В частном доме

Геркон нормально разомкнутый. Геркон (герметизированный контакт), нормально открытый

Геркон нормально разомкнутый. Геркон (герметизированный контакт), нормально открытый

Герконовый датчик - это прибор, созданный для улучшения технических свойств и срока службы контактов электроаппаратуры. Подключить его можно как своими руками, так и с помощью профессиональных технических служб. Подключение своими руками, в отсутствие соответствующей компетенции, может занять достаточно много времени или вовсе привести к неудачной попытке установки геркона. С помощью сервиса Юду вы в кратчайший срок можете найти и заказать услугу профессиональных служб по подключению герконового реле: достаточно оставить заявку на сайте или выбрать наиболее подходящее предложение из каталога исполнителей.

Что такое магнитный геркон

Магнитный геркон является основным компонентом системы контактного реле в различных электромагнитных схемах. Герконовый датчик содержит два контакта из ферромагнитного сплава, заключенных в стеклянную колбу. Если к контактам поднести магнитный элемент - они замыкаются, образуя непрерывную электромагнитную сеть.

Геркон часто применяется:

  • Для установки датчиков, показывающих открывание дверей в системах охраны, для защиты объекта от нежелательного проникновения
  • Для установки на окна, в качестве датчика, сообщающего об открытии конструкции
  • Для установки на ворота и иную входную группу для защиты от нежелательного проникновения

Разновидности герконовых датчиков

Герконовые датчики по функциональности делятся на:

  • Замыкающие
  • Переключающие
  • Размыкающие

По технологическим особенностям герконы делятся на два типа:

  • Сухие
  • Ртутные: внутри стеклянной конструкции находится капля ртути для уменьшения сопротивления и для недопущения нарушения контактов

Конструктивные особенности герконовых датчиков

По конструкции герконы делятся на:

  • Разомкнутые
  • Замкнутые
  • Переключающие
  • Разомкнутые ртутные

Наиболее распространенным видом герконовых датчиков является разомкнутый геркон. Каждый контакт в стеклянной емкости представляет собой плоскую проволоку. Поверхности контактов покрыты золотом, палладием, радием или серебром, что способствует уменьшению сопротивления и позволяет защитить контакты от коррозии. Пространство стеклянной колбы заполнено водородом, аргоном или азотом, либо просто представляет собой вакуумное пространство, что также способствует повышению антикоррозийных свойств.

Принцип работы герконового датчика

Принцип работы герконового датчика заключен во взаимодействии двух элементов: исполнительной и задающей. Задающая часть схемы работы геркона - это магнит, а исполнительная - сам геркон. Для замыкания контактной цепи геркона необходимо вокруг него создать магнитное поле. Как только магнитное поле исчезает, контакты герконового датчика перестают взаимодействовать.

Размыкающий геркон работает по несколько иной схеме: его магнитные элементы расположены таким образом, что при намагничивании контакты отталкиваются, осуществляя размыкание электрической цепи.

Схема работы переключающего геркона также имеет свои особенности: один из контактов системы сделан из немагнитного металла, а другие - из ферромагнитного. Таким образом, при магнитном воздействии на геркон, происходит замыкание ферромагнитных контактов, а немагнитные контакты размыкаются.

Схема работы герконового датчика

Для обеспечения замыкания электромагнитной сети герконового датчика и осуществления его работы магнитная часть системы крепится на открываемой конструкции (окно, дверь или ворота), а сам геркон на дверной или оконной коробке. Если дверь закрыта, магнитное поле действует на контактную сеть геркона, замыкая электромагнитную цепь. Датчик охранной системы показывает, что входная группа закрыта. Стоит открыть дверь - магнит перестает действовать, размыкает цепь, заставляя тем самым срабатывать сигнал тревоги.

В документации на датчик есть вся необходимая информация для установки его своими руками.

В зависимости от конструкций, на которые устанавливается геркон, датчики делятся на несколько видов:

  • Датчики скрытого монтажа для стальных конструкций
  • Датчики скрытого монтажа для магнитопассивных конструкций
  • Датчики наружного монтажа для стальных конструкций
  • Датчики наружного монтажа для магнитопассивных конструкций

Тип устанавливаемого геркона определяется в соответствии с массивностью конструкции и материалом, из которого она изготовлена.

Рекомендации для защиты геркона от несанкционированного проникновения

Если вы осуществляете подключение герконового датчика своими руками, то при установке стоит обратить внимание на следующие моменты:

  • Устанавливайте герконовые и магнитные датчики таким образом, чтобы они были направлены друг к другу и установлены на коротком расстоянии. Тогда поднесение постороннего магнита вызовет размыкание электромагнитной цепи, и сработает сигнал тревоги
  • Установите очень тонкую металлическую пластину между герконовым датчиком и магнитом. Она послужит защитным магнитным экраном

Как заказать услугу профессиональных технических служб по подключению герконового датчика

Осуществить подключение геркона своими руками, обладая навыками и знаниями в этой области, не составит труда. Если же компетенции для подключения датчика своими руками не хватает, то лучше обратиться к услугам профессиональных служб, которые осуществят подключение недорого и достаточно быстро. Чтобы заказать такие услуги с помощью сервиса Юду, необходимо:

  • Заполнить заявку на сайте или позвонить по указанным контактным телефонам
  • Установить желаемую цену на услугу
  • Выбрать наиболее подходящее вам предложение
  • Ознакомиться с достоверными отзывами о работе исполнителей
  • Связаться с выбранной службой и договориться о выезде

Герконы имеют ряд механических и электрических параметров, которые характеризуют их свойства. Эти параметры можно разделить на две большие группы: механические и электрические.

Механические параметры герконов

К механическим параметрам относится магнитодвижущая сила срабатывания . Этот параметр показывает, при каком значении напряженности магнитного поля происходит срабатывание и отпускание контакта. В технической документации это называется как магнитодвижущая сила срабатывания (обозначается Vср) и магнитодвижущая сила отпускания (обозначается Vотп).

Немаловажными параметрами геркона, в ряде случаев основными, является скорость его срабатывания и отпускания . Эти параметры измеряются обычно в миллисекундах и обозначаются соответственно как tср и tотп, которые в целом характеризуют быстродействие геркона. Герконы, имеющие меньшие геометрические размеры обладают более высоким быстродействием.

Максимальное число срабатываний , или попросту ресурс, также относится к группе механических параметров. Этот параметр оговаривает, при каком числе срабатываний все свойства геркона, как механические, так и электрические сохраняются в пределах допустимых значений. В технической документации обозначается как Nmax.

Электрические параметры герконов

Эти параметры такие же, как у обычных механических контактов. Сопротивление, измеренное между замкнутыми контактами называется сопротивлением контактного перехода и обозначается как Rк, а сопротивление, измеренное между разомкнутыми контактами есть не что иное, как сопротивление изоляции Rиз.

Электрическая прочность геркона . Этот параметр характеризует пробивное напряжение Uпр. Это напряжение в основном определяет качество изоляции между контактами, которое в свою очередь обусловлено качеством вакуума или заполнения колбы инертными газами. Кроме этого пробивное напряжение зависит от величины зазора между контактами и качества их покрытия.

Мощность, коммутируемая герконом определяется в основном его конструкцией: материалом и размерами контактов, а также типом покрытия контактных площадок. В технической документации этот параметр обозначается как Pmax.

Емкость , измеренная между разомкнутыми контактами обозначается как Cк. Она зависит лишь от геометрических размеров геркона и расстояния между разомкнутыми контактами.

Способы управления герконами

Их можно разделить на две большие группы: управление постоянным магнитом и управление при помощи катушки с током. Эти способы показаны на рисунке 1.

Рисунок 1. Различные способы управления герконами

Управление герконом при помощи постоянного магнита

Наиболее прост и распространен способ управления с линейным перемещением магнита. Здесь вполне уместно вспомнить , где магнит укреплен на двери и заставляет срабатывать геркон, когда дверь закрыта.

Способ с угловым перемещением магнита используется намного реже, как правило, в тех случаях, когда другие способы применить по какой -либо причине невозможно.

Перекрытие магнитного поля шторкой использовалось в клавиатурах различных вычислительных устройств, вплоть до девяностых годов прошлого столетия, а может быть можно встретить где-нибудь и до сих пор.

Управление герконом при помощи катушки с постоянным током

Этот способ получил наибольшее распространение при создании герконовых реле . Конструкция этих реле достаточно проста: внутрь катушки с током просто помещается геркон, и при этом не требуется никаких дополнительных пружинок и рычагов, как у обычного реле. Единственный в этом случае недостаток это небольшое количество контактных групп.

Если катушку выполнить достаточно толстым проводом, способным пропустить большой ток, то можно получить герконовое токовое реле. Такие реле широко применялись в мощных источниках постоянного тока в качестве датчика системы защиты от перегрузок. Точная настройка уровня срабатывания такого датчика осуществляется резьбовым механизмом, позволяющем плавно перемещать геркон вдоль оси катушки.

П реимущества и недостатки герконов

Как и любая вещь герконы имеют свои недостатки и преимущества. Сначала поговорим, естественно, о преимуществах.

По сравнению с обычными коммутирующими контактами герконы имеют чуть ли не в 100 раз большую надежность по сравнению с обычными открытыми контактами. Эта надежность обусловлена более высоким сопротивлением изоляции (достигает десятков МегаОм), и большей электрической прочностью: пробивное напряжение у некоторых типов герконов достигает нескольких десятков киловольт.

Неоспоримым преимуществом герконов является их быстродействие: у некоторых моделей герконов частота коммутации достигает 1000Гц, а скорость срабатывания и отпускания находится в пределах (0,5 - 2,0мс) И (0,2 - 1,0мс) соответственно.

Срок службы некоторых герконов доходит до 4 - 5 млрд. срабатываний, что намного выше аналогичного показателя для обычных не защищенных контактов. Также к достоинствам герконов следует отнести легкий способ согласования с нагрузкой а также работа герконов без применения источников электрической энергии.

Недостатки герконов

На фоне достоинств недостатки, наверно, не так уж и велики. Во-первых, это небольшая коммутируемая мощность. Кроме того малое количество контактных групп в одном баллоне а для «сухих» герконов дребезг контактов. К недостаткам же можно отнести также хрупкость стеклянного баллона и в некоторых случаях высокую чувствительность к внешним магнитным полям.

Борис Аладышкин

Принцип работы этого коммуникационного устройства, название которого расшифровывается как «герметичный контакт», можно объяснить следующим образом. Геркон – миниатюрная цилиндрическая стеклянная колбочка, в противоположные концы которой впаяны два контакта, обладающие ферромагнитными свойствами: подвижный и неподвижный. Колба либо вакуумирована, либо наполнена инертным газом, дабы продлить срок их службы.

Если поднести к ней магнит, то подвижный контакт соприкоснется с неподвижным и цепь замкнется. При этом вы услышите характерный щелчок. Если магнит убрать - контактны вновь разомкнутся. Вместо постоянного магнита можно использовать и соленоид. Так работает нормально разомкнутый или замыкающий геркон - одна из самых популярных его разновидностей.

Свойства герконов

Основные свойства этих устройств, на которые следует обратить внимание при чтении статьи:

  • Магнитоуправляемость;
  • Герметичность;
  • Компактность;
  • Дискретный режим работы.


В настоящее время герконы вытесняются датчиками Холла - твердотельными полупроводниковыми устройствами. Далее представлены фото герконов широкого потребления.

Классификация

По принципу работы

  • Нормально разомкнутые герконы (под действием внешнего магнитного поля замыкают цепь);
  • Нормально замкнутые (наоборот, размыкают цепь);
  • Переключающие (выполняют роль магнитоуправляемого переключателя).

По наличию ртути

  • Сухие (безртутные);
  • Ртутные.


По наполнению колбы

  • Наполненные инертным газом;
  • С вакуумным наполнением.

Наибольшая роль в обеспечении длительной работы геркона отводится месту примыкания контактов к колбе. При отсутствии герметичности устройство быстро выходит из строя.

Преимущества

  • Значительный ресурс, обусловленный защитой контактов от окисления кислородом воздуха и крайне незначительным трением в процессе работы (более триллиона циклов);
  • Миниатюрность (выигрывают в компактности у реле тех же характеристик);
  • Можно осуществлять коммутацию слабых сигналов;
  • Практически не искажают сигнал шумами;
  • Скорости срабатывания выше, чем у реле;
  • Высокое напряжение пробоя;
  • Герметичность конструкции;
  • Отсутствие необходимости в обслуживании;
  • Цепи управления и коммутации независимы друг от друга и гальванически развязаны.


Недостатки

Другая положительная сторона - герметичность, оборачивается недостатком в виде хрупкости колбы. Герконы неустойчивы к сильным вибрациям.

При нагреве подвижного контакта выше точки Кюри происходит утрата намагниченности, что приводит к размыканию цепи, причем процесс принимает неустойчивый характер.

Коммутация имеет конечную скорость, что довольно критично для быстродействующих устройств.


Порой встречается залипание контактов. Этому есть два объяснения: деформация контактов при пропускании через них постоянного тока, приводящая к тому, что они цепляются друг за друга (один разрушается - другой восстанавливается), и их взаимное притирание.

Дребезг контактов

Отдельно стоит упомянуть и такое неприятное для цифровой техники (где, в основном, и используются герконы) явление как дребезг контактов. После замыкания наблюдается серия бесконтрольных актов потери и приобретения контакта.


Справедливости ради следует отметить, что такое поведение характерно для большинства механических коммутационных аппаратов. Подключив геркон напрямую к синхронному входу можно получить непредсказуемые результаты.

Меры, направленные против дребезга контактов:

  • Добавка ртути (что чревато ее утечкой при разбитии колбы);
  • Подключение через специальные электронные схемы;
  • Использование демпфирующих фильтров (в отдельных случаях);
  • Программные средства.

Последние реализуются следующими способами:

  • Временная задержка;
  • Подсчет вторичных коммутаций в течение определенного интервала времени;
  • Вычисление длительности текущего состояния.

Очевидно, что подключить геркон своими руками - не самая легкая задача, если вы не владеете основами электротехники и электроники.

Применение

Герконы нашли применение в разнообразных устройствах позиционирования. К неподвижной части прикрепляют датчик на основе геркона, а к подвижной - магнит.


Сфера применения герконовых датчиков:

  • Системы охранной сигнализации, контроля доступа;
  • Снаряжение для работы под водой;
  • Промышленные клавиатуры;
  • Измерительные приборы (например, велосипедные спидометры);
  • Взрывозащищенные устройства;
  • Медтехника;
  • Автоматическое грузоподъемное оборудование (лифты);
  • Ноутбуки и нетбуки (датчик поднятия крышки).

Особые виды герконов

Герконовые реле - устройства, состоящие из геркона и управляющего соленоида. К ним также можно отнести герсиконы, гезаконы и геркотроны. Первые предназначены для силовых цепей, вторые имеют эффект памяти, а третьи разработаны для высоковольтной техники.


Изобретение герконов

Еще в 20-х годах минувшего столетия советским ученым Коваленковым было предложено реле с контактами, управляемыми магнитным полем. В середине 30-х некоторыми советскими и американскими учеными практически одновременно выдвинута идея о помещении подобного реле в запаянную стеклянную колбу. В 41м году началось производство герконов в США. Применялись они для телефонной связи.

В СССР производство началось гораздо позже: лишь в конце 50-х годов в Ленинграде. Также, как и в США, применение герметичным контактам нашли в оборудовании телефонных станций. С 65-го года герконы стали производить на рязанском заводе металлокерамических приборов (РЗМКП). По состоянию на 2015 год он является одним из крупнейших производителей этих устройств во всем мире.

Фото герконов

Геркон – сверхточный быстродействующий герметичный переключатель, управляемый магнитным полем . Количество его срабатываний – до пяти миллиардов раз. На его основе выпускаются датчики магнитного поля и герконовые реле для самых различных применений – от бытовой техники до авиации и космонавтики. В статье описаны особенности выбора герконов и дан табличный обзор широкой линейки этих изделий производства Littelfuse .

Слово «геркон» является сокращением слов «герметичный контакт». Первый геркон был разработан в 1936 году американской компанией Bell Telephone Laboratories. Впоследствии они стали широко применяться в качестве датчиков, и на их основе были созданы герконовые реле.

Геркон (рисунок 1) состоит из двух ферромагнитных проводников, имеющих плоские контакты, герметизированные в стеклянной капсуле. Без внешнего магнитного поля контакты разомкнуты, и между ними есть небольшой диэлектрический зазор. В магнитном поле контакты замыкаются. Контактная область обеих пластин имеет напыленное или гальваническое покрытие, выполненное из очень стойкого к эрозии металла (обычно – родий, иридий или рутений). Структура слоев покрытия контактов приведена на рисунках 2а и 2б для родия и иридия соответственно.

Иридий, рутений и родий – очень стойкие к эрозии металлы платиновой группы. Благодаря напылению из этих металлов количество срабатываний контактов достигает пяти миллиардов раз. В полость капсулы обычно закачивают азот. Некоторые типы герконов вакуумируются для увеличения максимально допустимого коммутируемого напряжения. Контакты геркона в магнитном поле намагничиваются, и между ними возникает магнитодвижущая сила, равная напряженности магнитного поля. Если напряженность магнитного поля достаточно велика, чтобы преодолеть упругие силы в контактах, возникающие при их упругой деформации, то контакты замыкаются. Когда поле ослабевает, контакты снова размыкаются.

Существует два типа герконов: SPST-NO (Single Pole, Single Throw Normally Open, то есть «один полюс, один канал») – обычный выключатель, в котором два контакта нормально разомкнуты; SPDT-CO (Single Pole, Double Through Change Over, то есть «один полюс, два канала – переключение») – переключатель, в котором один контакт всегда нормально замкнут, а второй нормально разомкнут.

Геркон, описанный выше и представленный на рисунке 3, относится к SPST-типу.

На рисунке 4 представлен геркон SPDT-типа.

Общая пластина является единственной подвижной частью такого геркона, в отсутствие магнитного поля она замкнута с нормально замкнутым контактом реле. При возникновении магнитного поля соответствующей силы общая пластина замыкается с нормально разомкнутым контактом. Обе пластины нормально разомкнутого и нормально замкнутого контактов являются неподвижными. Разомкнутые контакты имеют ферромагнитное покрытие, а нормально замкнутый контакт выполнен из немагнитного материала. При помещении в магнитное поле подвижный и нормально-разомкнутый контакт намагничиваются в одинаковом направлении, и при достаточной напряжённости магнитного поля происходит замыкание подвижного контакта с неподвижным ферромагнитным контактом. При исчезновении внешнего магнитного поля намагниченность контактов ослабевает, и они размыкаются. Для того, чтобы остаточная намагниченность была минимальной, при изготовлении герконов применяют высокотемпературную обработку контактов. В качестве источника магнитного поля для геркона чаще всего используют постоянный магнит (рисунок 5) или соленоид.

Рассмотрим несколько наиболее распространённых систем геркон-магнит.

  1. Приближение и удаление магнита перпендикулярно (рисунок 6) или под углом (рисунок 7) к главной геометрической оси геркона:

В данном случае геркон будет замыкаться при приближении и размыкаться при отдалении магнита. Рассмотрим более подробно, обратившись к рисунку 8.

Концентрация силовых линий магнита уменьшается при удалении магнита от геркона. Наиболее сконцентрированы магнитные линии на полюсах магнита. Наиболее обширная зона взаимодействия магнита с герконом находится в центре геркона. При нахождении постоянного магнита в пределах этой зоны магнитное поле является достаточным для надежного срабатывания контактной группы. Пунктиром показана зона гистерезиса – при вхождении магнита в эту зону магнитное поле еще не обладает достаточной напряженностью для срабатывания контактной группы, но ее достаточно для удержания контактной группы в сработавшем состоянии. В случае иной конфигурации контактной группы геркона, отличной от рассматриваемой SPST, под срабатыванием будет пониматься размыкание нормально-замкнутого контакта и замыкание подвижного контакта с нормально-разомкнутым контактом SPDT геркона. Замыкание контактов геркона может активироваться с помощью параллельного движения кольцевого магнита вдоль оси геркона, как показано на рисунке 9.

Конфигурация зон взаимодействия будет схожа с предыдущей системой, так как ось геркона и направление магнитных линий магнита будут совпадать с описанной выше ситуацией, как видно на рисунке 10.

  1. Геркон может активироваться при помощи плоского магнита или кольцевого магнита с двумя или 2N полюсами (рисунок 11).

Для понимания зон взаимодействия геркона обратимся к рисункам 12 и 13.

Как видно, зоны взаимодействия находятся на концах геркона. В центральной части геркона находится «мертвая зона», в которой геркон остается открытым. Таким образом, двигающийся перпендикулярно геркону магнит, чьи полюса расположены подобным образом, активировать геркон не будет (рисунок 14).

  1. Геркон можно экранировать с помощью магнитного материала (например, стального листа). На рисунке 15 изображены неподвижный геркон и неподвижный магнит между которыми движется экранирующий предмет.

Основные типы герконов, выпускаемые компанией Littelfuse, приведены в таблице 1.

Таблица 1. Серии герконов Littelfuse

Серия Длина корпуса, мм Нагрузочная способность
(Стандартная: ≤10 Вт, ≤0,5 A, ≤200 В)
Тип контактов Key Features
7 Стандартная SPST Супер-компактный (7 мм стеклянный корпус)
10 Стандартная SPST Очень компактный (10 мм стеклянный корпус)
13 Стандартная SPST Компактный (12.7 мм стеклянный корпус)
14 Стандартная SPST Дешевый, более гибкие выводы
14 Стандартная SPST Малый гистерезис
15 Стандартная SPST Низкая цена
15 ~240 В (20 Вт) SPST ~ 240 В макс. рабочее напряжение
15 20 Вт SPST Малый гистерезис
15 20 Вт SPST Длинные выводы, повышенный ресурс
19 1000 В SPST Высоковольтный
20 ~240 В, 50 Вт SPST Напряжение переключения ~240 В, высокая мощность
50 100 Вт, 3 A, 400 В SPST Большой, высокая мощность
15 Стандартная SPDT Малый корпус
40 30 Вт, 0.5 A, 500 В SPDT Высокая мощность
40 50 Вт, 1.5 A, 500 В SPDT Большой, высокая мощность

Основные параметры герконов

Время срабатывания время между моментом приложения магнитного поля и моментом замыкания контактов геркона.

На рисунке 16 представлен график зависимости величины магнитного поля от времени. Вначале геркон помещают в сильное магнитное поле до момента насыщения (при этом даже при увеличении магнитной индукции намагниченность, достигнув максимума, остается неизменной). После этого магнитное поле ослабляют до 0 и начинают постепенно увеличивать. Рабочая точка на данном графике означает такую величину магнитного поля, при которой контакты геркона замыкаются. Точка рассоединения – соответствует величине магнитного поля, при которой контакты размыкаются. Нужно заметить, что сила поля в точке рассоединения всегда ниже, чем в рабочей точке. Это связано с тем, что у контактов геркона всегда остается небольшая намагниченность.

Временем отпускания называется интервал между рабочей точкой и точкой рассоединения.

Магнитодвижущая сила (МДС) срабатывания ( pull in ) – это величина силовой характеристики магнитного поля, при которой происходит замыкание контактов геркона. В системе СИ единицами измерения магнитодвижущей силы являются Ампер*витки (AT или Amper*turns). Когда измеряют магнитодвижущую силу с помощью соленоида, рабочая точка (замыкание) обычно дается при температуре 20°С, так как из-за термического расширения медного провода в катушке магнитное поле будет меняться приблизительно на 0,4%/°С.

Отношение между размыканием и замыканием, выраженное, как правило, в процентах, называется гистерезисом. В зависимости от материалов металлических контактов, их жесткости, длины, площади соприкосновения, гистерезис будет сильно меняться (рисунок 17).

Гистерезис – это отношение магнитодвижущей силы срабатывания к магнитодвижущей силе в точке рассоединения. Обычно этот параметр выражают в процентах. Компания Littelfuse выпускает специальные серии герконов (MACD-14, MASM-14), в которых гистерезис сведен к минимуму. Обычно такие герконы применяются в датчиках уровня жидкостей, в системах позиционирования.

Контактное сопротивление ( contact resistance ) – максимальное сопротивление геркона в замкнутом состоянии.

Удельное сопротивление контактов геркона или герконового реле очень мало и обычно составляет от 7,8х10 -8 до 10х10 -8 Ом/м. Это выше удельного сопротивления меди, которое равняется 1,7х10 -8 Ом/м. Контактное сопротивление герконов обычно составляет около от 70 до 200 мОм, а сопротивление контактов в герконовом реле – около 150 мОм.

Динамическое сопротивление контактов ( Dynamic Contact Resistance ( DCR ) – это сопротивление контактов геркона в рабочем/динамическом режиме. Статичное контактное сопротивление геркона – достаточно малоинформативный параметр, который не позволяет выявить проблемы, связанные с реальным состоянием контактов. Замыкание и размыкание контактов геркона с частотой от 50 до 200 Гц дает намного больше информации. Подача на геркон напряжения 0,5 В и тока 50 мА может помочь выявить потенциальные проблемы. Эти измерения могут быть выполнены с помощью осциллографа и легко оцифрованы при автоматическом контроле качества (рисунок 18). Не стоит использовать более высокое напряжение, чтобы не изнашивать контакты геркона. Если на производстве контакты геркона не были правильно очищены перед корпусированием, то на них может находиться тончайшая диэлектрическая пленка толщиной в несколько ангстрем. Из-за нее может быть нарушена коммутация слабых сигналов. При использовании более высокого напряжения эта проблема может никак не проявиться.

Если на катушку подать сигнал с частотой 50…200 Гц, ток коммутации будет порядка 0,5 мА. Дребезг контактов после замыкания может продолжаться около 100 мс, и за ним последует динамический шум, который будет длиться около 0,5 мс. Природа этого динамического шума состоит в том, что после замыкания контактов происходят гармонические колебания, и в месте контакта изменяется сопротивление из-за меняющегося в зоне контакта давления. При этом размыкания не происходит. На рисунке 19 видно, что после завершения фазы динамического шума начинается «волновая» фаза, длящаяся 1 мс или чуть более. Вибрация контактов геркона в магнитном поле соленоида через 2…2,5 мс прекращается, и сопротивление стабилизируется.

Наблюдая за осциллограммой этого динамического теста, мы можем сделать некоторые выводы о качестве тестируемого геркона. Как только на соленоид подается напряжение, колебательный процесс должен завершиться за время, приблизительно равное 1,5 мс. Если колебания продолжаются более 2,5 мс, это может означать, что контакты плохо намагничиваются. В результате ресурс данного геркона будет небольшим, особенно если он будет работать с большой нагрузкой (рисунок 20).

Если динамический шум или дребезг контактов длятся значительно дольше 3 мс, это может быть следствием нарушения герметичности геркона, трещины в корпусе, перегрузки по току или напряжению. Также это может быть следствием загрязнения контактов при производстве или попадания влажного воздуха внутрь корпуса геркона. На рисунках 21 и 22 изображены такие случаи.

На рисунке 23 изображен случай, когда после завершения фазы динамического шума продолжаются стохастические колебания контактов, вследствие которого динамическое сопротивление контактов не стабилизируется.

Напряжение переключения/коммутации ( switching voltage ) – это обычно максимальное постоянное напряжение, которое может быть приложено к геркону в момент замыкания контактов. Если напряжение на герконе выше 5…6 В, при этом может произойти перенос микроскопического количества металла с одного контакта на другой. Несмотря на это, при работе с напряжениями до 12 В герконы и герконовые реле имеют наработку на отказ в десятки миллионов раз срабатываний. А при напряжении 5 В и меньше количество срабатываний увеличивается до миллиардов раз. Высококачественные герконовые реле Littelfuse могут работать в слабосигнальных цепях с напряжениями всего в несколько нановольт.

Ток переключения или коммутационный ток ( switching current ) – это максимальный постоянный ток или амплитудное значение переменного тока в момент замыкания контактов геркона. В случае превышения этого значения срок службы геркона значительно сократится.

Несущий ток ( carry current ) – это максимальное значение тока при замкнутых контактах геркона. Микросекундные импульсы тока могут значительно превосходить это значение без сокращения срока службы геркона. В то же время длительные импульсы тока или постоянный ток, превышающий несущий, приведут к сокращению срока службы геркона или выходу его из строя. Герконы и герконовые реле в отличие от своих электромеханических собратьев могут работать с очень малыми токами, на уровне нескольких фемтоампер (фемто = 10 -15).

Эквивалентная емкость ( contact capacitance ) – емкость геркона в замкнутом состоянии. Для герконов SPST-типа эта величина обычно составляет 0,1…0,2 пФ. Для переключающих герконов SPDT-типа эквивалентная емкость обычно составляет 1…2 пФ.

Этот параметр имеет большое значение при применении геркона в высокочастотных цепях.

Коммутируемая мощность ( switching power ) – это максимальная мощность, которая может потребляться нагрузкой, подключенной через геркон. Так как мощность рассчитывается как произведение коммутируемого напряжения и тока переключения, то для 10 Вт геркона не стоит пропускать ток более 500 мА при напряжении 200 В, для такого тока максимальное коммутационное напряжение составит всего 20 В. Превышение данного параметра также неминуемо влечет за собой сокращение срока службы геркона.

Сопротивление изоляции ( insulation resistance ) сопротивление геркона в открытом состоянии. По этому параметру герконы превосходят большинство существующих на сегодняшний день ключей, так как их сопротивление изоляции измеряется в тераомах. Величина токов утечки геркона в открытом состоянии составляет единицы пикоампер.

Диэлектрическая абсорбция ( dielectric absorbtion ) – это эффект, связанный с поляризацией диэлектриков в герконе при разряде емкостного заряда контактов. Данный эффект проявляется в виде задержки или уменьшения протекания через замкнутый геркон очень малых токов на уровне наноампер.

Резонансная частота ( resonance frequency ) – это частота собственных колебаний геркона, при которой начинаются собственные вибрации контактов, которые, в свою очередь, влияют на такие параметры геркона как напряжение пробоя и напряжение коммутации. Герконы с капсулами 20 мм обычно имеют резонансную частоту в диапазоне 1500…2000 Гц. Более компактные 10 мм герконы имеют более высокую резонансную частоту: 7000…8000 Гц. Для того, чтобы избежать проблем в работе геркона, нужно учесть вибрации среды эксплуатации и резонансную частоту геркона.

Защита герконов и герконовых реле

В цепях, где геркон работает с индуктивной нагрузкой, такой как катушка реле, соленоид, трансформатор или миниатюрный мотор, энергия магнитного поля, накопленная в индуктивных компонентах, при коммутации будет испытывать высокие нагрузки по напряжению и току. Это обстоятельство будет негативно сказываться на сроке службы геркона.

Существует несколько способов устранить эту проблему.

  1. Использование шунтирующего диода (в зарубежной литературе он часто встречается под названием flyback или freewheeling diode) возможно в цепях постоянного тока (рисунок 24). Для переменного напряжения придется использовать защитный диод Зенера (он же лавинный диод или TVS-диод), варистор или RC-цепочку (снабберную RC-цепь). Каждый из способов имеет как достоинства, так и недостатки.

  1. Использование подавляющих RC-цепей (снабберных цепей).

Существует два варианта подключения снабберной цепи: параллельно геркону (рисунок 26) или параллельно нагрузке (рисунок 27). Первый способ является предпочтительным. Он позволяет снизить напряжение при коммутации и таким образом избежать образования искр. Но в этом случае при коммутации через геркон будет протекать больший ток, обусловленный разрядом конденсатора.

Таким образом, мы столкнемся с решением задачи по выбору подходящего по сопротивлению резистора и конденсатора по емкости. Малая емкость будет плохо сглаживать скачки напряжения при переходных процессах, особенно при большой реактивной составляющей нагрузки. А большая повысит стоимость снабберной цепи и при этом увеличит коммутационный ток, что также негативно скажется на долговечности геркона. Для ограничения тока во время замыкания контактов геркона используется резистор. Посчитаем сопротивление:

По закону Ома:

Напряжение на герконе должно лежать в пределах 0,5 от максимального пикового значения Vpk напряжения (1)

(1)

и троекратного его превышения 3*Vpk. Производим расчет по формуле (2):

(2)

где Isw – ток коммутации геркона.

Уменьшение сопротивления резистора в снабберной цепи уменьшит износ контактов геркона от электрических дуг, при этом высокое сопротивление будет положительно влиять на ограничение тока «конденсатор-геркон». Для подбора подходящей емкости рекомендуется начать с 0,1 мкФ. Это очень распространенная емкость и ее цена очень мала. Если этой емкостью не удается избавиться от искр при замыкании контактов геркона, то попробуйте ее постепенно увеличивать до исчезновения искр при коммутации. Параллельно с этим не забывайте про ток коммутации.

Формовка и обрезка выводов герконов

Длина и форма аксиальных выводов герконов не всегда удобны для применения в конкретном приборе. Однако необдуманная модификация может значительно сказаться на работе геркона. При резке и формировании выводов герконов важно использовать правильные опорные и режущие инструменты, чтобы избежать повреждения герметичных уплотнений «стекло-металл». Поврежденный корпус может иметь как незаметные глазу сколы, так и крупные трещины. Такие дефекты могут быть обнаружены визуально с использованием микроскопа с небольшим увеличением. Но бывают случаи, когда нарушается герметизация корпуса, и даже описанная выше методика измерения динамического сопротивления может не выявить заметного ухудшения. С течением времени в геркон будет попадать влага, и его функционирование будет нарушаться.

Для того, чтобы избежать повреждений, рекомендуется оставлять 1 мм длины вывода между точкой формовки либо обрезки – и корпусом геркона. При этом вывод геркона должен быть полностью зафиксирован, чтобы механическое напряжение при формовке или обрезке не передавалось на остальную часть вывода.

Рассмотрим основные способы формовки и обрезки выводов геркона.

  1. Обрезка выводов геркона с помощью бокорезов с двусторонней заточкой (рисунок 28) недопустима, так как при этом сила, деформирующая вывод, будет передаваться в сторону корпуса.

Обрезка выводов бокорезами с односторонней заточкой допустима (рисунок 29), при этом надо помнить, что плоская сторона губок бокорезов должна находится со стороны корпуса геркона. Также следует обратить внимание на качество заточки и наличия люфта у используемого инструмента.

  1. Обрезка выводов с помощью зажима, жестко фиксирующего контакты геркона (рисунки 30 и 31).

Обрезка выводов геркона с частичной фиксацией (рисунок 32) недопустима.

  1. Формовка выводов геркона без фиксации вывода запрещена (рисунок 33), так как в таком случае деформации подвергается и часть вывода, уходящая в корпус геркона.

Формовка выводов геркона при фиксации вывода в двух точках, как показано на рисунке 34, допустима, так как опора В не дает деформироваться выводу в направлении от нее к корпусу геркона.

Формовка при полной фиксации вывода геркона, как показано на рисунках 35 и 36, также допустима.

После правильной формовки и обрезки выводов геркона можно получить распространенные конфигурации, изображенные на рисунке 37.

Выбор магнитов

Для общего применения в основном используются четыре группы магнитов: ферросплавы, альнико AlNiCo, неодимовые NdFeB и самариевые SmCo (таблица 2). Для того чтобы подобрать подходящий магнит, следует учитывать такие факторы как температура среды, размагничивание близкорасположенными источниками магнитных полей, свободное пространство для движения, химический состав окружающей среды.

Неодимовые магниты обладают наибольшей энергией, наибольшей остаточной намагниченностью и коэрцитивной силой. Они имеют сравнительно невысокую цену и более высокую механическую прочность, чем самариевые SmCo. Могут использоваться при температурах среды до 200°C. Не рекомендуется использовать эти магниты в средах с повышенным содержанием кислорода.

Самариевые SmCo имеют высокую энергию и подходят для применений, где требуется высокая стойкость к размагничиванию. Имеют великолепную термическую стабильность и могут использоваться в средах до 300°C, обладают высокой коррозийной стойкостью. При этом их цена – самая высокая среди всех типов магнитов. Их недостатком является очень высокая хрупкость.

Альнико AlNiCo намного дешевле, чем магниты из редкоземельных элементов и подходят для большинства применений. Имея низкую коэрцитивную силу, отличаются великолепной термической стабильностью вплоть до 550°C.

Ферритовые магниты являются самыми дешевыми, но при этом хрупкими. Имеют неплохую термическую стабильность и могут использоваться при температурах до 300 °C. Очень стойки к коррозии. Требуют механической обработки для соответствия жестким габаритным допускам.

Таблица 2. Выбор магнитов для управления герконами

Показатели Увеличение показателей →
Цена Феррит AlNiCo NdFeB SmCo
Энергия Феррит AlNiCo SmCo NdFeB
Диапазон рабочих температур NdFeB Феррит SmCo AlNiCo
Коррозионная стойкость NdFeB SmCo AlNiCo Феррит
Коэрцитивная сила AlNiCo Феррит NdFeB SmCo
Механическая прочность Феррит SmCo NdFeB AlNiCo
Температурный коэффициент AlNiCo SmCo NdFeB Феррит

Заключение

В современном мире с каждым днем становится все больше «умных вещей», которые значительно упрощают наши повседневные задачи. Немалую роль в этом сыграли датчики на основе герконов. Фантастическая надежность, четкость срабатывания, отсутствие потребности в питании, простота применения и великолепные коммутационные свойства для слабосигнальных цепей сделали герконы одними их самых распространенных электронных компонентов, применяющихся всюду, от холодильников до самолетов.

Геркон образуется от двух слов: ГЕР метичный КОН такт. Давайте рассмотрим его поближе:

Как вы видите на фото, самый простой геркон, который состоит из стеклянной колбочки. В ней находятся две железные пластинки. Принцип работы нашего героя состоит в том, что эти пластинки замыкаются, когда он попадает в магнитное поле. Магнитное поле может быть вызвано каким-нибудь куском магнита или с помощью катушки индуктивности , на которую подано напряжение прямо на ее выводы. , проходя по катушке, создает в ней магнитное поле. В свою очередь это самое магнитное поле может управлять герконом.

Давайте рассмотрим поближе этот самый геркон через наш USB микроскоп . В обычном состоянии железные пластинки геркона, как вы видите, не замкнуты.


Но стоит нам только преподнести магнит, как они сразу же замыкаются. В данном случае я использовал магнит от динамика мобильного телефона.


Как проверить геркон

Все вы, наверное, помните статью как проверить предохранитель мультиметром . Так вот, геркон проверяется почти таким же способом. Берем наш мультиметр, ставим крутилку на прозвонку и цепляемся щупами за выводы геркона. Так как он в исходном состоянии разомкнут, следовательно, мультиметр нам покажет обрыв.


Теперь берем магнит. В нашем случае это динамик. Как вы знаете, в его основе лежит тороидальный магнит. С помощью этого тороидального магнита мы создаем магнитное поле для геркона. Как только мы подносим магнит к геркону, его контакты замыкаются, и мультиметр нам покажет почти нулевое сопротивление.


Отсюда делаем вывод, что наш подопечный жив и здоров.

Если есть большое желание, на Али можно приобрести любые виды стеклянных герконов.