бубен. От до туза каждой масти.

  1. Какова вероятность вытащить трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию - (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

  1. В колоде карты каждого достоинства, значит:
  2. События зависимы, так как после первой вытащенной карты количество карт в колоде уменьшилось (как и количество «картинок»). Всего вальтов, дам, королей и тузов в колоде изначально, а значит вероятность первой картой вытащить «картинку»:

    Поскольку мы убираем из колоды первую карту, то значит в колоде осталось уже карта, из них картинок. Вероятность второй картой вытащить картинку:

    Поскольку нас интересует ситуация, когда мы достаем из колоды: «картинку» И «картинку», то нужно перемножать вероятности:

    Ответ:

  3. После первой вытащенной карты, количество карт в колоде уменьшится.Таким образом, нам подходит два варианта:
    1) Первой картой вытаскиваем Туза, второй - валета, даму или короля
    2) Первой картой вытаскиваем валета, даму или короля, второй - туза.Т.е. (туз и (валет или дама или король)) или ((валет или дама или король) и туз). Не забываем про уменьшение количества карт в колоде!

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СРЕДНИЙ УРОВЕНЬ

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от до скольки? До.

Итак, мы бросаем кость и хотим, чтобы выпало или. И нам выпадает.

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало, событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий, значит, неблагоприятных из них события (это если выпадет или).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий . То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой (видимо, от английского слова probability - вероятность).

Принято измерять вероятность в процентах (см. тему , ) . Для этого значение вероятности нужно умножать на. В примере с игральной костью вероятность.

А в процентах: .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой - нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка - всего два. А сколько из них благоприятных? Только один - орел. Значит, вероятность

    С решкой то же самое: .

  2. Всего вариантов: (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них: (это все четные числа:).
    Вероятность. С нечетными, естественно, то же самое.
  3. Всего: . Благоприятных: . Вероятность: .

Полная вероятность

Все карандаши в ящике зеленые. Какова вероятность вытащить красный карандаш? Шансов нет: вероятность (ведь благоприятных событий -).

Такое событие называется невозможным .

А какова вероятность вытащить зеленый карандаш? Благоприятных событий ровно столько же, сколько событий всего (все события - благоприятные). Значит, вероятность равна или.

Такое событие называется достоверным .

Если в ящике зеленых и красных карандашей, какова вероятность вытащить зеленый или красный? Опять же. Заметим такую вещь: вероятность вытащить зеленый равна, а красный - .

В сумме эти вероятности равны ровно. То есть, сумма вероятностей всех возможных событий равна или.

Пример:

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность не вытащить зеленый?

Решение:

Помним, что все вероятности в сумме дают. А вероятность вытащить зеленый равна. Значит, вероятность не вытащить зеленый равна.

Запомни этот прием: вероятность того, что событие не произойдет равна минус вероятность того, что событие произойдет.

Независимые события и правило умножения

Ты кидаешь монетку раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна.

Хорошо. А теперь кидаем монетку раза. Посчитай сам. Получилось? (ответ).

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в раза. Общее правило называется правилом умножения :

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет?
  2. Монетку бросают раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна?

Ответы:

  1. События независимы, значит, работает правило умножения: .
  2. Вероятность орла равна. Вероятность решки - тоже. Перемножаем:
  3. 12 может получиться только, если выпадут две -ки: .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность вытащить зеленый или красный?

Решение .

Вероятность вытащить зеленый карандаш равна. Красный - .

Благоприятных событий всего: зеленых + красных. Значит, вероятность вытащить зеленый или красный равна.

Эту же вероятность можно представить в таком виде: .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение .

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» - сложение:

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет очков?

Решения:

  1. (Выпал орел и выпал орел) или (выпала решка и выпала решка): .
  2. Какие есть варианты? и. Тогда:
    Выпало (и) или (и) или (и): .

Еще пример:

Бросаем монетку раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

Ой, как же не хочется перебирать варианты… Орел-решка-решка, Орел-орел-решка, … А и не надо! Вспоминаем про полную вероятность. Вспомнил? Какова вероятность, что орел не выпадет ни разу ? Это же просто: все время летят решки, значит.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. КОРОТКО О ГЛАВНОМ

Вероятность - это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна ().

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 999 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Во втором случае мы подарим тебе тренажер “6000 задач с решениями и ответами, по каждой теме, по всем уровням сложности”. Его точно хватит, чтобы набить руку на решении задач по любой теме.

На самом деле это намного больше, чем просто тренажер - целая программа подготовки. Если понадобится, ты сможешь ею так же воспользоваться БЕСПЛАТНО.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!