Измерительные

Технология изготовления солнечных батарей. Технология изготовления солнечных панелей

Технология изготовления солнечных батарей. Технология изготовления солнечных панелей

Получение электричества из альтернативных источников питания весьма затратное занятие. Например, использование солнечной энергии при покупке готового оборудования придется потратить значительную сумму денег. Но в наше время возможно собрать солнечные батареи своими руками для дачи или частного дома из готовых фотоэлементов или других подручных материалов. И прежде, чем приступить к покупке необходимых компонентов и проектированию конструкции, необходимо понять, что такое солнечная батарея и ее принцип работы.

Солнечная батарея: что это и как работает

У людей, которые впервые сталкиваются с этой задачей, сразу возникают вопросы: «Как собрать солнечную батарею?» или «Как сделать солнечную батарею?». Но изучив устройство и принцип его работы, проблемы с реализацией данного проекта отпадают сами собой. Ведь конструкция и принцип действия просты и не должны вызвать затруднений при создании источника питания в домашних условиях.

Солнечная батарея (СБ) - это фотоэлектрические преобразователи энергии, излучаемой солнцем, в электрическую, которые соединены в виде массива элементов и заключены в защитную конструкцию . Преобразователи - полупроводниковые элементы из кремния для генерации постоянного тока . Они производятся трех видов:

  • Монокристаллический;
  • Поликристаллический;
  • Аморфный (тонкопленочный).

Принцип работы устройства основан на фотоэлектрическом эффекте . Солнечный свет, падая на фотоэлементы, выбивает свободные электроны с последних орбит каждого атома кремниевой пластины. Перемещение большого количества свободных электронов между электродами батареи вырабатывают постоянный ток. Далее, он преобразовывается в переменный ток для электрификации дома.

Выбор фотоэлементов

До начала проектных работ по созданию панели в домашних условиях нужно выбрать один из трех типов преобразователей солнечной энергии. Для выбора подходящих элементов нужно знать их технические характеристики:

  • Монокристаллические . КПД этих пластин 12–14%. Однако, они чувствительны к количеству попадающего света. Небольшая облачность значительно снижает количество вырабатываемого электричества. Срок службы до 30 лет.
  • Поликристаллические . Эти элементы способны выдавать КПД 7–9%. Но на них не влияет качество освещенности и они способны выдавать такое же количество тока в облачную и даже пасмурную погоду. Эксплуатационный период - 20 лет.
  • Аморфные . Изготавливаются на основе гибкого кремния. Вырабатывают КПД около 10%. Количество производимого электричества не снижается из-за качества погоды. Но дорогое и сложное производство делает их труднодоступными.

Для изготовления СБ своими силами можно приобрести преобразователи типа В (второй сорт). К ним относятся элементы с небольшими дефектами, даже при замене некоторых компонентов себестоимость батарей будет в 2–3 раза меньше рыночной, благодаря этому сэкономите свои средства.

Для обеспечения частного дома электричеством от альтернативного источника энергии лучше всего подходят первые два типа пластин.

Выбор места и проектирование

Батареи лучше располагать по принципу: чем выше, тем лучше . Отличным местом будет крыша дома, на нее не попадает тень от деревьев или других построек. В случае, если конструкция перекрытий не позволяет выдержать вес установки, то место следует выбирать на участке дачи, который больше всего воспринимает излучение от солнца.

Собранные панели необходимо располагать под таким углом, чтобы солнечные лучи максимально перпендикулярно падали на кремниевые элементы . Идеальным вариантом будет наличие возможности корректирования всей установки по направлению за солнцем.

Изготовление батареи своими руками

Обеспечить дом или дачу электричеством в 220 В от солнечной батареи вам не удастся, т.к. размеры такой батареи будут огромны. Одна пластина генерирует электрический ток с напряжением 0,5 В. Оптимальным вариантом считается СБ с номинальным напряжением 18 В. Исходя из этого рассчитывается необходимое количество фотоэлементов для устройства.

Сборка каркаса

В первую очередь самодельная солнечная батарея нуждается в защитной рамке (корпусе) . Ее можно изготовить из алюминиевых уголков 30х30 мм или из деревянных брусков в домашних условиях. При использовании металлического профиля на одной из полок снимается напильником фаска под углом 45 градусов, а вторая полка отрезается под тем же углом. Отрезанные по нужным размерам с обработанными концами детали каркаса скручиваются при помощи угольников из того же материала. К готовой раме на силикон приклеивается защитное стекло.

Спайка пластин

При спаивании элементов в домашних условиях нужно знать, что для увеличения напряжения необходимо соединять последовательно , а для увеличения силы тока - параллельно . Кремневые пластины выкладываются на стекло, оставляя между ними зазор 5 мм с каждой стороны. Этот промежуток необходим для погашения возможного температурного расширения элементов при нагреве. Преобразователи имеют две дорожки: с одной стороны «плюс », с другой - «минус ». Все детали соединяются последовательно в единую цепь. Затем проводники с последних компонентов цепи выводятся на общую шину.

Для избегания саморазряда устройства в ночное время или облачную погоду специалисты рекомендуют предусмотреть монтаж диода Шоттки 31DQ03 или аналога на контакт от «средней» точки.

После окончания паяльных работ при помощи мультиметра необходимо проверить выходное напряжение, которое должно быть 18–19 В для полноценного обеспечения частного дома электроэнергией.

Сборка панели

В готовый корпус укладываются спаянные преобразователи, потом в центр каждого кремневого элемента наносится силикон , и сверху накрывается подложкой из ДВП для их фиксации. После чего конструкция закрывается крышкой, и все стыки герметизируются герметиком или силиконом . Готовая панель монтируется на держатель или каркас.

Солнечные батареи из подручных материалов

Помимо сборки СБ из купленных фотоэлементов их можно собрать из подручных материалов, которые есть у любого радиолюбителя: транзисторов, диодов и фольги.

Батарея из транзисторов

Для этих целей наиболее подходящими деталями являются транзисторы типа КТ или П . Внутри них находится довольно большой кремневый полупроводниковый элемент, необходимый для производства электричества. Подобрав необходимое количество радиодеталей, с них необходимо срезать металлическую крышку. Для этого нужно зажать его в тесках и ножовкой по металлу аккуратно произвести срез верхней части. Внутри можно увидеть пластину, которая будет служить в качестве фотоэлемента.

Транзистор для батареи со спиленной крышечкой

Все эти детали имеют три контакта: база, эмиттер и коллектор. При сборке СБ нужно выбирать коллекторный переход в связи с наибольшей разностью потенциалов.

Сборка осуществляется на ровной плоскости из любого диэлектрического материала. Спаивать транзисторы нужно в отдельные последовательные цепочки , а эти цепочки,в свою очередь соединять параллельно.

Расчет готового источника тока можно производить из характеристик радиодеталей. Один транзистор выдает напряжение 0,35 В и силу тока при КЗ в 0,25 мкА.

Батарея из диодов

Солнечная батарея из диодов Д223Б действительно может стать источником электрического тока. Эти диоды имеют наибольший вольтаж и выполнены в стеклянном корпусе, покрытом краской . Напряжение на выходе готового изделия можно определить из расчета, что один диод на солнце генерирует 350 мВ.

  1. Необходимое количество радиодеталей складываем в емкость и заливаем ацетоном или другим растворителем и оставляем на несколько часов.
  2. Затем, необходимо взять пластину нужного размера из не металлического материала и выполнить разметку под впаивание компонентов источника питания.
  3. После размокания краску можно легко соскрести.
  4. Вооружившись мультиметром, на солнце или под лампочкой определяем плюсовой контакт и загибаем его. Диоды впаиваются вертикально , т.к. в таком положении кристалл лучше всего генерирует электричество из энергии солнца. Поэтому на выходе получим максимальное напряжение, которое будет генерировать солнечная батарея.

Помимо описанных выше двух способов источник питания можно собрать из фольги. Самодельная солнечная батарея, сделанная согласно пошаговой инструкции, описанной ниже, сможет давать электроэнергию, хотя и очень малой мощности:

  1. Для самоделки понадобится медная фольга площадью 45 кв. см. Отрезанный кусок обрабатывается в мыльном растворе для удаления жира с поверхности. Так же желательно вымыть руки, чтобы не оставлять жировые пятна.
  2. Наждаком необходимо удалить защитную оксидную пленку и любой другой вид коррозии с плоскости отреза.
  3. На горелку электрической плитки мощностью не меньше 1,1 кВт ложится лист фольги и нагревается до образования красно-оранжевых пятен. При дальнейшем нагреве образовавшиеся окислы превращаются в оксид меди. Этому свидетельствует черный цвет поверхности куска.
  4. После образования оксида нагрев необходимо продолжать в течение 30 минут , чтобы образовалась оксидная пленка достаточной толщины.
  5. Прожарка останавливается, и лист остывает вместе с печкой. При медленном охлаждении медь и оксид остывают с разной скоростью, что способствует последнему легко отслоиться.
  6. Под проточной водой удаляются остатки оксида . При этом нельзя сгибать лист и механически отдирать мелкие кусочки, чтобы не повредить тонкий слой окиси.
  7. Вырезается второй лист по размерам первого.
  8. В пластиковый бутыль объемом 2–5 литров с обрезанным горлом нужно поместить два куска фольги. Закрепить их зажимами «крокодил». Располагать их надо, чтобы они не соединялись .
  9. К обработанному куску подводится минусовая клемма, а ко второму - плюсовая.
  10. В банку заливается солевой раствор. Его уровень должен быть ниже верхней кромки электродов на 2,5 см . Для приготовления смеси 2–4 столовые ложки соли (в зависимости от объема бутылки) растворяются в небольшом количестве воды.

Все солнечные батареи не пригодны для обеспечения дачи или частного дома помещения электричеством в виду своей маломощности. Но они способны служить источником питания для радиоприемников или зарядки мелких электроприборов.

Видео по теме

Если обратить внимание на крыши многих частных домов или небольших компаний, то там можно увидеть солнечные батареи. Подорожание энергоносителей приводит к тому, что люди начинают искать альтернативные источники. В этих условиях спрос на солнечные батареи растет день ото дня.

Потенциальные возможности

В условиях растущей популярности альтернативных источников энергии целесообразно вовремя занять нишу в рынке. Для этого необходимо для начала приобрести оборудование для производства солнечных батарей. Его можно купить как в странах Европы, США и СНГ, так и в Китае.

В зависимости от спроса на эти изделия в вашем регионе или в местах, куда вы сможете поставлять произведенный товар, необходимо определиться с тем, на что будет ориентировано ваше производство. В настоящее время на рынке можно найти панели, предназначенные для различных сфер использования.

Это могут быть как легкие переносные варианты, которые берут с собой в туристические походы, стационарные модули, подходящие для установки на крышах помещений и жилых домов, или мощные панели, которые используют в качестве небольших электростанций.

Рабочие линии

Если у вас есть помещение для изготовления, тогда можно задуматься и о том, чтобы купить оборудование для производства солнечных батарей. Также не стоит забывать, что при их изготовлении у вас должны всегда быть в достаточном количестве необходимые расходные комплектующие.

Так, в список необходимого оборудования попадают станки, которые нарезают лазером материал для панелей на квадраты, сортируют их, ламинируют, вставляют в рамы и соединяют их вместе. Помимо этого, для производства необходимы машины, которые занимаются замешиванием специального клея, обрезают пленку под панелью и их края. Не обойтись при изготовлении и без столов, на которых необходимо будет корректировать углы, вставлять в панели провода и формировать их, и тележек, предназначенных для их перемещения и прессования.

Каждый станок для производства солнечных батарей является незаменимым компонентом линии по их изготовлению. Поэтому, прежде чем начинать заказывать материалы для производства, подсчитайте общую стоимость оборудования и проанализируйте, можете ли вы позволить себе такие траты. Правда, при этом стоит учесть, что при наличии каналов сбыта, они достаточно быстро окупаются.

Процесс изготовления

Если вы видели солнечные батареи раньше только на картинках и плохо себе представляете, как идет их создание, тогда лучше найти человека, которому известна технология производства солнечных батарей. Если говорить о ней в общих чертах, то надо знать, что она состоит из ряда этапов.

Начинается изготовление с проверки и подготовки к работе поступивших в цех материалов. После нарезки и сортировки фотоэлектрических преобразователей (ФЭП) они поступают на оборудование, на котором проходит процесс припайки к контактам панелей специальных луженных шинок из меди. Лишь после этого начинается процесс соединения всех ФЭП в цепочки необходимой длины.

Следующим этапом является создание сэндвича, который состоит из собранных в матрицу преобразователей, стекла, двух слоев герметизирующей пленки и тыльной стороны панели. Именно на этой стадии оборудование для производства солнечных батарей формирует схему модуля, тут же определяется его рабочее напряжение.

Собранную конструкцию проверяют и отправляют на ламинирование – герметизацию, которая проходит под давлением при высокой температуре. Лишь после этого на подготовленный полуфабрикат крепят раму и монтируют специальную коммутационную коробку.

Тестирование продукции

Встретить на рынке брак среди подобных товаров практически невозможно, ведь каждая панель после сборки попадает в специальный цех тестирования.

Именно там их проверяют на возможность пробоя напряжением. После этого они сортируются, пакуются и отправляются в продажу, в магазинах можно встреть как небольшие переносные варианты, так и солнечные батареи для дома.

Производство этих видов практически ничем не отличается.

Конечно, безукоснительно соблюдать все этапы может позволить себе только крупный производитель с большими объемами производства и достаточным количеством сотрудников. Новым мелким изготовителям тяжело конкурировать с гигантами, ведь единовременное создание больших партий позволяет уменьшить себестоимость продукции.

являются фотоэлектрические преобразователи (солнечные модули), которые обращают энергию солнечного света в электричество. Для того, чтобы в доме пользоваться бытовыми приборами за счет солнечной батареи, таких модулей должно быть достаточно много.

Энергии, вырабатываемой одним модулем, недостаточно для удовлетворения энергетических потребностей. Между собой фотоэлектрические преобразователи связаны одной последовательной цепью.

Части, из которых состоит солнечная батарея:

  1. Солнечные модули ,объединенные в рамки.В одной рамке объединяются от единиц до нескольких десятков фотоэлектрических элементов. Для обеспечения электроэнергией целого дома понадобится несколько панелей с элементами.
  2. . Служит для накопления получаемой энергии, которую затем можно использовать в темное время суток.
  3. Контроллер . Он следит за разрядкой и зарядкой аккумулятора.
  4. . Преобразует постоянный ток, полученный от солнечных модулей в переменный.

Солнечный модуль (или фотоэлектрический элемент) основан на принципе p-n перехода, и по своему устройству очень напоминает транзистор. Если у транзистора спилить шляпку и на поверхность направить солнечные лучи, то подключенным к нему прибором можно определить мизерный электрический ток. Солнечный модуль работает по такому же принципу, только поверхность перехода у солнечного элемента значительно больше.

Как и многие типы транзисторов, солнечные элементы изготавливаются из кристаллического кремния.

По технологии изготовления и материалам различают три вида модулей:

  1. Монокристаллические . Изготовлены в виде цилиндрических кремниевых слитков. Преимущества элементов заключается в высокой производительности, компактности и в наибольшем сроке службы.
  2. Тонкопленочные . Делается напыление слоев фотоэлектрического преобразователя на тонкую подложку. КПД тонкопленочных модулей относительно невысок (7-13%).
  3. Поликристаллические . Расплавленный кремний заливается в квадратную форму, затем остуженный материал режется на квадратные пластинки. Внешне отличаются от монокристаллических модулей тем, что края углов у поликристаллических пластин не обрезаны.

Аккумулятор. В солнечных батареях наибольшее применение нашли свинцово-кислотные аккумуляторы. Стандартный аккумулятор имеет напряжение 12 вольт, для получения большего напряжения собирают аккумуляторные блоки. Так можно собрать блок напряжением 24 и 48 вольт.

Контроллер заряда солнечных батарей. Контроллер заряда действует по принципу регулятора напряжения в автомобиле. В основном на 12 вольт выдают напряжение от 15 до 20 вольт, и без контроллера могут быть повреждены перегрузкой. При 100% заряженном аккумуляторе контроллер отключает модули и предохраняет аккумулятор от закипания.

Инвертор. Солнечные модули вырабатывают постоянный ток, а для использования бытовых приборов и техники требуется переменный ток и напряжение 220 вольт. Инверторы предназначены для преобразования постоянного тока, делая его переменным.

Выбор комплектующих для изготовления

Чтобы снизить себестоимость солнечной станции, нужно попробовать собрать ее самостоятельно. Для этого потребуется закупить необходимые комплектующие, какие-то элементы можно изготовить самому.

Самостоятельно получится собрать:

  • рамки с фотоэлектрическими преобразователями;
  • контроллер зарядки;
  • инвертор напряжения;

Самые большие затраты будут связаны с приобретением самих солнечных элементов. Детали можно заказать из Китая или на eBay, такой вариант обойдется дешевле.

Благоразумно приобретать работоспособные преобразователи с повреждениями и дефектами – они просто забракованы производителем, но вполне исправны. Нельзя покупать элементы разных размеров и мощности – максимальный ток солнечной батареи будет ограничен током самого малого элемента.

Для изготовления рамки с солнечными элементами потребуется:

  • алюминиевый профиль;
  • солнечные элементы (обычно 36 штук для одной рамки);
  • припой и флюс;
  • дрель;
  • крепежные делали;
  • силиконовый герметик;
  • медная шина;
  • лист прозрачного материала (оргстекло, поликарбонат, плексиглас);
  • лист фанеры или текстолита(оргстекла);
  • диоды Шоттки;

Собирать инвертор самостоятельно имеет смысл только при небольшом энергопотреблении. Контроллер заряда в простом исполнении не так дорого стоит, поэтому нет особого смысла тратить время на изготовление прибора.

Технология изготовления своими руками

Для сборки солнечной батарей потребуется:

  1. Сконструировать рамку (корпус).
  2. Спаять все солнечные элементы в параллельную цепь.
  3. Закрепить солнечные элементы на рамке.
  4. Сделать корпус герметичным – прямое попадание атмосферных осадков на фотоэлектрические элементы недопустимо.
  5. Разместить батарею в районе наибольшей солнечной освещенности.

Для удовлетворения энергетических потребностей частного дома одной солнечной панели (рамки) будет недостаточно. Исходя из практики, с одного квадратного метра солнечной панели можно получить 120 Вт мощности. Для нормального энергообеспечения жилого дома потребуется где-то 20 кв. м. площади солнечных элементов.

Чаще всего батареи размещают на крыше дома с солнечной стороны.

Сборка корпуса


Корпус можно собирать из фанерного листа и реек, или из алюминиевых уголков и листа и оргстекла (текстолита). Необходимо определиться, сколько элементов будет размещаться в рамке. Следует учитывать, что между элементами необходим зазор в 3-5 мм, и размер рамки рассчитывается с учетом этих расстояний. Расстояние необходимо для того, чтобы при тепловом расширении пластины не прикасались друг с другом.

Сборка конструкции из алюминиевого профиля и оргстекла:

  • из алюминиевого уголка делается прямоугольный каркас;
  • По углам в алюминиевом корпусе сверлятся отверстия для крепежа;
  • на внутреннюю часть профиля корпуса наносится силиконовый герметик по всему периметру;
  • в раму устанавливается лист оргстекла (текстолита) и плотно прижимается к раме;
  • по углам корпуса с помощью шурупов ставятся крепежные уголки, которые надежно фиксируют лист прозрачного материала в корпусе;
  • герметику дают основательно высохнуть;

Все, корпус готов. Перед размещением солнечных элементов в корпусе необходимо тщательно протереть поверхность от грязи и пыли.

Соединение фотоэлементов


Обращаясь с фотоэлектронными элементами, следует помнить, что они очень хрупкие и требуют бережного отношения. Перед соединением пластин в последовательную цепочку их сначала тщательно, но аккуратно протирают– пластины должны быть идеально чистыми.

Если фотоэлементы были куплены уже с припаянными проводниками, это упрощает процесс соединения модулей. Но перед сборкой в этом случае необходимо проверить качество готовой пайки, и если есть неровности – устранить их.

На фотоэлектрических пластинах предусмотрены контакты по обеим сторонам – это контакты разной полярности. Если проводники(шины) еще не припаяны, необходимо сначала припаять их к контактам пластин, а затем уже соединить фотоэлектрические элементы между собой.

Чтобы припаять шины к фотоэлектрическим модулям, нужно:

  1. Отмерить нужную длину шины и нарезать на куски нужное количество полосок.
  2. Протереть контакты пластин спиртом.
  3. Тонким слоем нанести на контакт флюс по всей длине контакта с одной стороны.
  4. Приложить шину точно по длине контакта и разогретым паяльником медленно провести по всей поверхности пайки.
  5. Перевернуть пластину и повторить все операции пайки на другой стороне.

Нельзя сильно прижимать паяльник к пластине, элемент может лопнуть. Также необходимо проверить качество пайки – неровностей на лицевой стороне фотоэлементов быть не должно. Если бугорки и шероховатости остались, нужно еще раз аккуратно пройтись паяльником по шву контакта. Пользоваться необходимо маломощным паяльником.

Что нужно сделать, чтобы правильно и точно произвести соединение фотоэлектрических элементов:

  1. Если нет опыта в сборке элементов, рекомендуется воспользоваться разметочной поверхностью, на которой следует разместить элементы (фанерный лист).
  2. Расположить солнечные панели строго по разметке. Размечая, не забывать оставлять расстояние между элементами 5 мм.
  3. Пропаивая контакты пластин, обязательно следить за полярностью. Фотоэлементы должны быть правильно собраны в последовательную цепочку, иначе батарея не будет нормально работать.

Механический монтаж панелей:

  1. В корпусе сделать разметку для пластин.
  2. Солнечные элементы поместить в корпус, положив их на оргстекло. В рамке закрепить силиконовым клеем по размеченным местам. Клея много не наносить, только крохотную каплю по центру пластины. Нажимать осторожно, чтобы не повредить пластины.В корпус лучше перемещать пластины вдвоем, одному будет неудобно.
  3. Соединить все провода по краям пластин с общими шинами.

Прежде чем герметизировать панель, нужно протестировать качество пайки. Конструкцию аккуратно выносят поближе к солнечному свету и замеряют напряжение на общих шинах. Оно должно быть в пределах ожидаемых значений.

Как вариант, герметизацию можно провести следующим образом:

  1. Нанести капельки силиконового герметика между пластинами и по краям корпуса, аккуратно пальцами руки края фотоэлементов прижать к оргстеклу. Нужно, чтобы элементы как можно плотнее легли к прозрачному основанию.
  2. Поставить на все края элементов небольшой груз , допустим, головки из автомобильного набора инструментов.
  3. Дать герметику хорошо высохнуть , пластины за это время надежно зафиксируются.
  4. Затем промазать аккуратно все стыки между пластинами и краями рамки. То есть, нужно промазать в корпусе все, кроме самих пластин. Попадание герметика на края тыльной стороны пластин допустимо.

Финальная сборка солнечной батареи


  1. Сбоку корпуса установить соединительный разъем, разъем соединить с Шоттки.
  2. Закрыть с наружной стороны пластины защитным экраном из прозрачного материала. В данном случае, оргстеклом. Конструкция должна быть герметичной и исключать проникновение в нее влаги.
  3. Лицевую сторону (оргстекло) желательно обработать , например, лаком (лак PLASTIK-71).

Для чего нужен диод Шоттки? Если свет падает только на часть солнечной батареи, а другая часть затемнена, возможен выход элементов из строя.

Диоды помогают избежать поломки конструкции в таких случаях. При этом теряется мощность на 25%, но без диодов не обойтись – они шунтируют ток, ток идет в обход фотоэлементов. Чтобы падение напряжения было минимальным, необходимо применять низкоомные полупроводники, такими являются диоды Шоттки.

Преимущества и недостатки солнечной батареи


У солнечных батарей есть как преимущества, так и недостатки. Если бы были только одни плюсы от применения фотоэлектрических преобразователей, весь мир давно бы уже перешел на этот вид получения электроэнергии.

Преимущества:

  1. Автономность источника питания , нет зависимости от перебоев напряжения в централизованной электросети.
  2. Отсутствие абонентской платы за использование электроэнергией.

Недостатки:

  1. Высокая себестоимость оборудования и элементов.
  2. Зависимость от солнечного освещения.
  3. Возможность повреждения элементов солнечной батареи вследствие неблагоприятных погодных условий (град, буря, ураган).

В каких случаях целесообразно использовать установку на фотоэлектрических элементах:

  1. Если объект (дом или дача) находится на большом удалении от линии электропередач. Это может быть загородный коттедж в сельской глубинке.
  2. Когда объект расположен в южном солнечном районе.
  3. При совмещении различных видов энергии. Например, отопление частного дома с помощью печного отопления и солнечной энергии. Себестоимость маломощной солнечной станции будет не столь высока, и может быть экономически оправдана в данном случае.

Установка


Монтировать батарею необходимо по месту максимальной освещенности солнечным светом. Панели могут крепиться на крыше дома, на жестком или поворотном кронштейне.

Лицевая часть солнечной батареи должна быть обращена на юг или юго-запад под углом от 40 до 60 градусов. При монтаже нужно учитывать внешние факторы. Панели не должны загораживаться деревьями и другими предметами, на них не должна попадать грязь.

  1. Лучше покупать фотоэлементы с небольшими дефектами. Они также работоспособны, только имеют не такой красивый внешний вид. Новые элементы очень дороги, сборка солнечной батареи будет экономически не оправдана. Если нет особой спешки, пластины лучше заказать на eBay, это обойдется еще дешевле. С пересылкой и Китая нужно быть осторожнее – большая вероятность получить бракованные детали.
  2. Фотоэлементы нужно купить с небольшим запасом , велика вероятность их поломки во время монтажа, особенно, если нет опыта сборки подобных конструкций.
  3. Если элементы пока не используются , следует припрятать их в надежное место во избежание поломок хрупких деталей. Нельзя складывать пластины большими стопками – они могут лопнуть.
  4. При первой сборке следует изготовить шаблон , на котором будут размечены места расположения пластин перед сборкой. Так легче вымерять расстояния между элементами перед пайкой.
  5. Паять необходимо маломощным паяльником , и ни в коем случае не применять усилие при пайке.
  6. Для сборки корпуса удобнее применять алюминиевые уголки , деревянная конструкция менее надежная. В качестве листа с тыльной стороны элементов лучше использовать оргстекло или другой подобный материал и надежнее, чем крашеная фанера, и эстетично выглядит.
  7. Располагать фотоэлектрические панели следует в местах, где солнечное освещение будет максимальным в течение всего светового дня.

Схема электроснабжения дома


Последовательная цепь энергоснабжения частного дома на солнечных батареях выглядит следующим образом:

  1. Солнечная батарея из нескольких панелей , которые расположены на скате крыши дома, либо на кронштейне. В зависимости от энергопотребления, панелей может быть до 20 штук и больше. Батарея вырабатывает постоянный ток 12 вольт.
  2. Контроллер зарядки . Устройство предохраняет аккумуляторы от преждевременного разряда, а также ограничивает напряжение в цепи постоянного тока. Тем самым, контроллер защищает аккумуляторы от перегрузки.
  3. Инвертор напряжения . Преобразует постоянный ток в переменный ток, обеспечивая тем самым возможность потребления электроэнергии бытовыми приборами.
  4. Аккумуляторы . Для частных домов и дач ставят несколько аккумуляторов, соединяя их последовательно. Служат для накопления энергии. Энергия аккумуляторов используется в темное время суток, когда элементы солнечной батареи не вырабатывают ток.
  5. Электросчетчик .

Довольно часто в частных домах система энергоснабжения дополняется резервным генератором.

В целом, собрать солнечную батарею своими руками не так уж и сложно. Необходимы только определенные средства, терпение и аккуратность.

Мировой вклад России в производство фотоэлектрических станций на сегодняшний день составляет не более 1% , тогда как солнечная фотоэнергетика является одной из наиболее быстро растущих отраслей мировой экономики (мировой темп роста - 30-50% в год). При этом в нашей стране пока еще нет лабораторий осуществляющих испытания и сертификацию солнечных элементов и модулей по международным стандартам. Поэтому для Европы Россия в смысле солнечной энергетики , пока является «белым пятном».

Стоит отметить, что солнечные батареи характеризуются рядом неоспоримых преимуществ :

  • фотоэлектрические электростанции (ФЭС) самые экологически чистые и легко возводимые, благодаря своей модульной конструкции;
  • ФЭС характеризует высокая надежность (до сих пор они являются источником питания практически для всех спутников на земной орбите, потому что работают без поломок и почти не требуют технического обслуживания);
  • низкие текущие расходы (благодаря отсутствию подвижных частей, ФЭС не требуют особого ухода);
  • экологичность (это бесшумные и чистые модули, при их работе не происходит сжигания топлива);
  • модульность (благодаря этому свойству, ФЭС могут достигать совершенно различных размеров, в зависимости от потребности в электроэнергии);
  • длительный срок службы (работают до 30 лет);
  • низкие затраты на строительство (обычно ФЭС строят близко к потребителю, т. е. нет нужды тянуть линии электропередач на дальние расстояния, не нужно закупать трансформаторы);
  • независимость ФЭС от изменения цен на энергоносители.

Особенной популярностью солнечные батареи пользуются в южных странах, где их устанавливают непосредственно на крышах жилых домов. Можно назвать несколько крупных «солнечных парков» : «Солнечный парк» PEX в Испании на 30 МВт, способный обеспечить энергией до 16000 домов, «Солнечный парк» в Баварии на 11 МВт и в Лейпциге на 5 МВт, в Португалии - на 11 МВт, в Южной Корее на 4 МВт и в Израиле — на 100 МВт.

На сегодняшний день существует несколько технологий производства солнечных батарей , основанных на использовании того или иного материала при изготовлении пластины. Основано это на различном поглощении разными материалами солнечного излучения.

Среди широко используемых материалов можно назвать моно- и поликристаллический кремний, а также GaAs, CdTe, аморфный кремний и многие другие. В соответствии с выбранным материалом применяется определенная технология, которая отличается этапами производства и набором оборудования.

Наиболее часто в качестве сырья используется моно- и поликристаллический кремний . КПД пластин на основе этого материала колеблется в пределах от 13 до 18% (в настоящее время ведущие производители солнечных батарей пытаются повысить КПД до 19%). Такие пластины очень хрупкие, требуют дополнительной защиты, но значительно дешевле пластин из других материалов.

Тонкопленочная технология основана на использовании таких материалов, как CdTe, GaAs или аморфный кремний. КПД таких пластин также не превышает 20%, хотя в перспективе есть планы увеличения его до 22%. В зависимости от используемой подложки такие батареи могут гнуться, весьма устойчивы к механическим воздействиям, герметичны. Стоимость их выше стоимости кремниевых систем.

На сегодняшний день производство солнечных батарей в промышленном масштабе наиболее рентабельно выполнять по кремниевой технологии, это наиболее изученная и дающая наивысший выход технология производства.

Ниже приведена схема производства солнечных батарей на основе мультикристаллического кремния. Данная цепочка складывается из следующих этапов:

  • Подготовка кремниевой пластины, очистка ее после резки, промывка;
  • Структурирование поверхности пластины, создание топологии на ее поверхности, травление;
  • Легирование, нанесение фосфора;
  • Диффузия фосфора, вжигание;
  • Создание P-n-перехода, изолирование его, удаление не нужных слоев;
  • Нанесение антиотражающего слоя SiN;
  • Металлизация (создание металлических контактов на обратной стороне пластины методом трафаретной печати);
  • Сушка и вжигание;
  • Создание контактов на лицевой стороне пластины;
  • Выравнивание пластины;
  • Проверка и тестирование.

Оборудование под каждый из этапов поставляют европейские и американские компании - RENA, Roth&Rau, DESPATCH, BACCINI, MANZ - одни из мировых лидеров по производству оборудования в сфере солнечной энергетики.

Как выглядит технология производства солнечных батарей?

В мире наблюдается постоянный рост потребления электроэнергии, а запасы традиционных источников энергии уменьшаются. Поэтому постепенно растёт спрос на оборудование, которые вырабатывает электричество, используя нетрадиционные источники сырья. Одним из наиболее распространённых способов получения электричества являются солнечные батареи, работающие от энергии солнца. В их составе работают фотоэлектрические элементы, свойства которых позволяют преобразовывать солнечное излучение в электрический ток. Для их изготовления используется один из самых распространённых на Земле химических элементов – кремний. В этом материале мы поговорим о том, как кремний превращается в фотоэлектрические элементы. Проще говоря, мы рассмотрим, что представляет собой производство солнечных батарей, и какое оборудование для этого требуется.

В сфере производства солнечных батарей уже сформировался довольно большой рынок, на котором присутствуют крупные компании. Здесь уже вращаются миллионы долларов и есть бренды, заработавшие репутацию производителей качественной продукции. Имеется в виду как мировой рынок, так и российский. Технологии, положенные в основу производства солнечных батарей, совершенствуются по мере развития научных исследований в этом направлении. Сейчас выпускаются солнечные батареи самых разных размеров и назначения. Есть совсем маленькие, используемые в калькуляторах и . А есть крупные панели, применяемые в гелиосистемах и . Один фотоэлемент имеет небольшую мощность и вырабатывает совсем небольшой ток. Поэтому их объединяют в . Теперь рассмотрим, как производятся фотоэлементы.

Производство солнечных батарей можно разделить на следующие основные этапы:

  • Тестирование. На этом этапе проводится замер электрических характеристик. Для этого используются вспышки мощных ксеноновых ламп. На основании результатов испытаний фотоэлементы сортируют и направляют на следующую стадию производства;
  • На второй стадии производства выполняется пайка элементов в секции. Из них формируются секции на стеклянной подложке. Собранные секции переносятся на стекло с помощью вакуумных захватов. Это обязательное требование для исключения механического или иного воздействия на поверхность пластин. Блоки обычно включают в себя 4─6 секций. Секции, в свою очередь, состоят из 9─10 фотоэлектрических панелей;
  • Следующий этап производства – ламинирование. Соединённые с помощью пайки блоки фотоэлементов ламинируют при помощи этиленвинилацетатной плёнки. А также наносится специальное защитное покрытие. Все это делается на оборудовании с ЧПУ. Компьютер следит за такими характеристиками, как давление, температура и др. В зависимости от используемого материала, параметры ламинирования можно изменять;
  • И завершающий этап заключается в изготовлении рамки из алюминиевого профиля и специальной соединительной коробки. Чтобы обеспечить надёжность соединения применяют клей-герметик. На этом же этапе производства проводится тестирование солнечных батарей. При этом измеряются токи короткого замыкания, выдаваемые напряжение (рабочее и холостого хода), сила тока.