Выключатели

В какой печи варят стекло. Варка стекломассы

В какой печи варят стекло. Варка стекломассы

Требуемая производительность печи достигается соблюдением установленных технол. и теплового режимов и необх-мым текущим обслуживанием печи.

Стекловар. печи явл. сложными теплотехнич. агрегатами, состоящими из узлов с разными режимами работы. Осн. частью печи явл. раб. камера и поэтому режим работы всех остальных узлов подчиняется режиму работы раб. камеры.

Каждая печь имеет свой тепловой и технологич. режимы, кот. зависят от типа печи, ее размеров и производительности, состава стекла и шихты, от вида источника тепла, а для пламенных печей от вида топлива и др.

Основными видами стекловаренных печей в настоящее время являются горшковые, в которых процессы стекловарения протекают последовательно во времени в одной и той же емкости, и ванные печи непрерывного действия, в которых процессы варки происходят в отдельных частях печи. Наибольшее применение в производстве стекла находят ванные печи непрерывного действия как более производительные, экономичные и механизированные. Горшковые печи применяются при варке оптического, технического и других специальных видов стекла в небольших количествах.

Работа печей разного типа хар-ся производ-ю, кпд и расходом тепла на варку стекла. КПД печей, %: горшковые – 6-8; ванные периодические – 15; непрерывные ванные – 17-28; электрические – 60.

Производительность современных печей достигает 400 т ст. в сутки и более. Эл-кие печи – 80 т/сут.

Наиболее эффективны по доле полезно затраченного тепла на варку ст. электрические печи. Но их распространение сдерживается высокой стоимостью электроэнергии по сравнению со стоимостью природного газа и др. топлива.

Самыми неэкономичными явл. горшковые печи.

Работа печи хар-ся режимом, кот. зав. от расхода тепла, давления и состава газов. В зав-ти от Т по отдельным зонам печи устанавливают расход топлива. Ур-нь Т определяют разностью приход-расход тепла: чем >эта разность, тем выше Т печи.

  1. Стекловаренные печи: назначение, общая классификация, показатели эффективности работы.

Процесс получения из шихты годной к выработке стекломассы происх-ит в стекловар. печах, обеспеч. необх. температурные условия и тепловые потоки к материалам.

Печи делятся: 1) Стекловаренная; 2)Отжигательная и 3) Специального назначения (Печи закалки, вспенивания).

Стекловар. печь – осн. теплотехнич. агрегат в технологии стекла. Сущ. много конструкций и типов печей, кот. имеют общ. признаки.

Стекловар. печи по назначению дел. на: печи для пр-ва тарного, листового, сортового стекол.

По принципу действия: 1) Периодического действия – все стадии стекловарения: силикатаобразования, стеклообразования, осветления, гомогенизация, студка – протекают в одном объеме печи, но в разные промежутки времени. Периодические бывают: ванные, горшковые. 2) Непрерывного действия – все стадии стекловарения происх. одновременно, но в разных объемах печи (ванные печи).

По типу топлива, кот. исп-ся для обогрева печи: 1) Печи на жидком топливе; 2) На газообразном; 3)Электрич. печи.

По способу подачи топлива: 1) С поперечным направление пламени; 2) С подковообразным; 3) С продольным направлением пламени.

По способу исп-ния тепла отходящих газов: 1) Регенеративные (теплообменник периодич. дейсвия); 2) Рекуперативные (теплообменник непрерывного действия – труба в тубе); 3) Печи прямого нагрева (тепло никак не исп-ся).

По конструкции: 1) Проточные; 2) С общим бассейном и т.д.

По производительности: 1) Печи малой мощности (производительность до 15 т в сутки); 2) Средней мощности (15-100); 3) Большой мощности (больше 100).

Теловой баланс:

Приходные статьи: хим. и физ. теплота топлива, физ. теплота воздуха, идущего на горение.

Расходные статьи: 1) Затраты тепла на стекловарение (полезно затраченное тепло); 2)Потери тепла в окр. среду через кладку печи; 3) С выбивающимися дымовыми газами; 4)Излучение через открытое отверстие печи; 5) С отходящими дымовыми газами.

Показатели эф-сти работы печи:

1)ТКПД – тепловой КПД. Расчет: 1 способ – по хим. теплоте топлива (μ = Q стекловар./Q топлива); 2 способ – по фактически затраченному теплу (μ = Q

стекловар./Q факт.).

2)Удельный расход тепла – опр-ся как отношение фактически подведенного тепла к производительности. (Q уд. = Q факт./P, кДж/кг)

Самый большой ТКПД у электрич. печей (до 75%) (нет потерь с отходящими газами)

    Горшковые печи: типы, назначение, устройство и конструктивные особенности.

ГП преимущественно исп-ся для варки спец. стекол (технич., оптич., цветн. стекла). В таких печах готовиться небольшое кол-во стекломассы и => возник. возм-сть тщательно их подготовить.

ГП дел-ся: 1)С верхними; 2) С нижними; 3) Комбинир. способ. подвода топлива.

ГП - печи период. действия. В раб. камеру устан. от 1 до 16 горшков. Варка в горшках.

Многогоршковые печи – 10-16 горшков; для варки цветн. стеклол.

1;2-ух ГП - для варки оптич. и технич. стекол.

ГП с верхним подводом пламени – для варки стекол (высокотемпературной)с непродолжительной выработкой (тугоплавкие стекла).

ГП с нижним подводом пламени – для легкоплавких стекол, кот. требуют продолжит. режимов выработки (оптич. и сортов. стекла).

ГП с комбинир. подводом пламени – для варки тугоплавких стекол, кот. требуют длительной выдержки (при варке работает верхн. печь, а при выработке – нижняя печь).

Конструкции ГП:

    раб. камера печи,

    свод печи

    стекловар. горшок

  1. кадиевая горелка

    воздушн. регенератор

    канал для отбора дым. газов

    колодец для сбора стекломассы

9,10- металлич. обвязка

11- дополнит. каналы для отбора дым. газов

Раб. камера ГП по форме м.б.: круглой, прямоуг. или овальной.

Нижн. часть раб. камеры – окружка. В окружке напротив горшков есть окна для вставки или вынятия горшков. Эти окна м.б. заложены кирпичом или закрыты заслонками. В заслонке есть окна для обслуж. горшков – загрузка шихты, выраб. стекломассы. Между окнами есть стенки и наз. простенками. Свод м. опираться на простенки или выполняться подвесным, как в ванной печи. Место, где устан-ся горшки печи наз. стойлом. Стены раб. камеры выпол-ся с небольшим наклоном во внутрь, что позвол. обеспеч. равномер. прогрев горшка. Под печи выпол-ся из шамотных огнеупоров или дел-ся из глиняно-песчаных масс. Окружка дел-ся из шамот. огнеупоров., а верхн. часть раб. камеры и свод из динаса. Регенераторы вып-ют из шамотн. огнеупоров, т.к. высокая темп-ра достиг-ся только при варке стекла. Обвязка – для компенсации напряжений, кот. возник. в кладке при тепловом расшир-нии огнеупоров и для поддерж. всей конструкции. Нижн. обвязка монтируется в кладку печи, а вверху стягивается металлич. связями 10.

Шквара – стекломасса, кот. стекает в колодцы.

Кадиевая горелка – для подачи газо-возд. смеси в раб. камеру печи; для отбора из печи дым. газов; для сбора шквара.

Реализован нижний подвод пламени.

Недостаток: 1) Пламя бьет вверх, => сокращ-ся срок службы печи, за счет жестких условий работы свода и сокр-ся срок службы горшков; 2) Неравномер. прогрев по сечению горшка.

Преимущество: 1) Равномер. прогрев горшка по высоте; 2) Для кажд. горшка м. создать свой опр-ый темп-ный режим.

    Двухгоршковая прямоуг. регенератив. печь

В такой печи, чтоб обеспечить равномерный обогрев раб. камеры печи, ширина лета горелок д. соотв-вать ширине раб. камеры печи; пламя не д.б. направлено не на горелки, не на свод печи, тогда обеспеч-ся надежная работа печи.

Раб. камера – прямоугольник (1). 2 – регенераторы.

Недостаток: 1) неравномер. прогрев горшков по высоте.

Холодный под таких печей может приводить к кристаллизации (замерзанию) стекломассы.

Недостаток решается: под печи делают массивным.

Большинство современн. ГП – рекуперативные.

    Рекуперативная ГП :

Эта конструкция позвол. делать дно не массивным, а теплым и => застывание стекломассы т.о. можно предупредить!

Рекуператив. ГП по технико-экон. показателям превосходит регенеративные ГП. Они хорошо регулируются, => примен. для варки высокач. стекол.

    Щелевая горелка:

Она расположена в поде печи.

Для обогрева ГП применяют газ или жид. топливо (мазут). Для сжигания мазута исп-ся капельники, т.е. мазут капают на горячую кладку и далее пары поступают в горелку.

Особенности конструкции: 1) Для регенератив. печей на 1 м2 пода печи д. приходиться ~15-20 м2 пов-ти насадки регенератора; 2) Для рекуперативн. печей уд. пов-ть насадки д.б. 15-20 м2 пов-ти нагрева на 1м3 объема печи.

    Процессы варки стекла в горшковых стекловаренных печах. Технико-экономические показатели и эксплуатация горшковых печей. Стекловаренные горшки.

В горшковых печах м. исп-ть круглые и овальные горшки. Лучше исп-ть овальные, т.к. лучше исп-ся площадь пода.

Если исп-ть круглые горшки, то большая часть их пов-сти обращена наружу – к окружке, что ухудшает теплообмен.

Горшки бывают низкие и высокие. Высокие применяются, если стекломасса обладает хорошей теплопрозрачностью. Низкие и широкие – если теплопрозрачность не высокая.

В ГП выделяют температурные режимы работы: нагрев, варка стекла, студка, выработка.

Температурный график работы печи:

В ГП загрузку шихты ведут в печи разогретой до высоких тем-тур. Загрузка шихты и боя осущ. порциями. Шихту загружают на стеклобой. Загрузка осущ. так, чтоб шихта не касалась стенок горшка, т.к. она очень активна. После провара одной порции шихты (оплавления) загружают след. порцию. Итак наваривают стекломассу, пока горшок не будет полным. Затем идет осветление и гомогенизация. Для гомоген-ции исп-ся мешалки. Далее студка (III). Выработка (IV). Вырабатывается только 60-70 % стекломассы.

Первую варку в новом горшке ведут только на стеклобое (у ГП), => повыш-ся срок службы горшков. Если печь многогоршковая, а срок службы горшка ограничен (4 месяца), горшки приходится менять на работающей печи. Для этого горшок нагревают в печах до 900 градусов, а саму печь пристуживают до 1100 градусов и уже горячий горшок ставят в печь.

Горшки изгот-ют из шамотных огнеупоров методов набивки в металл. или гипсовые формы. Бывают кварцевые и др. горшки.

Технико-экон. пок-ли ГП

КПД < 5%, ГП применяются при пр-ве сортового, оптич. стекла, уд. расход тепла – 30 000-75 000 кДж/кг, производительность – 800-1300 кг/за цикл работы печи.

Преимущества ГП: 1) Высокое кач-во подготавливаемой стекломассы; 2) Можно часто менять состав или цвет стекла.

Недостатки: 1) Высокий уд. расход тепла на варку стекла; 2) Низкая производительность.

    Ванные печи периодического действия: назначение, конструктивные особенности, принцип действия.

Такие печи исп-ся для варки стекломассы высокого кач-ва небольших объемов.

В отличие от ГП, в ВП варка стекломассы осущ-ся в нижней части раб. камеры печи – бассейне. Т.к. стены бассейна снаружи охлаждаются воздухом, то срок службы бассейна по срав-нию с ГП будет больше. Глубина бассейна опр-ся составом вырабатываемого стекла и может находиться в пределах 700-300 м.

Режим работы ВП анлогичен ГП, т.е. есть те же темп-ные режимы (нагрев, варка стекла, студка, выработка) и один цикл работы печи.

    свод печи

    пламенное пространство

    выработочное окно

  1. канал для слива стекломассы

    канал для отбора дым. газов

  2. рекуператор

    стены пламенного пространства

Как и в ГП стекломасса полностью не вырабатывается (только 60-70%). Для смены ассортимента в конструкция таких печей предусм. систему слива стекломассы. Если надо слить стеломассу, то канал разогревают и она выливается.

Хар-ки печи: производительность – 480-3500 кг стекломассы в сутки, уд. расход тепла на варку – 11000-27000 кДж/кг.

Шихту в ВП загружают шуфлей.

Общие сведения . В стекольной промышленности наиболее распространены непрерывно действующие ванные печи. Их применяют для варки и выработки листового, сортового, бутылочного, тарного и другого массового промышленного стекла. Эти печи более экономичны, производительны и легко поддаются механизации и автоматизации.


Рис. 20. Ванные печи: а - регенеративная печь с поперечным направлением пламени, б - то же с подковообразным, в - рекуперативная печь с продольным направлением пламени, г - то же с комбинированным, д, е - то же, с подковообразным.


В ванных печах (рис. 20, а-е) газы могут двигаться в поперечном, продольном, подковообразном и комбинированном направлениях по отношению к направлению движения стекломассы. Поперечное направление газов понимается как перпендикулярное потоку стекломассы, продольное - как параллельно или совпадающее с ним. В регенеративных печах применяют поперечное и подковообразное направление газов, в рекуперативных, кроме того, продольное и комбинированное.

В средних и крупных ванных печах обычно применяют поперечное направление газов, и горелки располагают на продольных сторонах печи. Такое расположение горелок позволяет регулировать распределение температур, давлений и состава газовой среды по длине печи.

В ванных печах непрерывного действия все стадии процесса варки протекают в определенной последовательности непрерывно и одновременно в различных частях бассейна печи. Зоны варки 1 (рис. 21), осветления 2, студки 3 и выработки 4 располагаются одна за другой на различных участках по длине бассейна печи. Так как обычно зоны варки, осветления и гомогенизации конструктивно не разделяются, то та часть печи, где протекают эти процессы, называется варочным бассейном. Это отапливаемая часть печи. Студочная часть печи либо не отапливается, либо имеет самостоятельную систему отопления. Зона выработки отделяется от остальной части бассейна глухой стеной с протоком или подвесным мостом, заглубленным и стекломассу.

Смесь шихты и боя, непрерывно загружаемая в одном конце печи, постепенно проходит к другому концу печи через зоны бассейна с различными температурными условиями и превращается в однородную стекломассу. В каждой зоне поддерживают определенный температурный режим.


Рис. 21. Расположение зон в ванной печи: 1 - варки, 2 - осветления, 3 - студки, 4 - выработки


Рис. 22. Бассейны ванных печей: а - регенеративной печи с лодками (или охлаждаемыми водой трубами), газовым пространством, разделенным сплошным экраном, и с поперечным направлением пламени, б - регенеративной печи с полностью разделенным газовым пространством и поперечным направлением пламени, в - регенеративной печи с газовым пространством, разделенным решетчатым экраном, и с поперечным направлением пламени, г - регенеративной печи с решетчатым экраном и подковообразным направлением пламени, д, е - рекуперативной печи с продольным направлением пламени, ж - рекуперативной печи с продольным направлением пламени и двойным сводом, з - рекуперативной печи с противоточным движением газов, и - трехзонной печи с поперечным направлением пламени, к - печи с выделенной варочной зоной (дуплекс - печь) и поперечным направлением пламени; 1 - загрузочный карман, 2- горелки, 3 - проток, 4 - лодка, 5 - зона осветления, 6 - варочная часть, 7 - решетчатый экран, 8 - рекуператор

Для выделения отдельных зон с различными температурными режимами газовое пространство рабочей камеры (рис. 22, а - к) разделяют перегородками различной конструкции из огнеупорных материалов. Лучше всего режим варки регулируется при разделении газового пространства рабочей камеры сплошными или решетчатыми экранами 7, шиберами или сниженными арками. Поддержанию температурного режима по длине бассейна способствуют и устанавливаемые в стекломассе разделительные приспособления - заградительные мосты, пороги, протоки 3. Устройство протоков и других разделительных приспособлений позволяет изменить характер движения потоков стекломассы и отбирать для выработки более охлажденную и проваренную стекломассу. Отбор стекломассы из варочной части печи через проток обеспечивает поступление на выработку хорошей по качеству стекломассы. Чем полнее варочная часть печи отделена от студочной, тем интенсивнее охлаждается стекломасса и тем меньшей может быть площадь зоны студки. Это уменьшает бесполезный расход тепла и позволяет увеличить производительность печей. Проточные ванные печи для производства штучных изделий характеризуются высоким удельным съемом стекломассы с 1 м 2 площади варочного бассейна (превышает 2700 кг/сут).

В зависимости от размеров ванны печи бывают малые, средние и крупные.

Для выработки изделий из стекла с различными заданными свойствами служат стекловаренные печи разных типов, отличающиеся по конструкции, производительности и режиму работы.

Стекловаренная печь - основной агрегат стекольного производства. В ней протекают процессы тепловой обработки сырьевых материалов, получения стекломассы и выработки из нее изделий.

Для варки стекла применяют стекловаренные печи периодического и непрерывного действия.

По устройству рабочей камеры стекловаренные печи разделяются на горшковые и ванные.

Горшковые печи - периодического действия, их применяют для варки высококачественных оптических, светотехнических, художественных и специальных стекол.

Ванные печи бывают непрерывного и периодического действия. Ванные печи непрерывного действия имеют ряд преимуществ перед горшковыми и ванными печами периодического действия: они более экономичны, производительны и удобны в обслуживании.

По способу обогрева стекловаренные печи подразделяют на пламенные, электрические и газоэлектрические (комбинированный газовый и электрический обогрев).

В пламенных печах источником тепловой энергии служит сжигаемое топливо. Шихта и стекломасса в этих печах получают тепло от сжигания жидкого или газообразного топлива. Коэффициент полезного действия пламенных печей 18-26%. так как топливо в них расходуется главным образом на нагревание огнеупорной кладки печи и компенсацию потерь тепла. Электрические печи по сравнению с пламенными имеют ряд преимуществ: меньшие размеры, большую производительность. Они экономичны, легко регулируются. При их эксплуатации нет теплопотерь с отходящими газами и лучше условия труда. Коэффициент полезного действия электрических печей достигает 50-60%.

По способу передачи тепла стекломассе электрические печи подразделяются на дуговые; печи сопротивления (прямого и косвенного) и индукционные. В дуговых печах тепло передается материалу излучением от вольтовой дуги. Наибольшее распространение получили печи прямого сопротивления, в которых нагревательным элементом служит непосредственно стекломасса. В этих печах тепло выделяется в самом материале, который служит сопротивлением в цепи.

Использование стекломассы в качестве нагревательного сопротивления основано на том, что стекло при повышенных температурах проводит электрический ток, причем электропроводность его с повышением температуры увеличивается. Проходя через стекломассу, электрическая энергия превращается в тепловую, происходит нагревание и варка стекла. Для питания электрических печей прямого нагрева используется однофазный или трехфазных ток, который подводят к стекломассе через молибденовые или графитовые электроды.

Электрические печи прямого сопротивления имеют различные конструкции, однако большинство из них представляет собой горизонтальные ванны прямоугольного сечения. Применяют эти печи для варки технических стекол, а при наличии дешевой электроэнергии и в производстве массовой продукции.

В печах косвенного сопротивления тепло передается материалу излучением или теплопроводностью от введенного в печь сопротивления.

В индукционных печах в материале, включенном во вторичную цепь, индуцируется ток.

Газоэлектрические печи имеют комбинированный нагрев: бассейн для плавления шихты обогревается газообразным топливом, а бассейн для осветления стекломассы - электрическим током. Отходящие из печей газы имеют температуру 1350-1450° С. Тепло их используют для подогрева воздуха и газа, поступивших для горения.

По способу использования тепла отходящих газов стекловаренные печи подразделяют на регенеративные и рекуперативные.

Регенеративные печи получили большее распространение из-за их простого устройства и удобства в эксплуатации.

Работа стекловаренных печей оценивается производительностью, расходом тепла на варку стекла и коэффициентом полезного действия (КПД) печи, который представляет собой отношение количества тепла, полезно затраченного на варку стекла, к общему расходу тепла на печь.

Производительность печи характеризуют двумя показателями: общей (суточной) и удельной производительностью. Общая производительность равна количеству тонн стекломассы (или годной продукции), снимаемой с печи в сутки. Удельная производительность измеряется отношением суточной производительности к площади бассейна печи и выражается в кг/м 2 /сут.


К атегория:

Шлифование и полирование стекла

Варка стекла и стекловаренные печи

Стадии варки. Варка стекла - это протекающий при высоких температурах процесс превращения сыпучей шихты в расплав стекломассы, который при охлаждении становится готовым стеклом; процесс протекает в стекловаренных печах. Условно процесс варки разделяют на пять стадий: силикатообразова-ние, стеклообразование, осветление, усреднение или гомогенизация состава, охлаждение.

Силикатообразование - начальная стадия варки, во время которой в результате физических и химических процессов, в твердом состоянии образуются сложные силикатные соединения. Протекает эта стадия при температурах 800…1000 °С.

Сырьевые материалы (компоненты шихты) при прохождении этой стадии претерпевают ряд превращений: влага испаряется; гидраты, соли, низшие оксиды разлагаются и теряют летучие соединения; кремнезем меняет свое кристаллическое строение. Кроме того, на этой стадии выделяется большое количество углекислого газа С02. Этот газ в виде пузырей поднимается на поверхность вязкого расплава, где пузыри лопаются, поэтому поверхность такого расплава выглядит как бы кипящей (отсюда и происхождение термина - варка стекла). На этой стадии образуется неоднородная частично остеклованная масса, пронизанная большим числом пузырей и содержащая множество непроваренных зерен песка.

Стеклообразование - вторая стадия варки, во время которой происходит физический процесс растворения зерен избыточного песка в расплаве силикатов и стеклобоя. На этой стадии заканчиваются все химические реакции. В результате взаимодействия между гидратами, карбонатами, сульфатами окончательно формируются сложные силикаты; зерна кварца полностью растворяются и переходят в расплав. Температура 500…1400 °С на этой стадии недостаточна для плавления кварцевого песка, поэтому он не плавится, а растворяется; стекломасса становится относительно однородной и прозрачной без непроваренных частиц шихты.

В результате подъема температуры увеличивается подвижность атомов и молекул, составляющих стекломассу, что ведет к ускорению взаимного растворения кремнезема и силикатов. Благодаря этому выравнивается концентрация растворов силикатов на различных участках. Все эти превращения сопровождаются выделением большого количества газообразных продуктов. Вязкость расплава еще достаточно высока, поэтому газообразные продукты не успевают улетучиваться, и стекломасса бывает насыщена большим количеством пузырей.

В результате на второй стадии образуется неоднородная стекловидная масса, пронизанная большим количеством мелких газовых пузырьков, но уже не содержащая включений непроваренных зерен песка.

Осветление - третья стадия варки стекла. Она характеризуется тем, что происходит удаление газовых включений в виде видимых пузырей и в результате между стекломассой (жидкой фазой) и газами, растворенными в ней (газовая фаза), устанавливается равновесие. Из всех стадий процесса варки осветление и следующая за ней стадия усреднение (гомогенизация) - наиболее ответственные и сложные. Качество стекломассы зависит от того, насколько полно и интенсивно проходят эти стадии.

В расплаве стекломассы находятся газы, образовавшиеся в результате разложения и взаимодействия компонентов шихты; газы, механически внесенные вместе с шихтой; летучие вещества, специально введенные в шихту; газы, попадающие в расплав из атмосферы. Наибольшее количество газов заносится в стек- ‘ ломассу с сырьевыми материалами. При осветлении удаляются только видимые пузыри. Часть газов остается в стекломассе, растворяясь в ней. Они невидимы глазом, а поэтому не искажают оптических характеристик стекла. Чтобы эти невидимые газообразные включения не могли перейти в видимые пузыри и тем самым испортить стекло, в процессе осветления устанавливают равновесие между газами, растворенными в стекломассе и заключенными в пузырях, создавая в печи определенные условия.

Осветление происходит следующим образом: крупные пузы-ри поднимаются к поверхности и лопаются. По законам физики внутри крупных пузырей давление ниже, чем внутри более мелких. Поднимаясь более легко к поверхности, крупные пузыри по пути всасывают содержимое более мелких пузырей, в результате стекломасса осветляется. Совсем мелкие пузырьки растворяются в расплаве.

Углекислота, парциальное давление которой невысоко, стремясь выровнять свое давление, переходит в образовавшиеся от разложения осветлителя пузырьки. Они укрупняются, подъемная сила их увеличивается, вследствие чего они поднимаются к поверхности и лопаются. Газ, содержащийся в них, переходит в атмосферу печи. В свою очередь, газы, образующиеся при разложении осветлителя, переходят в мелкие пузырьки углекислого газа, укрупняют их, чем способствуют их подъему и тем самым осветлению стекломассы.

Усреднение (гомогенизация) состава - четвертая стадия процесса стекловарения - характеризуется тем, что к ее концу стекломасса освобождается от пузырей, свилей и становится однородной. Несмотря на то, что в печь поступает однородная, хорошо перемешанная шихта, физические и химические процессы протекают в шихте между ее компонентами неоднородно, поэтому и состав стекломассы в различных участках печи оказывается неоднородным. При повышенных температурах составляющие части стекломассы находятся в непрерывном естественном движении, поэтому локальные порции стекломассы различного состава вытягиваются в направлении движения, образуя переплетенные жгуты, нити, которые называются свилями. Если такое стекло резко охладить, то из-за различия в показателях преломления граница раздела между участками с разным химическим составом становится видимой невооруженным глазом. Свиль, таким образом, является пороком стекла, ухудшающим эстетический вид изделия.

Гомогенизация осуществляется в основном за счет интенсивного движения (диффузии) веществ, составляющих стекломассу. Чем выше температура варки и, как следствие, ниже вязкость расплава стекла, тем лучше условия диффузии, и, наоборот, диффузия в вязкой среде, при пониженных температурах, протекает медленно и до конца варки не заканчивается. Поэтому при гомогенизации температура стекломассы играет решающую роль.

Значительно ускоряет гомогенизацию выделение пузырей. Поднимаясь к поверхности, они растягивают пограничные пленки стекла разного состава в тончайшие нити с сильно развитой Удельной поверхностью и облегчают взаимную диффузию стекломассы соседних участков. Таким образом, процесс усреднения стекла тесно переплетается с осветлением. При варке стекла в промышленных печах стадии осветления и гомогенизации протекают одновременно в одинаковых условиях, поэтому зону ос. ветления невозможно отделить от зоны гомогенизации.

Важное значение для получения однородной стекломассы имеет ее искусственное перемешивание. При варке хрустальных стекол используют керамические мешалки.

Для получения однородной массы при гомогенизации большое значение имеет однородность и тонкость помола шихты. Оказывает влияние на однородность стекломассы и бой стекла загружаемый с шихтой в печь. Обычно бой стекла несколько отличается по химическому составу от основного стекла, так как в процессе предыдущей варки он теряет часть летучих компонентов, обогащается растворенными газами и пр. Поэтому, бой стекла измельчают и равномерно распределяют в шихте.

После осветления и гомогенизации стекломасса по своему качеству полностью отвечает предъявляемым к ней требованиям, однако из-за высокой температуры расплава и низкой вязкости формировать его невозможно. Поэтому задача заключительной стадии стекловарения - подготовить стекломассу к формированию.

Охлаждение - пятая, заключительная стадия процесса стекловарения. Она характеризуется тем, что температуру стекломассы понижают для создания вязкости, позволяющей формовать из нее изделия. Температура стекломассы на этой стадии поддерживается около 1200 °С.

Стекломассу охлаждают плавно и постепенно - при резком охлаждении может нарушиться равновесие между жидкой и газовой фазой, что приведет к новому образованию газовых включений в виде мельчайших пузырьков (вторичной мошки). Освободить стекломассу от подобных газовых включений трудно из-за ее повышенной вязкости. Чтобы избежать появления пороков стекла на заключительной стадии, необходимо строго придерживаться установленного режима давления газовой атмосферы печи и понижения температуры.

Стекловаренные печи. Стекловаренная печь - это теплотехнический агрегат периодического или непрерывного действия, в котором варят стекло и готовят его к формованию. Печи обогревают либо газом, либо электричеством. По режиму работы печи бывают периодического (горшковые) или непрерывного (ванные) действия. В некоторых случаях применяют ванные печи периодического действия.

Работу печи характеризуют такие показатели, как производительность (съем стекломассы в единицу времени, т/сут; удельный съем, кг/м2 в сутки), коэффициент полезного действия и расход теплоты на одну варку или единицу количества стекла. Коэффициент полезного действия (КПД ) печей периодического действия невысок (): горшковых - 6…8, ванных - 10… 15, непрерывных ванных печей-17…28. Наиболее эффективны электрические печи - КПД 50-70 , однако более высо-

я стоимость электроэнергии по сравнению со стоимостью присного газа или жидкого топлива сдерживает широкое применение электрических печей.

Для варки стекол художественного назначения, отработки новых видов стекол, проведения экспериментальных работ и выработки высокохудожественных изделий используют гор ш ковы е печи, в которых одновременно варят в огнеупорных тиглях (горшках) стекломассу разных составов или цветов. Недостатки этих печей - низкий КПД , ручная засыпка горшков, необходимость замены лопнувших тиглей на ходу, повышенный расход топлива и т. д. В производстве сортовых изделий высокого качества из цветного и свинецсодержащего (хрустального) стекла применяют многогоршковые регенеративные печи с нижним подводом теплоты. Такие печи имеют до 16 горшков полезной вместимостью 300…500 кг и КПД до 8%.

Горшки, как правило, бывают круглые, реже овальные; в поперечном вертикальном сечении в форме усеченного конуса, реже цилиндра. Размеры горшка подбирают в соответствии с размером вырабатываемого изделия.

Шихта в стекловаренном горшке получает теплоту главным образом за счет излучения от свода печи и частично за счет теплопроводности через стенки горшка. Поэтому для горшковых печей особое значение имеет высота свода печи: чем ниже свод, тем интенсивнее прогреваются горшки и находящаяся в нем шихта.

Отличительная особенность варки стекла в горшковых печах- периодичность всех технологических процессов, которые чередуются в строгой последовательности: разогрев печи после выработки изделий, засыпка шихты и стеклобоя, варка стекла, студка стекломассы и выработка стеклоизделий.

Перед тем как использовать горшки для варки, их обжигают и постепенно, плавно вываривают до температуры 1500… 1540 °С.

Шихту и бой стекла в соотношении 50: 50 загружают в прогретые горшки в несколько приемов: сначала бой, потом шихту, причем последующие порции подают после того, как оплавились порции, загруженные ранее. После провара последней порции температуру в печи поднимают до максимальной и проводят осветление и гомогенизацию, которые могут продолжаться до 6 ч. Для интенсификации этих процессов применяют бурление стекломассы, для чего при помощи металлического стержня в стекломассу вносят кусок замоченной древесины. Под действием высоких температур из дерева бурно выделяется влага и продукты горения, что приводит стекломассу в интенсивное движение, способствуя ее перемешиванию и осветлению от газовых пузырей. Этот же эффект достигается при бурлении сжатым в°здухом, который вводят в стекломассу под давлением. После т°го как закончена варка, стекломассу охлаждают до температур рабочей вязкости, а затем начинают выработку стеклоизделий.

Обычно цикл работы горшковой печи длится одни сутки ежедневно повторяясь в течение года, иногда более - до остановки печи на ремонт.

Рис. 1. Горшковая печь с нижним подводом пламени: 1 - нижняя часть стены (окружка), 2 - рабочие окна, 3 - свод, 4 - рабочая камера, 5 - под регенератор, 7 - отверстия для обслуживания горшков, 8 - стекловаренные горшки, 9 - горелочные отверстия (кади), 10 - отверстия для загрузки горшков

Рассмотрим устройство горшковой печи. Главный элемент печи - рабочая камера, в которой устанавливают необходимое для работы количество горшков. В верхней части боковых стен расположены рабочие окна. В окружке против каждого горшка есть отверстие через которое обслуживают горшки. Для загрузки от выемки горшков в окружке и над ней сделано отверстие, которое во время работы закрывают плитами. К Промежуточное положение между горшковыми и ванными ечами занимают секционные печи. Их применяют в основном при производстве художественных изделий. Так же, как и в горшковых, в секционных печах можно варить стекломассу нескольких составов или цветов - по числу секций, представляющих собой примыкающие один к другому «карманы», выполненные из огнеупорного кирпича и имеющие общее пламенное пространство.

Ванные печи непрерывного действия - более совершенные и производительные теплотехнические агрегаты, они наиболее распространены в стекольной промышленности. При варке стекла в ванных печах все стадии стекловарения протекают одновременно и непрерывно. Это позволяет максимально механизировать и автоматизировать весь процесс, начиная от засыпки шихты и кончая выработкой стеклоизделий.

Главная часть печи - бассейн (ванна), выложенный из огнеупорных брусьев, поэтому печи называются ванными. Варочная часть бассейна (ванны) обычно имеет прямоугольную конфигурацию в плане. С одного торца ванны через загрузочный карман непрерывно автоматически загружается в печь шихта, доставляемая в контейнерах. Уровнемеры регистрируют уровень зеркала стекломассы. Если он поднимается выше заданного предела, то загрузчик шихты автоматически отключается. По мере выработки уровень стекломассы понижается, срабатывает система автоматического включения загрузчика и в ванну поступает новая порция шихты. В производстве сортовой посуды преимущественно применяют ванные печи с протоком, который располагается ниже уровня дна варочной чести. Из протока отбирают лучше проваренную и более охлажденную стекломассу.

Различные стадии стекловарения протекают одновременно в разных зонах печи. Оптимальные температуры в зонах варки 1420 °С, осветления - 1430, выработки - 1260 °С.

При варке стекол в ванной печи постоянно поддерживают окислительный характер газовой среды, в варочной части над зеркалом стекломассы устанавливают нейтральное давление атмосферы, а в выработочной части - слабоположительное. Производительность печи 6… 12 т стекломассы в 1 сут, удельный съем стекла в зависимости от интенсивности выработки 450 кг/м2 в 1 сут. Печь может отапливаться как природным газом, так и жидким топливом.

Одним из недостатков печей, обогреваемых газом, в том, что Улетучивание оксидов свинца приводит к обеднению ими поверхностных слоев стекломассы и загрязнению окружающее среды. В электрических печах в качестве источников теплоту устанавливают пристенные блочные оксидно-оловянные элект. роды. Процесс стекловарения осуществляется в вертикальном потоке под слоем холодной шихты сверху вниз. Наличие над расплавленной стекломассой холодного слоя шихты уменьшает улетучивание оксидов свинца, способствует получению однород. ной стекломассы.

При работе такой печи нет потерь теплоты с отходящими дымовыми газами. Удельные затраты энергии для получения 1 кг стекла меньше, чем в пламенных ванных печах. Кроме того, электропечи с электродами на основе диоксида олова Sn02 не оказывают никакого красящего действия на стекломассу.

Цветные стекла можно варить одновременно с бесцветным. Для этого на одном участке одновременно располагают ванную печь для варки бесцветного стекла и возле нее печи-спутники для варки цветного.


Процесс перехода порошкообразной шихты при нагревании в стекломассу сопровождается сложными физико- химическими превращениями и проходит в несколько стадий. Важнейшие из них; силикатообразование, стек- лообразование, дегазация (осветление), гомогенизация и студка стекломассы. На первой стадии - силикатооб- разования - при нагреве шихты до 800-900 °С происходит испарение влаги шихты, диссоциация углекислых и сернокислых солей кальция, магния и натрия с выделением газообразных продуктов (С02, S02 и Н20), взаимодействие между компонентами шихты с образованием силикатов, при этом появляется жидкая фаза за счет плавления соды и эвтектических смесей, и шихта превращается в спекшуюся массу.

На второй стадии - стеклообразования - при повышении температуры до 1150-1200 °С завершаются реакции силикатообразования, образуется неоднородная по составу, пронизанная большим количеством газовых пузырьков стекломасса, а не прореагировавшие зерна кварца, количество которых достигает 25 %, и другие компоненты растворяются в силикатном расплаве. Процесс стеклообразования протекает в 8-9 раз медленнее, чем силикатообразование.

На третьей стадии - дегазации - при повышении температуры до 1400-1500°С за счет снижения вязкости стекломассы до 10 Па-с происходит ее дегазация и осветление, при этом устанавливается равновесие между растворенными газами и стекломассой, а мельчайшие газовые пузырьки перестают быть видимыми. Эта стадия наиболее продолжительна по времени, так как газы из стекломассы удаляются медленно.

На четвертой стадии - гомогенизации - происходит усреднение состава стекломассы за счет интенсивного перемешивания поднимающимися к поверхности пузырьками воздуха, что необходимо для выработки стек- лоизделий. Процесс гомогенизации происходит параллельно с дегазацией, но по времени несколько дольше.

На последнем этапе варки стекла - студке стекломассы - происходит равномерное снижение ее температуры на 200-300 °С. Этот этап является подготовительной операцией к выработке стекломассы. При выработке стекла вязкость стекломассы должна быть не менее 100 Па-с, что соответствует температуре 1150-1200 °С.

Для варки стекла применяют печи периодического действия (горшковые и ванные малой емкости) и непрерывного действия (ванные печи с большой производительностью). В печах периодического действия все стадии стекловарения протекают в одном и том же рабочем объеме последовательно одна за другой (в различное время), а в ванных печах непрерывного действия все процессы стекловарения происходят одновременно, причем каждому из них соответствует определенная часть рабочего объема печи.

В стекольной промышленности широко применяют ванные печи различных конструкций и размеров (6.3), зависящих от состава стекла, способа выработки, производительности и др. По способу передачи теплоты стекломассе различают ванные печи пламенные с различным направлением пламени, электрические и пламен- но-электрические, в которых сочетается верхний пламенный нагрев с глубинным электропрогревом стекломассы. Применение электропечей для варки стекла основано на свойстве стекломассы при высоких температурах (свыше 1000-1100 °С) проводить электрический ток с выделением тепла.

Ванные печи непрерывного действия применяют для варки и выработки листового, сортового, тарного, посудного и другого стекла. Они оборудованы механическими загрузчиками и системами автоматического контроля и регулирования. Особенностями варки стекла в ванных печах непрерывного действия являются постоянное перемещение шихты и стекломассы от загрузочной части к выработочной, а также варка стекломассы в поверхностных слоях.

Бассейны ванных печей могут быть разнообразными по конструкции, но в любом бассейне имеются зоны загрузки, варки стекла, осветления, студки и выработки, в которых поддерживается определенный температурный режим (6.4). Максимальную температуру (1450- 1500°С) стекломасса имеет в начале зоны осветления, расположенной в средней части варочного бассейна. Регулирование режима варки стекла облегчается при разделении бассейна печи сплошными или решетчатыми перегородками (экранами), заградительными лодками и др., преграждающими путь непроваренной стекломассе.

Для поддержания постоянного уровня стекломассы в бассейне в целях обеспечения надлежащего режима питания выработочных машин и предотвращения преждевременного разрушения огнеупорного материала бассейна загрузка шихты в ванную печь осуществляется непрерывным способом. После варки и осветления стекломасса поступает в студочную часть и далее в выработоч- ные каналы, ведущие к подмашинным камерам. Передвижение стекломассы в бассейнах происходит в связи с непрерывной выработкой стекла, различными плотностями проваренной и непроваренной стекломассы, разницей температуры по длине и ширине бассейна, приводящей к возникновению конвекционных потоков.

Для варки листовых стекол применяют, как правило, регенеративные печи непрерывного действия большой производительности (до 250 т стекломассы в сутки) с поперечным направлением пламени, с разделением между варочной и выработочной частями заградительными лодками. В электрических и пламенно-электрических печах варка стекла осуществляется также в несколько стадий (как в пламенных печах), но все процессы протекают последовательно в вертикальном направлении, и в результате сильных конвекционных потоков процесс варки протекает более интенсивно. Коэффициент полезного действия электрических печей в 3-5 раз выше, чем пламенных, вследствие лучшего использования тепла и уменьшения тепловых потерь, удельный съем стекломассы высок - 1200-3000 кг/м2 сут.