В квартире

Явлениям ультрафиолетовому излучению не поддаются. Лечебное применение ультрафиолетового излучения

Явлениям ультрафиолетовому излучению не поддаются. Лечебное применение ультрафиолетового излучения

С открытием инфракрасного излучения у известного в свое время германского физика Иоганна Вильгельма Риттера возникло желание изучить противоположную сторону данного явления.

Спустя некоторое время ему удалось выяснить, что на другой конец обладает немалой химической активностью.

Такой спектр стали называть ультрафиолетовыми лучами. Что оно собой представляет и какое влияние оказывает на живые земные организмы, попробуем разобраться далее.

Оба излучения – это в любом случае электромагнитные волны. Как инфракрасное, так и ультрафиолетовое, они с обеих сторон ограничивают спектр света, воспринимаемого человеческим глазом.

Главное отличие этих двух явлений – длина волны. Ультрафиолет обладает достаточно широким диапазоном длины волны – от 10 до 380 мкм и располагается он между видимым светом и рентген-излучением.


Отличия инфракрасного излучения от ультрафиолетового

ИК-излучение имеет основное свойство – излучать тепло, в то время, как ультрафиолетовое обладает химической активностью, что оказывает ощутимое воздействие на человеческий организм.

Как ультрафиолетовое излучение влияет на человека?

Благодаря тому, что УФ делятся по разности длины волны, биологически они влияют на человеческий организм по-разному, поэтому ученые выделяют три участка ультрафиолетового диапазона: УФ-А, УФ-Б, УФ-С: ближний, средний и дальний ультрафиолет.

Атмосфера, которая окутывает нашу планету, выступает в роли защитного щита, что защищает ее от Солнечного потока ультрафиолета. Дальнее излучение удерживается и поглощается практически полностью посредством кислорода, водяного пара, углекислого газа. Таким образом, на поверхность попадает незначительная радиация в виде ближнего и среднего излучения.

Самое опасное – излучение с небольшой длиной волны. Если коротковолновое излучение опадает на живые ткани, это провоцирует моментальное разрушительное действие. Но благодаря тому, что у нашей планеты есть озоновый щит, мы находимся в безопасности от воздействия подобных лучей.

ВАЖНО! Несмотря на природную защиту, мы пользуемся в быту некоторыми изобретениями, являющимися источниками именно данного диапазона лучей. Это сварочные аппараты и ультрафиолетовые лампы, от которых, к сожалению, отказаться нельзя.

Биологически ультрафиолет воздействует на человеческую кожу как небольшое покраснение, загар, что является достаточно мягкой реакцией. Но стоит учитывать индивидуальную особенность кожи, которая может специфически отреагировать на УФ излучение.

Воздействие УФ лучей также неблагоприятно влияет на глаза. Многие осведомлены в том, что ультрафиолет так или иначе влияет на человеческий организм, но подробности известны не все, поэтому далее попробуем более детально разобраться в этой теме.

УФ мутагенез или как УФ воздействует на человеческую кожу

Полностью отказываться от попадания солнечных лучей на кожный покров нельзя, это привод к крайне неприятным последствиям.

Но также впадать в крайность и стараться приобрести привлекательный оттенок тела, изнуряя себя под беспощадными лучами солнца – противопоказано. Что может произойти в случае бесконтрольного пребывания под палящим солнцем?

Если обнаружилось покраснение кожи, это не является признаком того, что спустя некоторое время, оно пройдет и останется милый, шоколадный загар. Кожа темнее вследствие того, что организмом вырабатывается красящий пигмент, меланин, который борется с неблагоприятным воздействием УФ на наш организм.

Притом, покраснение на коже остается недолго, а вот эластичность она может утратить навсегда. Также могут начать разрастаться клетки эпителия, визуально отражающиеся в виде веснушек и пигментных пятен, что также останется надолго, а то и навсегда.

Проникая глубока в ткани, ультрафиолет может привести к ультрафиолетовому мутагенезу, что представляет собой повреждение клеток на генном уровне. Наиболее опасным может стать меланома, в случае метастазировании которой может наступить смерть.

Как защититься от ультрафиолетового излучения?

Можно ли защитить кожу от негативного воздействия ультрафиолета? Да, если, будучи на пляже, придерживаться всего нескольких правил:

  1. Находиться под палящим солнцем необходимо недолго и в строго определенные часы, когда приобретенный легкий загар выступит как фотозащита кожи.
  2. Обязательно использовать солнцезащитные крема. Прежде чем купить такого рода средство, обязательно проверьте, способно ли оно защитить вас от УФ-А и УФ-В.
  3. Стоит включить в рацион питания продукты, содержащие максимальное количество витаминов С и Е, а также богатые на антиоксиданты.

Если вы находитесь не на пляже, но вынуждены находится од открытым небом, стоит выбирать специальную одежду, способную защитить кожу от УФ.

Электроофтальмия – негативное влияние УФ-излучения на глаза

Электроофтальмия – явление, возникающие вследствие негативного воздействия ультрафиолета на структуру глаза. УФ волны со средним диапазонов в данном случае являются очень разрушающими для человеческого зрения.


Электроофтальмия

Данные явления чаще всего возникают, когда:

  • Человек наблюдает за солнцем, его местонахождением, не обезопасив глаза специальными приспособлениями;
  • Яркое солнце на открытом пространстве (пляж);
  • Человек находится в заснеженном районе, в горах;
  • В помещении, где находится человек, рассоложены кварцевые лампы.

Электроофтальмия может привести к ожогу роговицы, главными симптомами которого можно назвать:

  • Слезоточивость глаз;
  • Существенные рези;
  • Боязнь яркого света;
  • Покраснение белка;
  • Отёк эпителия роговицы и век.

О статистике глубокие слои роговицы не успевают подвергнуться поражению, поэтому, когда эпителий заживляется, зрение полностью восстанавливается.

Как оказать первую помощь при электроофтальмии?

Если человек столкнулся с вышеперечисленными симптомами, это не только эстетически неприятно, но и может доставить немыслимые страдания.

Оказание первой помощи довольно простое:

  • Сперва промыть глаза чистой водой;
  • Затем применить увлажняющие капли;
  • Надеть очки;

Чтобы избавиться от рези в глазах, достаточно сделать компресс из влажных пакетиков от черного чая, или же натереть сырой картофель. В случае, если эти способы не помогли, стоит сразу же обратиться за помощью к специалисту.

Чтобы избежать подобных ситуаций, достаточно приобрести социальные солнцезащитные очки. Маркировка UV-400 говорит о том, что данный аксессуар способен защитить глаза от всех УФ-излучений.

Как УФ-излучение используется в медицинской практике?

В медицине есть понятие «ультрафиолетового голодания», что может возникнуть в случае длительного избегания солнечного света. При этом могут возникнут неприятные патологии, избежать которые легко, используя искусственные источники ультрафиолета.

Их небольшое воздействие способно компенсировать дефицит зимней нехватки витамина D.

Помимо этого, подобная терапия применима в случае проблем с суставами, заболевания кожи и аллергических реакций.

При помощи УФ-излучения можно:

  • Повысить гемоглобин, но снизить уровень сахара;
  • Нормализовать работу щитовидки;
  • Улучшить и устранить проблемы дыхательной и эндокринной системы;
  • При помощи установок с ультрафиолетовым излучением дизенфицируют помещения и хирургические инструменты;
  • УФ-лучи обладают бактерицидными свойствами, что особенно полезно для больных с гнойными ранами.

ВАЖНО! Всегда, применяя подобные излучения на практике, стоит ознакомиться не только с положительными, но и с негативными сторонами их воздействия. Применять искусственное, как и природное УФ-излучение в качестве лечения категорически запрещается при онкологии, кровотечениях, гипертонии 1 и 2 стадии, туберкулёзе активной формы.

Разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента.

Идеи о единстве трёх различных частей спектра впервые появились лишь в 1842 году в трудах Александра Беккереля , Мачедонио Меллони и др.

Подтипы

В качестве активной среды в ультрафиолетовых лазерах могут использоваться либо газы (например, аргоновый лазер , азотный лазер , эксимерный лазер и др.), конденсированные инертные газы , специальные кристаллы, органические сцинтилляторы , либо свободные электроны , распространяющиеся в ондуляторе .

Также существуют ультрафиолетовые лазеры, использующие эффекты нелинейной оптики для генерации второй или третьей гармоники в ультрафиолетовом диапазоне.

Воздействие

Деградация полимеров и красителей

На здоровье человека

В наиболее распространённых лампах низкого давления почти весь спектр излучения приходится на длину волны 253,7 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК). Этот пик находится в районе длины волны излучения равной 253,7 нм, которое оказывает наибольшее влияние на ДНК, однако природные вещества (например, вода) задерживают проникновение УФ.

Относительная спектральная бактерицидная эффективность ультрафиолетового излучения - относительная зависимость действия бактерицидного ультрафиолетового излучения от длины волны в спектральном диапазоне 205 - 315 нм. При длине волны 265 нм максимальное значение спектральной бактерицидной эффективности равно единице.

Бактерицидное УФ-излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию. Ультрафиолетовые лампы с бактерицидным эффектом в основном используются в таких устройствах, как бактерицидные облучатели и бактерицидные рециркуляторы.

Обеззараживание воздуха и поверхностей

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоемов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

Ультрафиолетовые лампы с бактерицидным эффектом в обиходе часто называют просто бактерицидными лампами . Кварцевые лампы также имеют бактерицидный эффект, но их название обусловлено не эффектом действия, как у бактерицидных лампах, а связано с материалом колбы лампы -

Ультрафиолетовое излучение Солнца и искусственных источников в зависимости от длины волны делят на три диапазона:

  • - область А – длина волны 400-320 нм (длинноволновое ультрафиолетовое излучение УФ-А);
  • - область Б – длина волны 320-275 нм (средневолновое ультрафиолетовое излучение УФ-В);
  • - область С – длина волны 275-180 нм (коротковолновое ультрафиолетовое излучение УФ-С).

В действии длинно, средне и коротковолнового излучения на клетки, ткани и организм имеются существенные различия.

Область А (УФ-А) длинноволновое излучение оказывает разнообразное биологическое действие, вызывает пигментацию кожи и флуоресценцию органических веществ. УФ-А – лучи обладают наибольшей проникающей способностью, что позволяет некоторым атомам и молекулам тела избирательно поглощать энергию УФ-излучения и переходить в неустойчивое возбужденное состояние. Последующий переход в исходное состояние сопровождается выделением квантов света (фотонов), способных инициировать различные фотохимические процессы, прежде всего затрагивающие ДНК, РНК, белковые молекулы.

Фототехнические процессы вызывают реакции и изменения со стороны различных органов и систем, которые составляют основу физиологического и лечебного действия УФ – лучей. Происходящие в облученном УФ – лучами организме сдвиги и эффекты (фотоэритема, пигментация, десенсибилизация, бактерицидный эффект и др.) имеют четкую спектральную зависимость (рис. 1), что и служит основой дифференцированного применения различных участков УФ – спектра.

Рисунок 1 - Спектральная зависимость важнейших биологических эффектов ультрафиолетового излучения

Облучение средневолновыми УФ-лучами вызывает фотолиз белка с образованием биологически активных веществ, а воздействие коротковолновыми лучами чаще приводит к коагуляции и денатурации белковых молекул. Под воздействием УФ-лучей диапазонов В и С, особенно в больших дозировках, происходят изменения в нуклеиновых кислотах, в результате чего возможно возникновение клеточных мутаций.

В то же время длинноволновые лучи приводят к образованию специфического фермента фотореактивации, способствующего восстановлению нуклеиновых кислот.

  1. Наиболее широко УФ-излучение используется с лечебными целями.
  2. Используются УФ-лучи также для стерилизации и дезинфекции воды, воздуха, помещений, предметов и т. д.
  3. Весьма распространено их применение с профилактическими и косметическими целями.
  4. Применяют УФ-излучение и с диагностическими целями, для определения реактивности организма, в люминисцентных методах.

УФ-излучение – жизненно необходимый фактор, а его длительный недостаток ведет к развитию своеобразного симптомокомплекса, имеющего «световым голоданием» или «УФ-недостаточностью». Наиболее часто он проявляется развитием авитаминоза D, ослаблением защитных иммунобиологических реакций организма, обострением хронических заболеваний, функциональными расстройствами нервной системы и т. д.К контингентам, испытывающим «УФ-недостаточность», относятся рабочие шахт, рудников, метро, люди работающие в бесфонарныхи безоконных цехах, машинных отделениях и на Крайнем Севере.

Ультрафиолетовое облучение

Ультрафиолетовое облучение производится различными искусственными изделиями с отличными друг от друга длинами волн λ. Поглощение УФ-лучей сопровождается рядом первичных фотохимических и фотофизических процессов, которые зависят от их спектрального состава и определяют физиологическое и лечебное действие фактора на организм.

Длинноволновые ультрафиолетовые (ДУФ) лучи стимулируют пролиферацию клеток мальпигиевого слоя эпидермоса и декарбоксилирование тирозина с последующим образованием в клетках шиповидногослоя. Далее идет стимулирование синтеза АКТГ и других гармонов и т. д. Получаются различные иммунологические сдвиги.

ДУФ-лучи оказывают более слабое, чем другие УФ-лучи биологическое, в том числе и эритемообразующее действие. Для усиления чувствительности кожи к ним используют фотосенсибилизаторы, чаще всего соединения фурокумаринового ряда (пувален, бероксан, псорален, амминофурин и др.)

Это свойство длинноволнового излучения позволяет его применять при лечении кожных заболеваний. Метод ПУВА-терапии (используется и салициловый спирт).

Таким образом можно выделить основные характеристики лечебных эффектов ДУФ-лучей:

  1. Лечебными эффектами являются
  • - фотосенсибилизирующий,
  • - пигментообразующий,
  • - иммуностимулирующий.
  1. ДУФ-лучи, как и другие области УФ-излучения вызывают изменение функционального состояния ЦНС и ее высшего отдела коры головного мозга. За счет рефлекторной реакции улучшается кровообращение, усиливается секторная активность органов пищеварения и функциональное состояние почек.
  2. ДУФ-лучи влияют на обмен веществ, прежде всего минеральный и азотный.
  3. Широко применяют местные аппликации фотосенсибилизаторов при ограниченных формах псориаза. В последнее время с успехом в качестве сенсибилизатора используют УФ-В как обладающее большей биологической активностью. Комбинированное облучение УФ-А и УФ-В называют селективным облучением.
  4. ДУФ-лучи используют как для местных, так и для общих облучений. Основными показаниями для их применения являются:
  • - кожные заболевания (псориаз, экзема, витилиго, себорея и др.)
  • - хронические воспалительные заболевания внутренних органов (особенно органов дыхания)
  • - заболевания органов опоры и движения различной этнологии
  • - ожоги, отморожения
  • - вялозаживающие раны и язвы, косметические цели.

Протвопоказания

  • - острые противовоспалительные процессы,
  • - заболевания печени и почек с выраженным нарушением их функций,
  • - гипертиреоз,
  • - повышенная чувствительность к ДУФ-излучениям.

Средневолновое ультрафиолетовое (СУФ) излучение обладает выраженным и разносторонним биологическим действием.

При поглощении квантов СУФ-излучения в коже образуются низкомолекулярные продукты фотолиза белка и продукты перекисного окисления липидов. Они вызывают изменения ультраструктурной организации биологических мембран, белково-липидных комплексов, мембранных ферментов и их важнейших физико-химических и функциональных свойств.

Продукты фотораспада активируют систему мононуклеарных фагоцитов и вызывают дегрануляцию лаброцитов и базофилов. В результате в облученной области и прилежащих тканях происходит выделение биологически активных веществ (кининн, простогландинн, гепарин, лейкотриены, тромбоксаны и др.) и вазоактивных медиаторов (ацетилхолин, гистамин), которые существенно увеличивают проницаемость и тонус сосудов, а также способствуют расслаблению гладкой мускулатуры. Вследствие гумаральных механизмов увеличивается количество функционирующих капилляров кожи, нарастает скорость местного кровотока, что ведет к формированию эритомы.

Повторные СУФ-облучения могут привести к появлению быстро исчезающей пигментации, способствующей повышению барьерной функции кожи, повышают ее холодовую чувствительность и резистентность к действию токсических веществ и неблагоприятных факторов.

Как эритемная реакция, так и другие сдвиги, вызываемые СУФ-лучами зависят не только от длины волны, но и от дозировки. В фототерапии его применяют в эритемных и субэритемных дозах.

Облучение СУФ-лучами в субэритемных дозировках способствует образованию в коже витамина D, который после его биотрансформации в печени и почках участвует в регуляции фосфорно-кальциевого обмена в организме. СУФ-облучение способствует образованию не только витамина D1, но и его изомера – эргокальцифемина (витамина D2). Последний обладает антирахитическим действием, стимулирует аэробный и анаэробный пути клеточного дыхания. СУФ-лучи в небольших дозировках также модулируют обмен других витаминов (А и С) вызывают активизацию метаболических процессов в облученных тканях. Под их влиянием активируется адаптационно-трофическая функция симпатической нервной системы, нормализуются нарушенные процессы различных видов обмена веществ, сердечнососудистая деятельность.

Таким образом СУФ-излучение обладает выраженным биологическим действием. В зависимости от фазы облучения можно получить эритему на коже и слизистых оболочках или проводить лечение в дозе, не вызывающей ее. Механизм лечебного действия эритемных и безэритемных доз СУФ различный, следовательно будут различными и показания к применению ультрафиолетового излучения.

Ультрафиолетовая эритема появляется на месте облучения УФ-В через 2-8 ч и связана с гибелью клеток эпидермиса. Продуты фотолиза белков поступают в ток крови и вызывают расширение сосудов, отек кожи, миграцию лейкоцитов, раздражение многочисленных рецепторов, ведущие к возникновению ряда рефлекторных реакций организма.

Кроме того, продукты фотолиза, попадающие в ток крови, оказывают гуморальное действие на отдельные органы, нервную и эндокринную системы организма. Явления асептического воспаления постепенно стихают к седьмому дню, оставляя после себя пигментацию кожи на месте облучения.

Основные лечебные эффекты СУФ-илучения:

  1. СУФ –излучения являются витаминно образующий, трофостимулирующий, иммуномодулирующий – это субэритемные дозы.
  2. Протиивовоспалиительный, анальгетический, десенсибилизирующий – это эритемная доза.
  3. Бронхиальные болезни, астма, закаливание – это безэритемная доза.

Показания к местному применению УФ-В (субэритемные и эритемные дозы):

  • - острый неврит
  • - острый меозит
  • - гнойничковые заболевания кожи (фурукул, карбункул, сикоз и др)
  • - рожа
  • - трофические язвы
  • - вялозаживающие раны
  • - пролежни
  • - воспалительные и посттравматические заболевания суставов
  • - ревматоидный артрит
  • - бронхиальная астма
  • - острый и хронический бронхит
  • - острые респературные заболевания
  • - воспаления придатков матки
  • - хронический тонзиллит.

Безэритемные зоны ультрафиолетового излучения спектра В при общих облучениях организма ликвидируют явления Д-гиповитаминоза, связанного с недостатком солнечного света. Нормализует фосфорно-кальциевый обмен, стимулируют функцию симпатико-адреналовой и гипофизарно-надпочечниковой систем, повышают механическую прочность костной ткани и стимулируют образование костной мозоли, повышают сопротивляемость кожи организма и организма в целом к вредным факторам внешней среды. Уменьшаются аллергические и экссудативные реакции, повышается умственная и физическая работоспособность. Ослабляются другие нарушения в организме, вызванные солнечным голоданием.

Показания к общему применению УФ-В (безэритемные дозы):

  • - D-гиповитаминоз
  • - нарушение обмена веществ
  • - предрасположенность к гнойничковым заболеваниям
  • - нейродермит
  • - псориаз
  • - переломы костей и нарушение образования костной мозоли
  • - бронхиальная астма
  • - хронические заболевания бронхиального аппарата
  • - закаливание организма.

Противопоказания:

  • - злокачественные новообразования
  • - наклонность к кровотечениям
  • - системные заболевания крови
  • - тиреотоксикоз
  • - активный туберкулез
  • - язвенная болезнь желудка и двенадцатиперстной кишки в стадии обострения
  • - гипертоническая болезнь II и III стадии
  • - далекозашедший атеросклероз артерий головного мозга и коронных артерий.

Коротковолновый ультрафиолетовый спектр излучения (КУФ) излучения.

УФ-излучение коротковолнового диапазона является активным физическим фактором, т. к. его кванты обладают наибольшим запасом энергии. Оно способно вызывать денатурацию и фотолиз нуклеиновых кислот и белков за счет избыточного поглащения энергии его квантов различными молекулами, в первую очередь ДНК и РНК.

При действии на микроорганизмы, на клетки это приводит к инактивации их генома и денатурации белка, что ведет к их гибели.

При излучении КУФ-лучей возникает бактерицидный эффект, т. к. прямое попадание их на белок гибельно для клеток вирусов, микроорганизмов и грибов.

КУФ-лучи вызывают после кратковременного спазма расширение кровеносных сосудов, прежде всего субкапелярных вен.

Показания к применению КУФ-излучений:

  • - облучение раневых поверхностей
  • - пролежни и миндалевидных ниш после тонзиллэктомин с бактерицидной цепью
  • - санация носоглотки при острых распиратурных заболеваниях
  • - лечение наружного отита
  • - обеззараживание воздуха в операционных, процедурных, ингаляториях, реанимационных отделениях, палатах больных, детских учреждениях и в школах.

Кожа и ее функция

Кожа человека составляет 18% от массы тела человека и имеет общую площадь 2м2. Состоит кожа из трех анатомически и физиологически тесно взаимосвязанных слоев:

  • - эпидермиса или надкожницы
  • - дермы (собственно кожа)
  • - гиподерма (подкожно жировая подкладка).

Эпидермис построен из различных по форме и строению, послойно расположенных эпителиальных клеток (эпитермоцитов). При этом каждая вышележащая клетка происходит из нижележащей, отражая определенную фазу ее жизни.

Слои эпидермиса распологаются в следующей последовательности (с низу в верх):

  • - базальный (Д) или зародышевый;
  • - слой шиповатых клеток;
  • - слой кератогиалиновых или зернистых клеток;
  • - эпейдиновый или блестящий;
  • - роговой.

Кроме эпидермоцитов в эпидермисе (в базальном слое) располагаются клетки, способные вырабатывать меланин (меланоциты), клетки Лагерганса, Гринстейна и др.

Дерма располагается непосредственно под эпидермисом и отделяется от него основной мембраной. В дерме различают сосочковый и сетчатый слои. Она состоит из коллагеновых, эластических и ретикулиновых (аргирофильных) волокон, между которыми располагается основное вещество.

В дерме, собственно, в коже находится сосочковый слой, богато снабженный кровеносными и лимфатическими сосудами. Здесь же имеются сплетения нервных волокон, дающие начало многочисленным нервным окончаниям в эпидермисе и дерме. В дерме заложены на различных уровнях потовый и сальные железы, волосяные фолликулы.

Подкожная жировая клетчатка является самым глубоким слоем кожи.

Функции кожи сложны и многообразны. Кожа выполняет барьерно - защитную, терморегуляторную, выделительную, обменную, рецепторную и т. д.

Барьерно – защитная функция, считающаяся главнейшей функцией кожи человека и животных, осуществляется за счет различных механизмов. Так, прочный и эластичный роговой слой кожи противостоит механическим влияниям и уменьшает вредное действие химических веществ. Роговой слой, являясь плохим проводником, предохраняет глубжележащие слои от высыхания, охлаждения и действия электрического тока.

Рисунок 2 – Строение кожи

Кожное сало, продукт секреции потовых желез и чешуйки отшелушивающегося эпителия образуют на поверхности кожи эмульсионную пленку (защитную мантию), играющую важную роль в предохранении кожи от воздействия химических, биологических и физических агентов.

Кислая реакция водно-липидной мантии и поверхностных слоев кожи, а также бактерицидные свойства кожного секрета являются важным барьерным механизмом для микроорганизмов.

В защите от световых лучей определенную роль играет пигмент меланин.

Электрофизиологический барьер является основным препятствием проникновения веществ в глубь кожи, в том числе и при электрофорезе. Он располагается на уровне базального слоя эпидермиса и представляет собой электрический слой с разнородными слоями. Наружный слой вследствие кислой реакции имеет «+» заряд, а обращенный внутрь «-». следует иметь в виду, что, с одной стороны, барьерно-защитная функция кожи ослабляет действие физических факторов на организм, а с другой стороны – физические факторы могут стимулировать защитные свойства кожи и тем самым реализовывать лечебные действие.

Физическая терморегуляция организма также является одной из важнейших физиологических функций кожи и имеет непосредственное отношение к механизму действия водолечебных факторов. Она осуществляется кожей путем теплоизлучения в виде инфракрасных лучей (44%) теплопроведения (31%) и испарения воды с поверхности кожи (21%). Важно отметить, что кожа с ее терморегуляторными механизмами играет большую роль в акклиматизации организма.

Секретно-экскреторная функция кожи связана с деятельностью потовых и сальных желез. Она играет важную роль в поддержании гомеостаза организма, в выполнении кожей барьерных свойств.

Дыхательная и резорбционная функция тесно взаимосвязаны. Дыхательная функция кожи, состоящая в поглощении кислорода и выделении углекислоты, в общем балансе дыхания для организма большого значения не имеет. Однако дыхание через кожу может значительно возрастать в условиях высокой температуры воздуха.

Резорбционная функция кожи, ее проницаемость имеют большое значение не только в дерматологии и токсикологии. Значение ее для физиотерапии определяется тем, что химический компонент действия многих лечебных факторов(лекарственных, газовых и минеральных ванн, грязелечения и др.) зависит от проникновения их составных ингредиентов через кожу.

Обменная функция кожи имеет специфические особенности. С одной стороны, в коже происходят только ей присущие обменные процессы (образование кератина, меланина, витамина D и др.), с другой – она принимает активное участие в общем обмене веществ в организме. Особенно велика ее роль в жировом, минеральном, углеводном и витаминном обменах.

Кожа является также местом синтеза биологически активных веществ (гепарина, гистамина, серотонина и др.).

Рецепторная функция кожи обеспечивает ее связь с внешней средой. Эту функцию кожа осуществляет в виде многочисленных условных и безусловных рефлексов благодаря наличию в ней упомянутых выше различных рецепторов.

Считают, что на 1 см2 кожи 100-200 болевых точек 12-15 холодовых, 1-2 тепловые, 25 точек давления.

Взаимосвязь с внутренними органами связана теснейшим образом – изменения кожи отражаются на деятельности внутренних органов, а нарушения со стороны внутренних органов сопровождаются сдвигами в коже. Эта взаимосвязь особенно четко проявляется при внутренних болезнях в виде так называемых рефлексогенных, или болевых, зон Захарина-Геда.

Захарьина-Геда зоны определенные области кожи, в которых при заболеваниях внутренних органов часто появляются отраженные боли, а также болевая и температурная гиперестезия.

Рисунок 3 – Расположение Захарьина-Геда зоны

Такие зоны при заболеваниях внутренних органов выявлены также в области головы. Например, боли в лобно-носовой области соответствует поражению верхушек легких, желудка, печени, устья аорты.

Боли в среднеглазичной области поражению легких, сердца, восходящей аорты.

Боли в лобно-височной области поражению легких, сердца.

Боли в теменной области поражению привратника и верхней части кишечника и т. д.

Зона комфорта область температурных условий внешней среды, вызывающих у человека субъективно хорошее теплоощущение без признаков охлаждения или перегрева.

Для обнаженного человека 17,3 0С – 21,7 0С

Для одетого человека 16,7 0С – 20,6 0С

Импульсная ультрафиолетовая терапия

НИИ энергетики машиностроения МГТУ им. Н. Э. Баумана (Шашковский С. Г. 2000 г) разработал портативный аппарат «Мелитта 01» для локального облучения пораженных поверхностей кожных покрытий, слизистых оболочек высокоэффективным импульсным ультрафиолетовым излучением сплошного спектра в диапазоне 230-380 нм.

Режим работы данного аппарата импульсный-периодический с частотой 1 Гц. В аппарате предусмотрена автоматическая генерация 1, 4, 8, 16, 32 импульсов. Выходная импульсная плотность мощности на расстоянии 5 см от горелки 25 Вт/см2

Показания:

  • - гнойно-воспалительные заболевания кожи и подкожной клетчатки (фурункул, карбункул, гидраденит) в начальный период гидратации и после хирургического вскрытия гнойной полости;
  • - обширные гнойные раны, раны после некрэктомии, раны перед и после проведения аутодермопластики;
  • - гранулирующие раны после ожогов термических, химических, радиационных;
  • - трофические язвы и вялозаживающие раны;
  • - рожистое воспаление;
  • - герпетическое воспаление кожи и слизистых оболочек;
  • - облучение ран перед первичной хирургической обработке и после нее с целью профилактики развития гнойных осложнений;
  • - обеззараживание воздуха помещений, салона автомобиля, автобуса и автомобиля скорой помощи.

Импульсная магнитная терапия с вращающимся полем и изменяющейся частотой повторения импульсов автоматически.

В основе лечебного действия лежат известные физические законы. На электрический заряд, движущиеся по кровеносному сосуду в магнитном поле, действует сила Лоренца, перпендикулярная вектору скорости заряда, постоянная в постоянном и знакопеременная, в переменном, вращающемся магнитном поле. Это явление реализуется на всех уровнях организма (атомарный, молекулярный, субклеточный, клеточный, тканевой).

Действие импульсной магнитной терапии низкой интенсивности оказывает активное влияние на глубоко расположенную мышечную, нервную, костную ткань, внутренние органы, улучшая микроциркуляцию, стимулируя обменные процессы и регенерацию. Электрические токи большой плотности, индуцированные импульсным магнитным полем, активизирую миелинизированные толстые волокна нервов, вследствие чего блокируется афферентная импульсация из болевого очага по спинальному механизму «воротного блока». Болевой синдром ослабляется или устраняется полностью уже во время процедуры или после первых процедур. По степени выраженности обезболивающего эффекта импульсная магнитная терапия сильно превосходит другие виды магнитной терапии.

Благодаря импульсным вращающимся магнитным полям появляется возможность индицирования в глубине тканей без их повреждений электрических полей и токов, значительной интенсивности. Это позволяет получить выраженный терапевтический противоотечный, обезболивающий, противовоспалительный, стимулирующий процессы регенерации, биостимулирующий эффекты действия, которые по степени выраженности превосходят в несколько раз лечебные эффекты, получаемые от всех известных аппаратов низкочастотной магнитотерапии.

Аппараты импульсной магнитной терапии являются современным эффективным средством лечения травматических повреждений, воспалительных, дегеративно-дистрофических заболеваний нервной и опорно-двигательной системы.

Лечебные эффекты импульсной магнитной терапии: анальгетический, противоотечный, противовоспалительный, вазоактивный, стимулирующий процессы регенерации в поврежденных тканях, нейростимулирующий, миостимулирующий.

Показания:

  • – заболевания и травматические повреждения ЦНС (ишемический инсульт головного мозга, преходящее нарушение мозгового кровообращения, последствия черепно-мозговой травмы с двигательными расстройствами, закрытые травмы спинного мозга с двигательными на рушениями, детский церебральный паралич, функционально истерические параличи),
  • - травматические повреждения опорно-двигательной системы (ушибы мягких тканей, суставов, костей, растяжение связок, закрытые переломы костей и суставов при иммобилизации, в стадии репаративной регенерации, открытые переломы костей, суставов, ранения мягких тканей при иммобилизации,в стадии репаративной регенерации, гипотрофия, атрофия мышц в результате гиподинамии, вызванной травматическими повреждениями опорно-двигательной системы),
  • - воспалительные дегенеративно-дистрофические повреждения опорно-двигательной системы (деформирующий остеоартроз суставов с явлениями синовита и без явлений синовита, распространенный остеохондроз, деформирующий спондилез позвоночника с явлениями вторичного корешкового синдрома, шейный радикулит с явлениями плечелопаточного переатрита, грудной радикулит, пояснично-крестцовый радикулит, анкилозирующий спондилоатрит, сколиотическая болезнь у детей),
  • - хирургические воспалительные заболевания (послеоперационный период после оперативных вмешательств на опорно-двигательном аппарате, коже и подкожной клетчатке, вялозаживающие раны, трофические язвы, фурункулы, карбункулы, флегмоны после хирургического вмешательства, маститы),
  • - заболевания бронхолегочной системы (бронхиальная астма легкой и средней степени тяжести, хронический бронхит),
  • - заболевания органов пищеварения (гипомоторно-эвакуаторные нарушения функции желудка после желудка и ваготомии, гипомоторная дисфункция толстой кишки, желудка и желчного пузыря, хронический гепатит с умеренным нарушением функции печени, хронический панкреатит с секреторной недостаточностью),
  • - заболевания сердечно-сосудистой системы (оккклюзионные поражения переферических артерий атеросклеротического генеза),
  • - урологические заболевания (камень в мочеточнике, состояние после литотрипсии, атония мочевого пузыря, слабость сфинкера и детрузора, простатит),
  • - гинекологические заболевания (воспалительные заболевания матки и придатков, заболевания, обусловленные гипофункцией яичников),
  • - хронический простатит и сексуальные расстройства у мужчин,
  • - стоматологические заболевания (пародонтоз, пломбировочные боли).

Противопоказания:

  • - выраженная гипотония,
  • - системные заболевания крови,
  • - наклонности к кровотечениям,
  • - тромбофлебит,
  • - тромбоэмболическая болезнь, переломы костей до иммобилизации,
  • - беременность,
  • - тиреотоксикоз и узловой зоб,
  • - абсцесс, флегмоны (до вскрытия и дренирования полостей),
  • - злокачественные новообразования,
  • - лихорадочное состояние,
  • - желчекаменная болезнь,
  • - эпилепсия.

Предупреждение:

Импульсную магнитную терапию нельзя применять при наличии имплантированного кардиостимулятора, так как индуцированные электропотенциалы могут нарушать его работу; при различных металлических свободно лежащих в тканях организма предметах (например, осколки при ранениях), если они находятся на расстоянии менее 5 см от индукторов, поскольку при прохождении импульсов магнитного поля предметы из электропроводных материалов (сталь, медь и др.) могут совершать движения и вызывать повреждения окружающих тканей. Воздействовать на область головного мозга, сердца и глаза не допускается.

Большой интерес представляет создание импульсных магнитных аппаратов низкой интенсивности (20-150 мТл) с частотой следования импульсов, приблизительно совпадающей с частотой собственных биопотенциалов органов (2-4-6-8-10-12 Гц). Это позволило бы оказывать биорезонансное воздействие на внутренние органы (печень, поджелудочная железа, желудок, легкие) импульсным магнитным полем и положительно влиять на их функцию. Уже известно, что положительно ИМП влияет на частоте 8-10 Гц на функцию печени у больных с токсическим (алкогольным) гепатитом.

Сегодня очень часто возникает вопрос о потенциальной опасности ультрафиолетового излучения и наиболее действенных способах защиты органа зрения.


Сегодня очень часто возникает вопрос о потенциальной опасности ультрафиолетового излучения и наиболее действенных способах защиты органа зрения. Мы подготовили перечень наиболее часто встречающихся вопросов об ультрафиолете и ответы на них.

Что такое ультрафиолетовое излучение?

Спектр электромагнитного излучения достаточно широк, но глаз человека чувствителен только к определенной области, называемой видимым спектром, которая охватывает диапазон длин волн от 400 до 700 нм. Излучения, которые находятся за пределами видимого диапазона, являются потенциально опасными и включают в себя инфракрасную (с волн длиной более 700 нм) и ультрафиолетовую область (менее 400 нм). Излучения, имеющие более короткую длину волны, чем ультрафиолетовое, называются рентгеновским и γ-излучениями. Если длина волны больше, чем аналогичный показатель у инфракрасного излучения, то это радиоволны. Таким образом, ультрафиолетовое (УФ) излучение - это невидимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн 100-380 нм.

Какие диапазоны имеет ультрафиолетовое излучение?

Как видимый свет можно разделить на составляющие разных цветов, которые мы наблюдаем при возникновении радуги, так и УФ-диапазон, в свою очередь, имеет три составляющие: УФ-A, УФ-B и УФ-C, причем последняя является наиболее коротковолновым и высокоэнергетичным ультрафиолетовым излучением с диапазоном длин волн 200-280 нм, однако оно в основном поглощается верхними слоями атмосферы. УФ-B-излучение имеет длину волн от 280 до 315 нм и считается излучением средней энергии, представляющим опасность для органа зрения человека. УФ-A-излучение - это наиболее длинноволновая составляющая ультрафиолета с диапазоном длин волн 315-380 нм, которая имеет максимальную интенсивность к моменту достижении поверхности Земли. УФ-A-излучение глубже всего проникает в биологические ткани, хотя его повреждающее действие меньше, чем у УФ-B-лучей.

Что означает само название «ультрафиолет»?

Это слово означает «сверх (выше) фиолета» и происходит от латинского слова ultra («сверх») и названия самого короткого излучения видимого диапазона - фиолетового. Хотя УФ-излучение никак не ощущается человеческим глазом, некоторые животные - птицы, рептилии, а также насекомые, например пчелы, - могут видеть в таком свете. Многие птицы имеют раскраску оперенья, которая невидима в условиях видимого освещения, но хорошо различима в ультрафиолетовом. Некоторых животных также легче заметить в лучах ультрафиолетового диапазона. Многие фрукты, цветы и семена воспринимаются глазом более отчетливо при таком освещении.

Откуда возникает ультрафиолетовое излучение?

На открытом воздухе главным источником УФ-излучения является солнце. Как уже было сказано, частично оно поглощается верхними слоями атмосферы. Поскольку человек редко смотрит прямо на солнце, то основной вред для органа зрения возникает в результате воздействия рассеянного и отраженного ультрафиолета. В помещении УФ-излучение возникает при использовании стерилизаторов для медицинских и косметических инструментов, в соляриях для формирования загара, в процессе применения различных медицинских диагностических и терапевтических приборов, а также при отверждении композиций пломб в стоматологии.


В соляриях УФ-излучение возникает для формирования загара

В промышленности УФ-излучение образуется при сварочных работах, причем его уровень настолько высок, что может привести к серьезному повреждению глаз и кожи, поэтому применение защитных средств предписано как обязательное для сварщиков. Флюоресцентные лампы, широко используемые для освещения на работе и дома, также являются источниками УФ-излучения, но уровень последнего очень незначителен и не представляет серьезной опасности. Галогеновые лампы, которые также применяются для освещения, дают свет с УФ-составляющей. Если человек находится близко от галогеновой лампы без защитного колпака или экрана, то уровень УФ-излучения может вызвать у него серьезные проблемы с глазами.


В промышленности УФ-излучение образуется при сварочных работах, причем его уровень настолько высок, что может привести к серьезному повреждению глаз и кожи

От чего зависит интенсивность воздействия ультрафиолета?

Его интенсивность зависит от многих факторов. Во-первых, высота солнца над горизонтом меняется в зависимости от времени года и суток. Летом в дневные часы интенсивность УФ-B-излучения максимальна. Существует простое правило: когда ваша тень короче, чем ваш рост, то вы рискуете получить на 50 % больше такого излучения.

Во-вторых, интенсивность зависит от географической широты: в экваториальных районах (широта близка к 0°) интенсивность УФ-излучения наиболее высокая - в 2-3 раза выше, чем на севере Европы.
В-третьих, интенсивность возрастает с увеличением высоты над уровнем моря, так как соответствующим образом уменьшается слой атмосферы, способный поглощать ультрафиолет, поэтому большее количество наиболее высокоэнергетического коротковолнового УФ-излучения достигает поверхности Земли.
В-четвертых, на интенсивность излучения влияет рассеивающая способность атмосферы: небо представляется нам синим из-за рассеивания коротковолнового голубого излучения видимого диапазона, а еще более коротковолновый ультрафиолет рассеивается гораздо сильнее.
В-пятых, интенсивность излучения зависит от наличия облаков и тумана. Когда небо безоблачно, УФ-излучение достигает максимума; плотные облака снижают его уровень. Однако прозрачные и редкие облака мало влияют на уровень УФ-излучения, водяной пар тумана может привести к увеличению рассеяния ультрафиолета. Малооблачную и туманную погоду человек может ощущать как более холодную, однако интенсивность УФ-излучения остается практически такой же, как и в ясный день.


Когда небо безоблачно, УФ-излучение достигает максимума

В-шестых, количество отраженного ультрафиолета варьирует в зависимости от вида отражающей поверхности. Так, для снега отражение составляет 90 % падающего УФ-излучения, для воды, почвы и травы - примерно 10 %, а для песка - от 10 до 25 %. Об этом необходимо помнить, находясь на пляже.

Каково воздействие ультрафиолета на организм человека?

Длительное и интенсивное воздействие УФ-излучения может быть вредным для живых организмов - животных, растений и человека. Заметим, что некоторые насекомые видят в УФ-A-диапазоне, а они являются неотъемлемой частью экологической системы и каким-либо образом приносят пользу человеку. Наиболее известный результат воздействия ультрафиолета на организм человека - это загар, который до сих пор является символом красоты и здорового образа жизни. Однако длительное и интенсивное воздействие УФ-излучения может привести к развитию раковых заболеваний кожи. Необходимо помнить, что облака не блокируют ультрафиолет, поэтому отсутствие яркого солнечного света не означает, что защита от УФ-излучения не нужна. Наиболее вредная составляющая данного излучения поглощается озоновым слоем атмосферы. Факт уменьшения толщины последнего означает, что в будущем защита от ультрафиолета станет еще более актуальной. По оценкам ученых, снижение количества озона в атмосфере Земли всего на 1 % приведет к росту раковых заболеваний кожи на 2-3%.

Какую опасность ультрафиолет представляет для органа зрения?

Существуют серьезные лабораторные и эпидемиологические данные, связывающие длительность воздействия ультрафиолета с заболеваниями глаз: , птеригиумом и др. По сравнению с хрусталиком взрослого хрусталик ребенка существенно более проницаем для солнечной радиации, и 80 % кумулятивных последствий воздействия ультрафиолетовых волн накапливаются в организме человека до достижения им 18-летнего возраста. Максимально подверженным проникновению излучения хрусталик является непосредственно после рождения младенца: он пропускает до 95 % падающего УФ-излучения. С возрастом хрусталик начинает приобретать желтый оттенок и становится не столь прозрачным. К 25 годам менее 25 % падающих ультрафиолетовых лучей достигают сетчатки. При афакии глаз лишен естественной защиты хрусталика, поэтому в такой ситуации важно пользоваться УФ-поглощающими линзами или фильтрами.
Следует учитывать, что целый ряд медицинских препаратов обладают фотосенсибилизирующими свойствами, то есть увеличивают последствия от воздействия ультрафиолета. Оптики и оптометристы должны иметь представление об общем состоянии человека и применяемых им препаратах для того, чтобы дать рекомендации по поводу применения средств защиты.

Какие существуют средства защиты глаз?

Наиболее эффективный способ защиты от ультрафиолета - прикрытие глаз специальными защитными очками, масками, щитками, которые полностью поглощают УФ-излучение. На производстве, где применяются источники УФ-излучения, использование таких средств является обязательным. Во время пребывания на открытом воздухе в яркий солнечный день рекомендуется носить солнцезащитные очки со специальными линзами, которые надежно защищают от УФ-излучения. Такие очки должны иметь широкие заушники или прилегающую форму для предупреждения проникновения излучения сбоку. Бесцветные очковые линзы также могут выполнять эту функцию, если в их состав введены добавки-абсорберы или проведена специальная обработка поверхности. Хорошо прилегающие солнцезащитные очки защищают как от прямого падающего излучения, так и от рассеянного и отраженного от различных поверхностей. Эффективность использования солнцезащитных очков и рекомендации по их применению определены путем указания категории фильтра, светопропусканию которого соответствуют очковые линзы.


Наиболее эффективный способ защиты от ультрафиолета - прикрытие глаз специальными защитными очками, масками, которые полностью поглощают УФ-излучение

Какие стандарты регламентируют светопропускание линз солнцезащитных очков?

В настоящее время в нашей стране и за рубежом разработаны нормативные документы, регламентирующие светопропускание солнцезащитных линз согласно категориям фильтров и правила их применения. В России это ГОСТ Р 51831-2001 «Очки солнцезащитные. Общие технические требования», а в Европе - EN 1836: 2005 «Personal eye protection - Sunglasses for general use and filters for direct observation of the sun».

Каждый вид солнцезащитных линз разработан для определенных условий освещенности и может быть отнесен к одной из категорий фильтров. Всего их пять, и они нумеруются от 0 до 4. Согласно ГОСТ Р 51831-2001, светопропускание T,  %, солнцезащитных линз в видимой области спектра может составлять от 80 до 3-8 % в зависимости от категории фильтра. Для УФ-B- диапазона (280-315 нм) этот показатель не должен быть больше 0,1T (в зависимости от категории фильтра он может быть от 8,0 до 0,3-0,8 %), а для УФ-A-излучения (315-380 нм) - не больше 0,5T (в зависимости от категории фильтра - от 40,0 до 1,5-4,0 %). В то же время производители качественных линз и очков устанавливают более жесткие требования и гарантируют потребителю полное отрезание ультрафиолета до длины волны 380 нм или даже до 400 нм, о чем свидетельствует специальная маркировка на линзах очков, их упаковке или сопроводительной документации. Следует отметить, что для линз солнцезащитных очков эффективность защиты от ультрафиолета не может однозначно определяться степенью их затемнения или стоимостью очков.

Правда ли, что ультрафиолет более опасен, если человек носит некачественные солнцезащитные очки?

Это действительно так. В естественных условиях, когда человек не носит очки, его глаза автоматически реагируют на избыточную яркость солнечного света изменением размера зрачка. Чем ярче свет, тем меньше зрачок, и при пропорциональном соотношении видимого и ультрафиолетового излучения этот защитный механизм работает весьма эффективно. Если же применяется затемненная линза, то освещение кажется менее ярким и зрачки увеличиваются, позволяя большему количеству света достигать глаз. В том случае, когда линза не обеспечивает надлежащую защиту от ультрафиолета (количество видимого излучения уменьшается больше, чем ультрафиолетового), суммарное количество попадающего в глаза ультрафиолета оказывается более значительным, чем при отсутствии солнцезащитных очков. Именно поэтому окрашенные и светопоглощающие линзы должны содержать УФ-абсорберы, которые снижали бы количество УФ-излучения пропорционально уменьшению излучения видимого спектра. По международным и отечественным стандартам светопропускание солнцезащитных линз в УФ-области регламентируется как пропорционально зависимое от светопропускания в видимой части спектра.

Какой оптический материал для очковых линз обеспечивает защиту от ультрафиолета?

Некоторые материалы для очковых линз обеспечивают поглощение УФ-излучения благодаря своей химической структуре. Оно активизирует фотохромные линзы, которые в соответствующих условиях блокируют его доступ к глазу. Поликарбонат содержит группы, поглощающие излучение в ультрафиолетовой области, поэтому он оберегает глаза от ультрафиолета. CR-39 и другие органические материалы для очковых линз в чистом виде (без добавок) пропускают некоторое количество УФ-излучения, и для надежной защиты глаз в их состав вводят специальные абсорберы. Эти компоненты не только защищают глаза пользователей, обеспечивая отрезание ультрафиолета до 380 нм, но и предупреждают фотоокислительную деструкцию органических линз и их пожелтение. Минеральные очковые линзы из обычного кронового стекла непригодны для надежной защиты от УФ-излучения, если в состав шихты для его производства не введены специальные добавки. Такие линзы можно использовать в качестве солнцезащитных фильтров только после нанесения качественных вакуумных покрытий.

Правда ли, что эффективность защиты от ультрафиолета для фотохромных линз определяется их светопоглощением в активированной стадии?

Некоторые пользователи очков с задают подобный вопрос, так как беспокоятся о том, будут ли они надежно защищены от ультрафиолета в пасмурный день, когда нет яркого солнечного излучения. Следует отметить, что современные фотохромные линзы поглощают от 98 до 100 % УФ-излучения при любых уровнях освещенности, то есть вне зависимости от того, являются ли они в данный момент бесцветными, средне- или темно-окрашенными. Благодаря этой особенности фотохромные линзы подходят для пользователей очков, находящихся на открытом воздухе в различных погодных условиях. В настоящее время растет число людей, которые начинают понимать, какую опасность представляет длительное воздействие УФ-излучения для здоровья глаз, и многие выбирают фотохромные линзы. Последние отличаются высокими защитными свойствами в сочетании с особым преимуществом - автоматическим изменением светопропускания в зависимости от уровня освещенности.

Является ли темная окраска линз гарантией защиты от ультрафиолетового излучения?

Сама по себе интенсивная окраска солнцезащитных линз не дает гарантии защиты от ультрафиолета. Следует отметить, что дешевые органические солнцезащитные линзы, выпущенные в условиях крупносерийного производства, могут иметь достаточно высокий уровень защиты. Как правило, сначала смешивают специальный УФ-абсорбер с сырьем для производства линз и делают бесцветные линзы, а затем осуществляют окрашивание. Добиться обеспечения УФ-защиты для солнцезащитных минеральных линз сложнее, так как их стекло пропускает больше излучения, чем многие виды полимерных материалов. Для гарантированной защиты необходимо введение ряда добавок в состав шихты для выпуска заготовок линз и применение дополнительных оптических покрытий.
Окрашенные рецептурные линзы делают из соответствующих бесцветных линз, которые могут иметь или нет достаточное количество УФ-абсорбера для надежного отрезания соответствующего диапазона излучения. Если нужны линзы со 100 %-й защитой от ультрафиолета, задача контроля и обеспечения такого показателя (до 380-400 нм) возлагается на оптика-консультанта и мастера - сборщика очков. В этом случае введение УФ-абсорберов в поверхностные слои органических очковых линз производится по технологии, аналогичной окрашиванию линз в растворах красителей. Единственное исключение состоит в том, что УФ-защиту не увидеть глазом и для ее проверки нужны специальные приборы - УФ-тестеры. Производители и поставщики оборудования и красителей для окраски органических линз включают в свой ассортимент различные составы для поверхностной обработки, обеспечивающие разные уровни защиты от ультрафиолета и коротковолнового видимого излучения. Провести контроль светопропускания ультрафиолетовой составляющей в условиях стандартной оптической мастерской не представляется возможным.

Следует ли вводить абсорбер ультрафиолетового излучения в бесцветные линзы?

Многие специалисты считают, что введение УФ-абсорбера в бесцветные линзы принесет только пользу, так как защитит глаза пользователей и предупредит ухудшение свойств линз под воздействием УФ-излучения и кислорода воздуха. В некоторых странах, где существует высокий уровень солнечной радиации, например в Австралии, это является обязательным. Как правило, стараются обеспечить отрезание излучения до 400 нм. Таким образом, исключены наиболее опасные и высокоэнергетические составляющие, а оставшегося излучения достаточно для правильного восприятия цвета предметов окружающей действительности. Если границу отрезания сдвинуть в видимую область (до 450 нм), то у линз появится желтый цвет, при увеличении до 500 нм - оранжевый.

Как можно убедиться, что линзы обеспечивают защиту от ультрафиолетового излучения?

На оптическом рынке представлено много различных УФ-тестеров, которые позволяют проверить светопропускание очковых линз в ультрафиолетовом диапазоне. Они показывают, какой уровень пропускания у данной линзы в УФ-диапазоне. Однако следует учитывать и то, что оптическая сила корригирующей линзы может оказать влияние на данные измерения. Более точные данные удается получить при помощи сложных приборов - спектрофотометров, которые не только показывают светопропускание при определенной длине волны, но и учитывают при измерении оптическую силу корригирующей линзы.

Защита от ультрафиолетового излучения является важным аспектом, который нужно учитывать при подборе новых очковых линз. Надеемся, что приведенные в данной статье ответы на вопросы об ультрафиолетовом излучении и способах защиты от него помогут вам подобрать очковые линзы, которые дадут возможность сохранить здоровье ваших глаз на долгие годы.

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века в его труде. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть невооружённым глазом.

Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета.В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также актиническим излучением. Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля , Македонио Меллони и др.

Подтипы

Деградация полимеров и красителей

Сфера применения

Чёрный свет

Химический анализ

УФ - спектрометрия

УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс - длина волны, образует спектр . Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

Анализ минералов

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так: «Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала - флюорит и циркон - не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон - лимонно-жёлтым.» (с. 11).

Качественный хроматографический анализ

Хроматограммы, полученные методом ТСХ , нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

Ловля насекомых

Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Искусственный загар и «Горное солнце»

При определённых дозировках искусственный загар позволяет улучшить состояние и внешний вид кожи человека, способствует образованию витамина D . В настоящее время популярны фотарии, которые в быту часто называют соляриями .

Ультрафиолет в реставрации

Один из главных инструментов экспертов - ультрафиолетовое, рентгеновское и инфракрасное излучение. Ультрафиолетовые лучи позволяют определить старение лаковой пленки - более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более темными пятнами проступают отреставрированные участки и кустарно переписанные подписи. Рентгеновские лучи задерживаются наиболее тяжелыми элементами. В человеческом теле это костная ткань, а на картине - белила. Основой белил в большинстве случаев является свинец, в XIX веке стали применять цинк, а в XX-м - титан. Все это тяжелые металлы. В конечном счете, на пленке мы получаем изображение белильного подмалевка. Подмалевок - это индивидуальный «почерк» художника, элемент его собственной уникальной техники. Для анализа подмалевка используются базы рентгенограмм картин великих мастеров. Также эти снимки применяются для распознания подлинности картины.

Примечания

  1. ISO 21348 Process for Determining Solar Irradiances . Архивировано из первоисточника 23 июня 2012.
  2. Бобух, Евгений О зрении животных . Архивировано из первоисточника 7 ноября 2012. Проверено 6 ноября 2012.
  3. Советская энциклопедия
  4. В. К. Попов // УФН . - 1985. - Т. 147. - С. 587-604.
  5. А. К. Шуаибов, В. С. Шевера Ультрафиолетовый азотный лазер на 337,1 нм в режиме частых повторений // Украинский физический журнал . - 1977. - Т. 22. - № 1. - С. 157-158.
  6. А. Г. Молчанов