Электрооборудование

Садовый домик в стиле кубизм. Садовые домики HQ Room под ключ

Садовый домик в стиле кубизм. Садовые домики HQ Room под ключ

Начнем с того, что жидкость является промежуточным агрегатным состоянием. При критической точке кипения она схожа с газами, а при низких температурах проявляются характеристики, аналогичные твердому телу. У жидкости нет идеальной модели, что существенно усложняет описание ее равновесных термодинамических свойств, температуры замерзания, вязкости, диффузии, теплопроводности, поверхностного натяжения, энтропии, энтальпии.

Определение

Что такое диффузия? Это растекание, распространение, передвижение частиц среды, которое приводит к переносу вещества, установлению равновесных концентраций. При отсутствии внешних воздействий данный процесс определяется тепловым движением частичек. В этом случае процесс диффузии связан с концентрацией прямо пропорциональной зависимостью. Диффузионный поток будет меняться аналогично

Разновидности

Если диффузия в жидкости протекает при изменении температур, ее называют термодиффузией, в электрическом поле - электродиффузией.

Процесс движения частиц больших размеров в жидкости либо газе происходит под законам броуновского движения.

Особенности протекания

Диффузия в газах, жидкостях и твердых телах протекает с разной скоростью. Из-за отличий в характере теплового движения частиц в различных средах, максимальную скорость процесс имеет в газах, а минимальный показатель - в твердых телах.

Траекторией движения частицы является ломаная линия, поскольку периодически меняется направление и скорость. Из-за неупорядоченности движения наблюдается постепенное удаление частицы от первоначального положения. Смещение ее по прямой линии значительно короче того пути, который совершается по ломаной траектории.

Закон Фика

Диффузия в жидкости подчиняется двум законам Фика:

  • плотность диффузионного потока прямо пропорциональна концентрации с коэффициентом диффузии;
  • скорость изменения плотности потока диффузии прямо пропорциональна скорости изменения концентрации и имеет обратное направление.

Диффузия в жидкости характеризуется скачками молекул из одного равновесного положения в другое. Каждый такой скачок наблюдается в случае сообщения энергии молекуле в объеме, достаточном для разрыва связи с другими частицами. скачка не превышает расстояния между молекулами.

Рассуждая над тем, что такое диффузия в жидкости, отметим, что процесс зависит от температуры. При ее повышении происходит «разрыхление» структуры жидкости, в результате чего наблюдается резкое увеличение количества перескоков за единицу времени.

Диффузия в газах, жидкостях и твердых телах имеет некоторые отличительные характеристики. Например, в твердых телах механизм связан с перемещением атомов внутри кристаллической решетки.

Особенности явления

Диффузия в жидкости представляет практический интерес благодаря тому, что он сопровождается выравниванием концентрации вещества в изначально неоднородной среде. С участков, имеющих большую концентрацию, частиц уходит значительно больше.

Эксперименты

Опыты с жидкостями показали, что диффузия имеет особое значение в химической кинетике. Во время протекания на поверхности реагирующих веществ или катализатора данный процесс способствует определению скорости отвода продуктов реакции и добавлению исходных реагентов.

Чем объясняется диффузия в жидкостях? Молекулы растворителя способны проникать через полупрозрачные мембраны, в результате чего возникает осмотическое давление. Это явление нашло применение в химических и физических методах разделения веществ.

Биологические системы

В этом случае модели диффузии можно рассматривать на примере поступления в легкие кислорода воздуха, всасывания из кишечника в кровь продуктов пищеварения, поглощения корневыми волосками минеральных элементов. Диффузия ионов происходит во время генерирования мышечными и нервными клетками биоэлектрических импульсов.

Физическим фактором, который влияет на избирательность накопления в клетках организма определенных элементов, является разная скорость проникновения ионов через мембраны клеток. Этот процесс можно выразить законом Фика, заменив величину коэффициента диффузии показателем проницаемости мембраны, а вместо градиента концентрации использовать разность значений с обеих сторон мембраны. При диффузионном проникновении воды и газов в клетку меняются осмотические показатели давления вне и внутри клетки.

Анализируя, от чего зависит диффузия, отметим, что выделяют несколько видов этого процесса. Простая форма связана со свободным переносом ионов и молекул в сторону градиента их электрохимического потенциала. Например, подобный вариант подходит для тех веществ, у которых молекулы имеют незначительные размеры, например, метиловый спирт, вода.

Ограниченный вариант предполагает слабый перенос вещества. Например, в клетку не способны проникать даже небольшие по размерам частицы.

Страницы истории

Диффузия была открыта во время расцвета древнегреческой культуры. Демокрит и Анаксогор были убеждены в том, что любое вещество состоит из атомов. Разнообразие веществ, распространенных в природе, они объясняли соединениями между собой отдельных атомов. Они допускали, что эти частицы могут смешиваться, образуя новые вещества. Среди основателей молекулярно-кинетической теории, которая объяснила механизм протекания диффузии, особую роль сыграл Михаил Ломоносов. Им было дано определение молекуле, атому, объяснен механизм растворения.

Эксперименты

Опыт с сахаром позволяет понять все особенности диффузии. Если в холодный чай положить кусок сахара, постепенно на дне чашки образуется густой сироп. Он виден невооруженным глазом. Через некоторое время сироп равномерно распределится по всему объему жидкости и перестанет быть виден. Данный процесс протекает самопроизвольно и не предполагает перемешивания компонентов раствора. Аналогично происходит распространение по всему объему комнаты аромата духов.

Приведенные опыты свидетельствуют о том, что диффузия является самопроизвольным процессом проникновения молекул одного вещества в другое. Распространение вещества происходит во все стороны, несмотря на наличие силы тяжести. Подобный процесс является прямым подтверждением постоянного движения молекул вещества.

Так, в приведенном выше примере, осуществляется диффузия молекул сахара и воды, которая сопровождается равномерным распределением молекул органического вещества по всему объему жидкости.

Эксперименты позволяют обнаруживать диффузию не только в жидкостях, но и в газообразных веществах. Например, можно установить на весах емкость с парами эфира. Постепенно чашки придут в равновесие, затем стакан с эфиром окажется тяжелее. В чем причина подобного явления?

С течением времени молекулы эфира смешиваются с частицами воздуха, и в комнате начинает ощущаться специфический запах. В курсе физики средней школы рассматривается эксперимент, в котором учитель растворяет крупинку в воде. Сначала видна четкая траектория движения крупинки, но постепенно весь раствор приобретает равномерный оттенок. На основе проведенного эксперимента педагог объясняет особенности диффузии.

Чтобы выявить факторы, которые влияют на скорость протекания процесса в жидкостях, можно воспользоваться водой разной температуры. В горячей жидкости процесс взаимного перемешивания молекул наблюдается гораздо быстрее, следовательно, существуют прямая зависимость между значением температуры и скоростью протекания диффузии.

Заключение

Опыты, проводимые с газами, жидкостями и позволяют сформулировать законы физики, установить зависимость между отдельными величинами.

Именно в результате экспериментов был установлен механизм взаимного проникновения частиц одного вещества в другое, доказана хаотичность их движения. Опытным путем было выявлено, что быстрее всего происходит диффузия в газообразных веществах. Данный процесс имеет огромное значение для живой природы, используется в науке и технике.

Благодаря этому явлению поддерживается однородный состав земной атмосферы. В противном случае наблюдалось бы расслоение тропосферы на отдельные газообразные вещества, и тяжелый углекислый газ, непригодный для дыхания, находился бы ближе всего к поверхности нашей планеты. К чему бы это привело? Живая природа просто перестала бы существовать.

Велика роль диффузии и в растительном мире. Пышную крону деревьев можно объяснить диффузионным обменом через поверхность листьев. В результате осуществляется не только дыхание, но и питание дерева. В настоящее время в сельском хозяйстве применяется внекорневая подкормка кустарников и деревьев, предполагающая опрыскивание кроны специальными химическими составами.

Именно при диффузии растение из почвы получает питательные вещества. Физиологические процессы, протекающие в живых организмах, также связаны с данным явлением. Например, солевой баланс невозможен без диффузии. Огромное значение подобные процессы играют в снабжении озер и рек кислородом. Газ попадает в глубь водоема именно путем диффузии. Если бы такой процесс отсутствовал, жизнь внутри водоема перестала бы существовать.

Прием лекарственных препаратов, позволяющих человеку защищать себя от возбудителей разных заболеваний и улучшать самочувствие, также основывается на диффузии. Это явление применяется при сварке металлов, получении сахарного сока их свекловичной стружки, приготовлении кондитерских изделий. Сложно найти такую отрасль современной промышленности, где бы не применялась диффузия.

Физика — одна из самых интересных, загадочных и в то же время логичных наук. Она объясняет все, что можно объяснить даже то, как чай становится сладким, а суп соленым. Истинный физик сказал бы иначе: так протекает диффузия в жидкостях.

Диффузия

Диффузия — это волшебный процесс проникновения мельчайших частиц одного вещества в межмолекулярные пространства другого. Кстати, такое проникновение взаимно.

Знаете, как это слово переводится с латыни? Растекание, распространение.

Как протекает диффузия в жидкостях

Диффузия может наблюдаться при взаимодействии любых веществ: жидких, газообразных и твердых.

Чтобы узнать, как протекает диффузия в жидкостях, можно попробовать бросить несколько крупинок краски, молотого грифеля или, например, марганцовки в прозрачный сосуд с чистой водой. Лучше, если сосуд этот будет высоким. Что мы увидим? Сначала кристаллики под действием силы тяжести опустятся на дно, но через некоторое время вокруг них появится ореол окрашенной воды, который будет растекаться и растекаться. Если не подходить к данным сосудам хотя бы несколько недель, мы обнаружим, что вода окрасится практически полностью.

Еще один наглядный пример. Для того чтобы сахар или соль растворились быстрее, их нужно размешать в воде. Но если этого не сделать, сахар или соль самостоятельно растворятся через некоторое время: чай или компот станут сладкими, а суп или рассол - солеными.

Как протекает диффузия в жидкостях: опыт

Для того чтобы определить, как скорость диффузии зависит от температуры вещества, можно провести небольшой, но весьма показательный опыт.

Возьмем два стакана одинакового объема: один — с холодной водой, другой — с горячей. Насыпаем в оба стакана равное количество растворимого порошка (например, кофе или какао). В одном из сосудов порошок начнет растворяться интенсивнее. Знаете, в каком именно? Догадаетесь? Там, где температура воды выше! Ведь диффузия протекает в ходе беспорядочного хаотичного движения молекул, а при высоких температурах это движение происходит намного быстрее.

Диффузия может происходить в любых веществах, различается лишь время протекания этого явления. Самая высокая скорость — в газах. Именно поэтому нельзя хранить в холодильнике сливочное масло рядом с селедкой или салом, натертым мелко порубленным чесноком. Далее следуют жидкости (от меньшей плотности к наибольшей). И самая медленная — диффузия твердых тел. Хотя на первый взгляд диффузии в твердых телах не бывает.

Водяной пар возникает при кипении воды и при испарении при различной температуре. Для перехода воды в газообразное состояние из окружающей среды поглощается тепло в количестве около 600 ккал/кг. Водяной пар в воздухе не заметен («облака водяного пара» представляют собой парящие в воздухе водяные капли).

В воздухе может находиться лишь определенное количество водяною пара: чем теплее воздух, тем больше возможное содержание водяных паров. Процентное содержание пара в воздухе фактически определяет показатель относительная влажность воздуха. При снижении температуры воздуха и сохраняющемся без изменения содержании водяных паров возрастает относительная влажность воздуха.

Пример: содержание водяных паров в воздухе 125,2 кг/м2.
Температура воздуха:
20°; 125,2:238,5 = 52%
15°; 125,2:173,9 = 72%
10°; 125,2:125,2 = 100%

Если в этом примере и дальше понижать температуру воздуха, то водяные пары конденсируются в жидкость. Температура, при которой относительная влажность воздуха достигает 100%, называется точкой росы смеси воздуха с водяными парами.

Атмосферное давление воздуха 1 ат равно 10000 кг/м2; в смеси воздуха с водяными парами часть давления вызывается водяными парами. Такой показатель целесообразно применять для характеристики содержания водяных паров в воздухе, так как при этом более наглядны возможности диффундирования (0,06 г воды/1 кг воздуха = 1 кг/м2). Поэтому разность в давлении водяных паров (рис, 3) отражает только различное содержание молекул водяных паров при одинаковом полном давлении воздушной смеси; в противоположность этому абсолютная разность давления как в паровом котле (рис. 4), например, в пузырях кровельных ковров.

Различное давление водяных паров может выравниваться за счет диффузии через конструктивные элементы и их слои. Сопротивление диффундированию характеризуется коэффициентом μd (см, м). Если учитывается воздушная прослойка, то коэффициент сопротивления диффузии определяется по таблице «Термическое сопротивление и коэффициенты диффузионного сопротивления строительных материалов».

При диффундировании внутри строительных конструкций возникают участки с пониженным давлением. Аналогично распределению температуры в конструкции распределяется давление в отдельных слоях в соответствии с их долей в общем коэффициенте сопротивления диффундированию. Воздушные прослойки малой толщины (снаружи 0,5, внутри 2 см) можно не учитывать.

Пример.

Внутри 20°/50% = Н 9 кг/м2; снаружи 15°/80% = 14кг/м2. Стена толщиной 24см: μd = 4,5 х 24 = 108 см. Штукатурка изнутри 1,5 см: μd = 6 х 15 = 6 см Разность 119 - 14 = 105кг/м294,7% х 105 = 9,95кг/м25,3% х 105 = 5,5 кг/м2
114 см 100%

Примеры диффузии.

Для предотвращения разрушения строительных конструкций необходимо исключить конденсацию в них влаги. Конденсация возникает там, где фактическое содержание водяных паров угрожает превысить количество, соответствующее температуре. В примерах на рис. 5 -10 конструкция с граничными воздушными слоями представлена в масштабе, пропорциональном их теплоизоляции. Кривая рядом с прямолинейным изменением температуры показывает максимально возможное давление водяных паров.

Для предотвращения разрушений важно учитывать: достаточную теплоизоляцию. В примере (рис. 5) показана однослойная конструкция без конденсации. В примере (рис. 6) возникает конденсат на внутренней стороне конструкции, так как доля граничного воздушного слоя слишком велика. Граничный воздушный слой не должен превышать определенной величины х в сопротивлении теплопередаче 1/к (табл. 2);

правильное расположение слоев. Диффузионная кривая должна иметь внутри по возможности крутой наклон, а снаружи быть плоской (рис. 7). В противном случае возникает конденсация (рис. 8). Уклон характеризуется коэффициентом μd: внутри высокий коэффициент сопротивления диффундированию, хорошая теплопроводность = высокий коэффициент μd; снаружи низкий коэффициент сопротивления диффундированию, плохая теплопроводность = низкий коэффициент μd;

правильное расположение пароизоляции. Если пароизоляционный спой находится снаружи, то там падает давление водяных паров и в результате выпадает конденсат (рис. 9).

Чтобы этого избежать, слой пароизоляции должен располагаться внутри, причём слои, находящиеся перед ним, не должны превышать величины х в суммарном сопротивлении теплопередаче 1/k (табл. 2).

Таблица 1. Давление водяных паров в воздухе.
Температура, ° С Максимальное давление водяных паров, кг/ м2
— 10 26,9
— 5 40,9
0 62,3
5 88,9
10 125,2
15 173,9
20 238,1
25 323
Таблица 2. Максимальная доля граничного воздушного слоя до пароизоляции (х).
Наружная температура, ° С Относительная влажность воздуха, %
50 60 70
— 12 33,5 25 17,8
— 15 30,8 23 16,2
— 18 28,4 21 15
1. Содержание водяных паров в воздухе при различной относительной влажности воздуха.
2. В соответствии с распределением температуры в строительной конструкции проходит кривая максимального содержания водяных паров в воздухе, диффундирующем через конструкцию - кривая давления насыщения.

3. Относительная разность давления пара с двух сторон строительной конструкции.
4. Абсолютная разность давления пара с двух сторон строительной конструкции.

5. Давление водяных паров остаётся ниже максимально возможного - конденсата нет.
6. Граничный воздушный слой слишком велик из-за недостаточной теплоизоляции: конденсат на конструкции и внутри неё: X -максимально допустимая толщина граничного воздушного слоя.

7. Коэффициент, характеризующий расположение слоёв: крутизна кривой снижается к наружной стороне - хорошо.
8. Неправильное расположение слоёв: коэффициент и крутизна кривой растут к наружной стороне, в результате чего внутри конструкции выпадает конденсат.

9. Пароизоляция с холодной стороны: конденсат внутри конструкции.
10. Дополнительная пароизаляция с тёплой стороны предотвращает образование конденсата, X = максимальная теплоизоляция с внутренней стороны пароизоляции.

Эрнст Нойферт. «Строительное проектирование»/ Ernst Neufert «BAUENTWURFSLEHRE»

О таком понятии, как диффузия, слышали абсолютно все люди. Это было одной из тем на уроках физики в 7 классе. Несмотря на то что это явление окружает нас абсолютно везде, мало кто знает о нём. Что же оно всё-таки означает? В чём заключается его физический смысл , и как можно облегчить жизнь с её помощью? Сегодня мы с вами об этом и поговорим.

Вконтакте

Диффузия в физике: определение

Это - процесс проникновения молекул одного вещества между молекулами другого вещества. Говоря простым языком, этот процесс можно назвать смешиванием. Во время этого смешивания происходит взаимное проникновение молекул вещества друг между другом . Например, при приготовлении кофе молекулы растворимого кофе проникают в молекулы воды и наоборот.

Скорость этого физического процесса зависит от следующих факторов:

  1. Температура.
  2. Агрегатное состояние вещества.
  3. Внешнее воздействие.

Чем выше температура вещества, тем быстрее движутся молекулы. Следовательно, процесс смешивания происходит быстрее при высоких температурах.

Агрегатное состояние вещества - важнейший фактор . В каждом агрегатном состоянии молекулы движутся с определённой скоростью.

Диффузия может протекать в следующих агрегатных состояниях:

  1. Жидкость.
  2. Твёрдое тело.

Скорее всего, у читателя сейчас возникнут следующие вопросы:

  1. Каковы причины возникновения диффузии?
  2. Где она протекает быстрее?
  3. Как она применяется в реальной жизни?

Ответы на них можно узнать ниже.

Причины возникновения

Абсолютно у всего в этом мире есть своя причина. И диффузия не является исключением . Физики прекрасно понимают причины её возникновения. А как донести их до обычного человека?

Наверняка каждый слышал о том, что молекулы находятся в постоянном движении. Причём это движение является беспорядочным и хаотичным, а его скорость очень большая. Благодаря этому движению и постоянному столкновению молекул происходит их взаимное проникновение.

Есть ли какие-то доказательства этого движения? Конечно! Вспомните, как быстро вы начинали чувствовать запах духов или дезодоранта? А запах еды, которую готовит ваша мама на кухне? Вспомните, как быстро готовится чай или кофе . Всего этого не могло быть, если бы не движение молекул. Делаем вывод - основная причина диффузии заключается в постоянном движении молекул.

Теперь остаётся только один вопрос - чем же обусловлено это движение? Оно обусловлено стремлением к равновесию. То есть, в веществе есть области с высокой и низкой концентрацией этих частиц. И благодаря этому стремлению они постоянно движутся из области с высокой концентрацией в низкоконцентрированную. Они постоянно сталкиваются друг с другом , и происходит взаимное проникновение.

Диффузия в газах

Процесс смешивания частиц в газах самый быстрый. Он может происходить как между однородными газами, так и между газами с разной концентрацией.

Яркие примеры из жизни:

  1. Вы чувствуете запах освежителя воздуха благодаря диффузии.
  2. Вы чувствуете запах приготовленной пищи. Заметьте, его вы начинаете чувствовать сразу, а запах освежителя через несколько секунд. Это объясняется тем, что при высокой температуре скорость движения молекул больше.
  3. Слезы, возникающие у вас при нарезании лука. Молекулы лука смешиваются с молекулами воздуха, и ваши глаза на это реагируют.

Как протекает диффузия в жидкостях

Диффузия в жидкостях протекает медленнее. Она может длиться от нескольких минут до нескольких часов.

Самый яркие примеры из жизни:

  1. Приготовление чая или кофе.
  2. Смешивание воды и марганцовки.
  3. Приготовление раствора соли или соды.

В этих случаях диффузия протекает очень быстро (до 10 минут). Однако если к процессу будет приложено внешнее воздействие, например, размешивание этих растворов ложкой, то процесс пойдёт гораздо быстрее и займёт не более одной минуты.

Диффузия при смешивании более густых жидкостей будет происходить гораздо дольше. Например, смешивание двух жидких металлов может занимать несколько часов. Конечно, можно сделать это за несколько минут, но в таком случае получится некачественный сплав .

Например, диффузия при смешивании майонеза и сметаны будет протекать очень долго. Однако, если прибегнуть к помощи внешнего воздействия, то этот процесс и минуты не займёт.

Диффузия в твёрдых телах: примеры

В твёрдых телах взаимное проникновение частиц протекает очень медленно. Этот процесс может занять несколько лет. Его длительность зависит от состава вещества и структуры его кристаллической решётки.

Опыты, доказывающие, что диффузия в твёрдых телах существует.

  1. Слипание двух пластин разных металлов. Если держать эти две пластины плотно друг к другу и под прессом, в течение пяти лети между ними будет слой, имеющий ширину 1 миллиметр. В этом небольшом слое будут находиться молекулы обоих металлов. Эти две пластины будут слиты воедино.
  2. На тонкий свинцовый цилиндр наносится очень тонкий слой золота. После чего эта конструкция помещается в печь на 10 дней. Температура воздуха в печи - 200 градусов Цельсия. После того как этот цилиндр разрезали на тонкие диски, было очень хорошо видно, что свинец проник в золото и наоборот.

Примеры диффузии в окружающем мире

Как вы уже поняли, чем тверже среда, тем меньше скорость смешивания молекул. Теперь давайте поговорим о том, где в реальной жизни можно получить практическую пользу от этого физического явления.

Процесс диффузии происходит в нашей жизни постоянно. Даже когда мы лежим на кровати, очень тонкий слой нашей кожи остаётся на поверхности простыни. А также в неё впитывается пот. Именно из-за этого постель становится грязной, и её необходимо менять.

Так, проявление этого процесса в быту может быть следующим:

  1. При намазывании масла на хлеб оно в него впитывается.
  2. При засолке огурцов соль сначала диффундирует с водой, после чего солёная вода начинает диффундировать с огурцами. В результате чего мы получаем вкуснейшую закуску. Банки необходимо закатывать. Это нужно для того, чтобы вода не испарялась. А точнее, молекулы воды не должны диффундировать с молекулами воздуха.
  3. При мытье посуды молекулы воды и чистящего средства проникают в молекулы оставшихся кусочков еды. Это помогает им отлипать от тарелки, и сделать её более чистой.

Проявление диффузии в природе:

  1. Процесс оплодотворения происходит именно благодаря этому физическому явлению. Молекулы яйцеклетки и сперматозоида диффундируют, после чего появляется зародыш.
  2. Удобрение почв. Благодаря использованию определённых химических средств или компоста почва становится более плодородной. Почему так происходит? Суть в том, что молекулы удобрения диффундируют с молекулами почвы. После чего процесс диффузии происходит между молекулами почвы и корня растения. Благодаря этому сезон будет более урожайным.
  3. Смешивание производственных отходов с воздухом сильно загрязняет его. Из-за этого в радиусе километра воздух становится очень грязным. Его молекулы диффундируют с молекулами чистого воздуха из соседних районов. Именно так ухудшается экологическая обстановка в городе.

Проявление этого процесса в промышленности:

  1. Силицирование - процесс диффузионного насыщения кремнием. Он проводится в газовой атмосфере. Насыщенный кремнием слой детали имеет не очень высокую твёрдость, но высокую коррозионную стойкость и повышенную износостойкость в морской воде, азотной, соляной в серной кислотах.
  2. Диффузия в металлах при изготовлении сплавов играет большую роль. Для получения качественного сплава необходимо производить сплавы при высоких температурах и с внешним воздействием. Это значительно ускорит процесс диффузии.

Эти процессы происходят в различных областях промышленности:

  1. Электронная.
  2. Полупроводниковая.
  3. Машиностроение.

Как вы поняли, процесс диффузии может оказывать на нашу жизнь как положительный, так и отрицательный эффект. Нужно уметь управлять своей жизнью и максимально использовать пользу от этого физического явления, а также минимизировать вред.

Теперь вы знаете, в чём сущность такого физического явления, как диффузия. Она заключается во взаимном проникновении частиц благодаря их движению. А в жизни движется абсолютно все. Если вы школьник, то после прочтения нашей статьи вы точно получите оценку 5. Успехов вам!

Введение

Мы рассматривали лишь свойства газов и твердых тел и не обсуждали свойства жидкостей. Жидкое состояние значительно труднее поддается теоретической трактовке по сравнению с газовым и твердым. Это определяется тем, что состояния (твердое и газовое) являются предельными для всякого вещества при достаточно низких (или высоких) температурах и достаточно высоких (или низких) давлениях.

Жидкое состояние является промежуточным по своей природе. Естественно, что около критической точки жидкость близка по свойствам к газу, а при температуре, близкой к температуре плавления, - к твердому телу.

Это обстоятельство приводит к отсутствию "идеальной модели" жидкости. Для газа таковой является идеальный газ, для твердого тела - идеальный кристалл. И теории реальных газов, и теория твердых тел строятся как описание отклонений от идеальных состояний. Отсутствие идеальной модели жидкости приводит к трудности формулировки общей теории жидкости.

Такая теория должна объяснить равновесные термодинамические свойства жидкости, ее энтальпию, энтропию, уравнение состояния, температуру замерзания, поверхностное натяжение и т.п. Далее теория должна описать явления переноса - вязкость, диффузию, теплопроводность. Наконец, такая теория должна охватить явления рассеяния жидкостями различных излучений и прежде всего рентгеновского. В последние годы теория жидкостей достигла ряда серьезных успехов.

Вынужденное внутреннее движение в жидкости.

Если на жидкость в течение времени t >> ?ср действует внешняя сила, то частицы жидкости смещаются главным образом в направлении этой силы. В этом проявляется текучесть жидкости.

Если время t действия внешней силы много меньше среднего времени релаксации (t << ?ср), то за время действия силы частицы не успевают изменить свои положения равновесия и жидкость проявляет упругие свойства, сопротивляясь изменению объема и формы.

При определенных условиях в жидкостях происходят явления переноса: диффузия, теплопроводность и внутреннее трение. Отличия явлений переноса в жидкостях от аналогичных явлений в газах проявляются в величинах коэффициентов переноса.

Диффузия

ДИФФУЗИЯ (от латинского diffusio - распространение, растекание, рассеивание), движение частиц среды, приводящее к переносу вещества и выравниванию концентраций или установлению их равновесного распределения. Обычно диффузия определяется тепловым движением частиц. В отсутствие внешних воздействий диффузионный поток пропорционален градиенту концентраций; коэффициент пропорциональности называется коэффициентом диффузии. Процесс диффузии может происходить под воздействием разности температур (термодиффузия), электрического поля (электродиффузия), в турбулентном потоке (турбулентная диффузия) и т.д.).

Диффузия крупных частиц, взвешенных в газе или жидкости (например, частиц дыма или суспензии), осуществляется благодаря их броуновскому движению. В дальнейшем, если специально не оговорено, имеется в виду молекулярная диффузия.

Наиболее быстро диффузия происходит в газах, медленнее в жидкостях, ещё медленнее в твёрдых телах, что обусловлено характером теплового движения частиц в этих средах. Траектория движения каждой частицы газа представляет собой ломаную линию, т.к. при столкновениях частицы меняют направление и скорость своего движения. Неупорядоченность движения приводит к тому, что каждая частица постепенно удаляется от места, где она находилась, причём её смещение по прямой гораздо меньше пути, пройденного по ломаной линии. Поэтому диффузионное проникновение значительно медленнее свободного движения (скорость диффузионного распространения запахов, например, много меньше скорости молекул).

Для явления диффузии в жидкости справедлив закон Фика. Он гласит:

где I - диффузионный поток в направлении оси X, D - коэффициент диффузии, а - градиент концентрации по оси X.

Обозначим время между скачками молекул через t, тогда величина - скорости молекулы. Это дает возможность сравнить со средней длинной свободного пробега, а - со средней скоростью молекул. Тогда по аналогии с идеальными газами коэффициент диффузии (точнее самодиффузии) жидкости равен:

Коэффициент самодиффузии сильно зависит от температуры, т.е. с повышением температуры он увеличивается.

Выражение коэффициента диффузии можно переписать в виде

где, причем n - частота вышеописанных колебаний, а w - энергия, необходимая для скачка молекулы, называемая энергией активации молекулы.

Численное значение коэффициента диффузии у жидкостей много меньше чем у газов. Например коэффициент диффузии NaCl в воде равен 1,1·10-9 м2/с, в то время как для диффузии аргона в гелий он равен 7·10-5 м2/с.

В жидкостях, в соответствии с характером теплового движения молекул, диффузия осуществляется перескоками молекул из одного временного положения равновесия в другое. Каждый скачок происходит при сообщении молекуле энергии, достаточной для разрыва её связей с соседними молекулами и перехода в окружение др. молекул (в новое энергетически выгодное положение). В среднем скачок не превышает межмолекулярного расстояния. Диффузионное движение частиц в жидкости можно рассматривать как движение с трением, к нему применимо второе соотношение Эйнштейна: D ~ ukT. Здесь k -- Больцмана постоянная, u -- подвижность диффундирующих частиц, т.е. коэффициент пропорциональности между скоростью частицы с и движущей силой F при стационарном движении с трением (с = uF). Если частицы сферически симметричны, то u = 1 / 6 phr, где h -- коэффициент вязкости жидкости, r -- радиус частицы (см. Стокса закон).

Коэффициент диффузии в жидкости увеличивается с температурой, что обусловлено «разрыхлением» структуры жидкости при нагреве и соответствующим увеличением числа перескоков в единицу времени.

В твёрдом теле могут действовать несколько механизмов диффузии: обмен местами атомов с вакансиями (незанятыми узлами кристаллической решётки), перемещение атомов по междоузлиям, одновременное циклическое перемещение нескольких атомов, прямой обмен местами двух соседних атомов и т.д. Первый механизм преобладает, например, при образовании твёрдых растворов замещения, второй -- твёрдых растворов внедрения.

Коэффициент диффузии в твёрдых телах крайне чувствителен к дефектам кристаллической решётки, возникшим при нагреве, напряжениях, деформациях и др. воздействиях. Увеличение числа дефектов (главном образом вакансий) облегчает перемещение атомов в твёрдом теле и приводит к росту коэффициента диффузии. Для коэффициента диффузии в твёрдых телах характерна резкая (экспоненциальная) зависимость от температуры. Так, коэффициент диффузии цинка в медь при повышении температуры от 20 до 300°С возрастает в 10 14 раз.

Значение коэффициента диффузии (при атмосферном давлении)

Для большинства научных и практических задач существенно не диффузионное движение отдельных частиц, а происходящее от него выравнивание концентрации вещества в первоначально неоднородной среде. Из мест с высокой концентрацией уходит больше частиц, чем из мест с низкой концентрацией. Через единичную площадку в неоднородной среде проходит за единицу времени безвозвратный поток вещества в сторону меньшей концентрации -- диффузионный поток j. Он равен разности между числами частиц, пересекающих площадку в том и др. направлениях, и потому пропорционален градиенту концентрации СС (уменьшению концентрации С на единицу длины). Эта зависимость выражается законом Фика (1855):

Единицами потока j в Международной системе единиц являются 1/м 2 ·сек или кг/м 2 ·сек, градиента концентрации -- 1/м 4 или кг/м 4 , откуда единицей коэффициента Диффузия является м 2 /сек. Математически закон Фика аналогичен уравнению теплопроводности Фурье. В основе этих явлений лежит единый механизм молекулярного переноса: в 1-м случае переноса массы, во 2-м -- энергии.

Диффузия возникает не только при наличии в среде градиента концентрации (или химического потенциала). Под действием внешнего электрического поля происходит диффузия заряженных частиц (электродиффузия), действие поля тяжести или давления вызывает бародиффузию, в неравномерно нагретой среде возникает термодиффузия.

Все экспериментальные методы определения коэффициента диффузии содержат два основных момента: приведение в контакт диффундирующих веществ и анализ состава веществ, изменённого диффузией состав (концентрацию продиффундировавшего вещества) определяют химически, оптически (по изменению показателя преломления или поглощения света), масс-спектроскопически, методом меченых атомов и др.

Диффузия играет важную роль в химической кинетике и технологии. При протекании химической реакции на поверхности катализатора или одного из реагирующих веществ (например, горении угля) диффузия может определять скорость подвода др. реагирующих веществ и отвода продуктов реакции, т.е. являться определяющим (лимитирующим) процессом.

Для испарения и конденсации, растворения кристаллов и кристаллизации определяющей оказывается обычно. Процесс диффузия газов через пористые перегородки или в струю пара используется для изотопов разделения. Диффузия лежит в основе многочисленных технологических процессов -- адсорбции, цементации и др. (см. диффузионные процессы); широко применяются диффузионная сварка, диффузионная металлизация.

В жидких растворах диффузии молекул растворителя через полупроницаемые перегородки (мембраны) приводит к возникновению осмотического давления (см. Осмос), что используется в физико-химическом методе разделения веществ -- диализе.

Диффузия в биологических системах. Диффузия играет важную роль в процессах жизнедеятельности клеток и тканей животных и растений (например, диффузия кислорода из лёгких в кровь и из крови в ткани, всасывание продуктов пищеварения из кишечника, поглощение элементов минерального питания клетками корневых волосков, диффузия ионов при генерировании биоэлектрических импульсов нервными и мышечными клетками). Различная скорость диффузии ионов через клеточные мембраны -- один из физических факторов, влияющих на избирательное накопление элементов в клетках организма. Проникновение растворённого вещества в клетку может быть выражено законом Фика, в котором значение коэффициента диффузии заменено коэффициентом проницаемости мембраны, а градиент концентрации -- разностью концентраций вещества по обе стороны мембраны. Диффузионное проникновение в клетку газов и воды (см. Осмос) также описывается законом Фика; при этом значения разности концентраций заменяются значениями разности давлений газов и осмотических давлений внутри и вне клетки.

Различают простую диффузию -- свободное перемещение молекул и ионов в направлении градиента их химического (электрохимического) потенциала (так могут перемещаться лишь вещества с малыми размерами молекул, например вода, метиловый спирт); ограниченную диффузию, когда мембрана клетки заряжена и ограничивает диффузия заряженных частиц даже малого размера (например, слабое проникновение в клетку анионов); облегчённую Диффузия -- перенос молекул и ионов, самостоятельно не проникающих или очень слабо проникающих через мембрану, др. молекулами («переносчиками»); так, по-видимому, проникают в клетку сахара и аминокислоты. Через мембрану, вероятно, могут диффундировать и переносчик, и комплекс переносчика с веществом. Перенос вещества, определяемый градиентом концентрации переносчика, называется обменной диффузией; такая диффузия отчётливо проявляется в экспериментах с изотопными индикаторами. Различную концентрацию веществ в клетке и окружающей её среде нельзя объяснить только диффузия их через мембраны за счёт имеющихся электрохимических и осмотических градиентов. На распределение ионов влияют также процессы, которые могут вызывать перераспределение веществ против их электрохимического градиента с затратой энергии, -- так называемый активный транспорт ионов