Выключатели

Почему электронный градусник показывает разную температуру. Уличный градусник на пластиковое окно — новые технологии или дедовский метод

Почему электронный градусник показывает разную температуру. Уличный градусник на пластиковое окно — новые технологии или дедовский метод

Помнишь ли ты, маленький друг, свое состояние, когда приходилось болеть? Неприятная штука! Мама волнуется, укладывает тебя в постель и сразу начинает искать термометр, чтобы измерить температуру.

Что же это за прибор такой – ТЕРМОМЕТР?

Слово термометр пришло к нам из Греции. Состоит оно из двух греческих слов – «теплота» и «меряю». То есть, термометр – это прибор для того, чтобы мерять тепло. Иногда его еще называют градусником, от слова «градус». Ведь температура всегда измеряется в градусах.

Первый термометр изобрели очень давно, четыреста лет назад! Тебя тогда еще не было на свете, не было даже твоих родителей. Придумал его итальянский ученый Галилео Галилей для своих опытов по физике. И это была простая стеклянная трубочка без шкалы с цифрами. Было не очень удобно пользоваться таким прибором, потому что он не показывал точную температуру.

Какие бывают термометры

Термометры бывают разные. Но все они устроены одинаково: небольшая шкала с цифровыми делениями и тонюсенькая трубочка с ртутью или подкрашенным спиртом.

Внутри ртутного градусника, в тонкой трубочке находится специальный жидкий металл – ртуть. Когда прибор попадает тебе подмышку, ртуть быстро нагревается, начинает скользить вверх по трубочке и останавливается ровно на отметке, которая соответствует твоей температуре.

Температура тела здорового мальчика – тридцать шесть и шесть десятых градуса (36,6). Посмотри на шкалу термометра, если твоя температура выше или ниже этого показателя – ты действительно не здоров.

Внимание! Ртуть – очень ядовитый металл!

Поэтому обращайся с таким термометром очень аккуратно, чтобы не разбить:

  1. Держи ртутный термометр в специальном жестком чехле из пластмассы.
  2. Ни в коем случае не давай такой градусник младшим братьям и сестрам.
  3. Если термометр все же разбился, быстрее выйди из комнаты и сообщи родителям о беде. Они точно знают, что нужно сделать.
  • Электронный термометр – прибор самый современный, умный и самый точный.

Электронный термометр работает от маленькой батарейки и не содержит ртути. А поэтому – он самый безопасный. При необходимости папа может батарейку быстро заменить или сделать это в любой мастерской по ремонту часов.

Ты спросишь, зачем нужен электронный градусник, если уже есть ртутный? На самом деле, электронный термометр показывает более точную температуру. И к тому же делает это очень быстро, всего за 10 секунд! Ты даже не успеешь оглянуться, а твоя температура уже отразится на небольшом дисплее приборчика.

Кроме того, электронный термометр умеет запоминать результат последнего измерения температуры. Это очень удобно, если ты действительно заболел и приходится мерять температуру несколько раз в день.

И даже если мама отошла от тебя на минутку, электронный градусник подаст громкий сигнал, когда температура будет измерена.


Наверняка в твоем доме есть не один спиртовой градусник. Посмотри внимательно – один из них измеряет температуру воздуха в квартире, другой показывает, хорошо ли морозит холодильник, третий плавает вместе с тобой в воде, когда ты принимаешь ванну.

Где вы измеряете температуру? Под мышкой? Напрасно - это не лучшее место. Помочь нам определиться, куда же все-таки сунуть градусник при первых симптомах гриппа и ОРЗ, смогли специалисты из университета Эребру (Швеция). В ходе исследования они измеряли у добровольцев температуру в подмышечной впадине, во рту, в ухе, влагалище и прямой кишке. И как вы думаете кто победил?

323 пациента университетской клиники мужественно переносили тяготы эксперимента. Как оказалось, не зря. Слово «засунуть» в итоге действительно оказалось самым подходящим. Ученые получили убедительные данные, что самый точный результат дает измерение температуры в прямой кишке.

Как считают ученые , показания ушной термометрии искажают волосы и ушная сера, правильно удержать градусник во рту достаточно сложно, а на результат подмышечной термометрии влияют дезодорант и одежда. А вот измерять градусы в прямой кишке пусть не слишком удобно, зато точно.

Верный результат дает и влагалищная термометрия, но назвать этот метод самым предпочтительным помешала статистика.


Нормальные показатели температуры

    02.08.2016 - 31.08.2020

    Осталось 405д.

    И так, вот нормальные показатели температуры при разных способах измерения:

    • - орально - 35,7-37,3;
    • - ректально - 36,2-37,7,
    • - аксиллярно (в подмышках) - 35,2-36,7.
    • - паховая складка 36,3°-36,9°С.
    • - влагалище - 36,7°-37,5°С

    Важно: Измерение температуры орально и ректально дает более точные результаты, чем температуры в подмышечной впадине.

    Самый привычный нам способ измерения - аксиллярно , кстати, оказался самым неточным. Нормальная температура подмышкой начинается не с 36,6° , а с 36,3° С. В норме разница между подмышками составляет от 0,1 до 0,3°С. Вот и получается, что погрешность в 0,5° для подмышечной термометрии - обычное дело. И если градусник несколько дней показывает 36,9°, а у вас на самом деле 37,4°, это уже может быть опасно.

    Основные правила измерения температуры


    Не готовы изменить привычкам, тогда вот вам 10 основных правил измерения температуры .

    1. 1. Температура в комнате должна быть 18-25 градусов. Если меньше, градусник нужно сначала примерно полминуты согреть в ладонях.
    2. 2. Протереть подмышечную впадину салфеткой или сухим полотенцем. Такие действия значительно снизят вероятность охлаждения измерителя вследствие испарения пота.
    3. 3. Не забыть встряхнуть ртутный термометр или включить электронный (Gamma, Omron, Microlife).
    4. 4. Металлический наконечник электронного градусника (или ртутный столбик обычного) должен попадать в самую глубокую точку впадины, плотно соприкасаясь с телом. Стоит отметить, что плотность примыкания должна сохраняться весь период измерения.
    5. 5. Температуру не измеряют сразу после прогулки, физических нагрузок, сытного обеда, горячего чая, теплой ванны и нервного перевозбуждения (например, если ребенок долго плакал). Нужно подождать 10-15 минут.
    6. 6. Во время измерения нельзя двигаться, разговаривать, кушать, пить.
    7. 7. Время измерения для ртутного термометра - 6-10 минут , электронного - 1-3 минуты . Помните: электронные термометры безопаснее ртутных.
    8. 8. Доставать градусник нужно плавно - из-за трения о кожу может добавиться несколько десятых градуса.
    9. 9. Во время болезни измерять температуру нужно утром (7-9 утра) и вечером (между 17 и 21). Важно делать это в одно и то же время, до приема жаропонижающих лекарств или через 30-40 минут после.
    10. 10. Если термометром пользуются все члены семьи, его нужно протирать дезинфицирующим раствором и насухо вытирать после каждого использования.

    Вопрос - Ответ

    На вопросы отвечает врач-терапевт высшей категории Сулиманова Елена Петровна

    Почему показания электронного термометра иногда отличаются от ртутного?

    Потому что мы неправильно пользуемся первым. После того как прибор запищит, его надо подержать еще около минуты - тогда результат будет корректным.

    Как правильно держать градусник под мышкой?

    Датчик термометра необходимо расположить точно посередине подмышечной впадины.

    Для получения точного результата, термодатчик электронного термометра должен как можно плотнее прилегать к коже под мышкой. Руку необходимо плотно прижимать к телу до окончания измерения.

    Под какой подмышкой правильно мерить температуру?

    Разницы нет, обычно это подмышка нерабочей руки, но повторюсь, разницы никакой нет. Есть небольшая разница когда меряете давление.

    Как измерить температуру без градусника?

    Губами, прикосновением губ ко лбу заболевшего. В случае если действительно присутствует жар, не почувствовать его в этой ситуации будет просто невозможно. Губы, в отличие от руки, при помощи которой также можно попытаться измерить температуру, более чувствительны.

    Еще одним способом определения жара без градусника является установление частоты пульса. Согласно исследованиям медиков, при увеличении температуры тела у людей на 1 градус , их пульс пропорционально способен участиться примерно на 10 ударов в минуту . Поэтому высокая частота пульса может являться прямым следствием жара у больного.

Термометр представляет собой специальный прибор, предназначенный для измерений текущей температуры конкретной среды при контакте с ней.

В зависимости от вида и конструкции, он позволяет определить температурный режим воздуха, человеческого тела, почвы, воды и так далее.

Современные термометры подразделяются на несколько видов. Градация приборов в зависимости от сферы применения выглядит так:

  • бытовые;
  • технические;
  • исследовательские;
  • метеорологические и другие.

Также термометры бывают:

  • механические;
  • жидкостные;
  • электронные;
  • термоэлектрические;
  • инфракрасные;
  • газовые.

Каждый из названных приборов имеет собственную конструкцию, отличается принципом действия и областью применения.

Принцип работы

Жидкостный термометр

В основе жидкостного термометра лежит эффект, известный как расширение жидкостных сред при нагревании. Чаще всего в подобных приборах используется спирт либо ртуть. Хотя от последней планомерно отказываются в виду повышенной токсичности этого вещества. И все же, данный процесс так до конца не завершен, так как ртуть обеспечивает лучшую точность измерений, расширяясь по линейному принципу.

В метеорологии чаще применяют приборы, наполненные спиртом. Объясняется это свойствами ртути: при температуре в +38 градусов и выше она начинает густеть. В свою очередь, спиртовые термометры позволяют оценивать температурный режим конкретный среды, нагретой 600 градусов. Ошибка измерений не превышает доли одного градуса.

Механический термометр

Механические термометры бывают биметаллическими или делатометрическими (стержневые, жезловые). Принцип действия таких приборов основан на способности металлических тел расширяться при нагреве. Они отличаются высокой надежностью и точностью. Себестоимость производства механических термометров относительно низка.

Данные приборы применяются в основном в специфическом оборудовании: сигнализациях, системах автоматического контроля температуры.

Газовый термометр

Принцип действия термометра основан на тех же свойствах, что и описанных выше приборов. За исключением того, что в данном случае применяется инертный газ. По сути, такой термометр представляет собой аналог манометра, который служит для измерения давления. Газовые приборы применяются для измерения высоко- и низкотемпературных сред (диапазон составляет -271 - +1000 градусов). Они обеспечивают относительно низкую точность, из-за чего от них отказываются при лабораторных измерениях.

Электронный термометр

Его еще называют термометр сопротивления. Принцип действия этого прибора основан на изменение свойств полупроводника, встроенного в конструкцию устройства, при повышении или понижении температуры. Зависимость у обоих показателей линейная. То есть, при повышении температуры растет сопротивление полупроводника, и наоборот. Уровень последнего напрямую зависит от типа металла, использованного при изготовлении прибора: платина «работает» при -200 - +750 градусов, медь при -50 - +180 градусов. Электрические термометры используются редко, так как при производстве очень сложно градуировать шкалу.

Инфракрасный термометр

Также известен как пирометр. Он представляет собой бесконтактный прибор. Пирометр работает с температурами от -100 до +1000 градусов. Его принцип действия основан на измерении абсолютного значения энергии, которую излучает конкретный объект. Максимальная дальность, на которой термометр способен оценивать показатели температуры, зависит от его оптической разрешения, типа прицельного устройства и других параметров. Пирометры отличаются повышенной безопасностью и точностью измерения.

Термоэлектрический термометр

Действие термоэлектрического термометра основано на эффекте Зеебека, посредством которого оценивается разница потенциалов при контакте двух полупроводников, в результате чего образуется электрический ток. Температурный диапазон измерений составляет -100 - +2000 грудусов.

Что такое термометр? Если вы интересуетесь этим вопросом и хотите найти на него простой и понятный ответ, то добро пожаловать! Специально для вас мы написали данную публикацию, в которой в полной мере освещается эта тема.

История создания

Дабы понять, что такое термометр, для начала необходимо окунуться в дебри истории. Думаем, предоставленная ниже информация будет очень полезна для общего развития.

С греческого языка слово "термометр" переводится как "измерять тепло". Первым прототипом данного приспособления был термоскоп, и создал его небезызвестный Галилео Галилей в 1957 году. Это изобретение представляло собой небольшой шарик с приделанной ручкой. Его использовали для определения температуры жидкости. Термоскоп хоть и можно назвать первым термометром, но по конструкции он сильно отличался от своих современных аналогов. Его показания напрямую зависели от атмосферного давления, а не от ртутной шкалы.

С развитием научного прогресса менялся и сам термометр. В 1667 году, через 110 лет после изобретения термоскопа, впервые был упомянут жидкостный термометр, а в 1742 году физик из Швеции Цельсий изобрел термометр со шкалой, в которой точка "0" обозначала температуру замерзания жидкости, а точка "100" - температуру ее кипения.

Виды термометров

Перевод и определение слова "термометр" вам уже известны, теперь пришло время поговорить о существующих разновидностях этого прибора. Всего есть семь видов термометра, и каждому из них мы посвятим свой абзац.

Жидкостный термометр

Данный прибор действует за счет эффекта расширения жидкости во время ее нагревания. Самым известным жидкостным термометром является ртутный. Его часто использует в медицине для измерения температуры тела. Несмотря на то что ртуть является очень токсичным и опасным веществом, она способна наиболее точно определять температуру тела (чего нельзя сказать про другие жидкости).

Термометры на спирту активно используются в метеорологии. "Почему не ртутные?" - наверняка спросите вы. А дело в том, что, когда температура воздуха достигает 38 градусов по Цельсию, ртуть внутри прибора начинает приобретать густую форму, из-за чего тот перестает работать.

Газовый термометр

Что такое термометр жидкостный? Думаем, на этот вопрос нам удалось дать емкий и информативный ответ. Теперь поговорим о газовых термометрах, которые работают практически по тому же принципу, что и жидкостные. Единственным отличием между ними является то, что газовые термометры используют инертный газ вместо жидкости. Диапазон таких приборов составляет от 271 градуса по Цельсию до 1000 градусов по Цельсию. Как правило, газовые термометры используются для первичного измерения температуры того или иного вещества.

Механический термометр

Он работает примерно по тому же принципу, что и его ранее упомянутые аналоги. Температура в нем определяется за счет расширения ленточки из биометалла и металлической спирали. Такого рода приборы отличаются простотой в использовании и хорошей надежностью. Зачастую их используют в системах автоматизации и сигнализациях.

Термометр сопротивления

Основой работы данного термометра является зависимость проводника от температуры. Для создания этих приборов используют металлы. Такого рода термометры зачастую используются на экспериментальных стендах, в лабораториях и на производстве.

Термоэлектрический (термопарный) термометр

Термопара - это контакт, через который при изменении температуры начинает проходить ток. К плюсам термоэлектрических термометров стоит отнести широкий диапазон измерений, простоту в использовании и возможность заземления спая. Но, к сожалению, не обошлось и без минусов. Со временем термопара может заржаветь или подвергнуться другим химическим процессам, способным навредить термометру. Термопары с электродами из золота, палладия или какого-либо другого благородного металла обладают максимальной точностью.

Волоконно-оптический термометр

Что такое волоконно-оптический термометр? Это датчик, в основе которого находится оптоволокно. Данные приборы очень хорошо реагируют на любые, даже малейшие изменения в погоде. Их активно используют на производствах для обеспечения безопасности.

Пирометр (или инфракрасный термометр)

Главным отличием инфракрасного термометра от всех предыдущих является то, что он работает бесконтактно. Зачастую их используют на производствах, но в последнее время их все чаще стали применять в медицинских целях. В этом нет ничего удивительного: пирометры более безопасны, чем стандартные ртутные градусники, а также они тратят меньше времени на измерение температуры.

В чем разница между градусником и термометром?

Значение слова "градусник", как ни странно, часто становится предметом обсуждений среди многих людей. Кто-то считает, что градусник и термометр - это один и тот же прибор, а кто-то уверен в обратном. Давайте разъясним все раз и навсегда: градусник - это то же самое, что и термометр! Градусник - это просто разговорное наименование термометра, прижившееся в народе. Поняли? Идем дальше.

Что делать, если разбил термометр?

Мы уже обсудили с вами, что означает слово термометр, и какими бывают его виды, но до сих пор не поговорили об одной не менее важной теме - безопасности. Иногда бывает так: человек начал плохо себя чувствовать и решил проверить температуру своего тела. Он достает свою домашнюю аптечку, берет градусник и случайно роняет его на пол. В итоге этот прибор разбивается, а токсичное вещество ртуть оказывается на его полу.

Если вы случайно разбили термометр и не хотите отравиться ядовитыми парами ртути, обязательно следуйте таким указаниям:

  1. Откройте окно, чтобы обеспечить приток свежего воздуха и лучшую вентиляцию.
  2. Выведите из комнаты всех людей (особенно это касается маленьких детей).
  3. Чтобы уменьшить разнос токсичных паров в другие комнаты, закройте дверь.
  4. Для уменьшения разноса ядовитых веществ на обуви необходимо на входе постелить специальный коврик или тряпочку, смоченную раствором марганцовки.
  5. После перечисленных действий настоятельно рекомендуется обратиться за помощью специалистов и не убирать всю ртуть вручную.

Синонимы слова "термометр"

На самом деле синонимов к слову термометр существует немного, а те, что есть, уже неоднократно звучали в данной статье. Но для закрепления материала мы повторим их еще раз:

  • Прибор.
  • Градусник.
  • Устройство.
  • Приспособление.

Итог

В нашем столетии очень тяжело представить жизнь без термометра. Это универсальное устройство по праву считается незаменимым и единственным в своем роде. Оно неоднократно встречается в быту, и без него уже практически нельзя обойтись. Выбор термометра в первую очередь зависит от сферы его использования, размеров и точности.

Надеемся, что информация, предоставленная в данной статье, вам помогла и вы узнали много нового.

Кажется, что это всем ясно - температуру! А что такое температура?

Очень хорошо сказал по этому поводу один физик: «Гораздо легче производить измере­ния, чем точно знать, что измеряется». И почти три сотни лет измеряли повсюду тем­пературу, но только совсем недавно, в конце прошлого столетия, стало окончательно ясно, что такое температура.

А в самом деле, что же показывает термо­метр? Стоит еще раз проследить, как возникло понятие «температура». Когда-то думали: если становится жарко, то это потому, что в теле повышается содержание теплорода. Латинское слово «температура» означало «смесь». Под тем­пературой тела понимали смесь из материй тела и теплорода тела. Затем понятие самого теплорода было отброшено как ошибочное, а слово «темпе­ратура» осталось.

Добрые две сотни лет в науке сохранялось странное положение: случайно выбранным свойством (расширение) случайно выбранного вещества (ртуть) и шкалы, установленной по случайно выбранным постоянным точкам (плав­ление льда и кипение воды), измерялась вели­чина (температура), смысл слова «температу­ра», строго говоря, никому не был понятен.

Но ведь термометр все-таки что-то пока­зывает? Если от ответа потребовать необхо­димую строгость и точность, то на такой вопрос придется ответить так: ничего, кроме удлинения в столбике нагретой ртути.

Ну а если ртуть заменить другим вещест­вом: газом или каким-либо твердым телом, которое также расширяется при нагревании, что будет тогда? Что будут показывать по­строенные на иной основе термометры?

Представим себе, что такие термометры мы сделали. Одни из них мы заполнили ртутью, воздухом, другие изготовили целиком из желе­за, меди, стекла. Точно установим на каждом из них постоянные точки: в тающем льду 0°, в кипящей воде 100°.

Попробуем теперь измерять температуру. Окажется, что, когда воздушный термометр покажет, например, 300°, другие термометры будут показывать:

ртутный 314,1°,

железный 372,6°,

медный 328,8°,

стеклянный 352,9°.

Какая же из этих «температур» правильна: «воздушная», «ртутная», «железная», «медная» или «стеклянная»? Ведь каждое из испытанных нами веществ показывает свою собственную температуру. Еще интересней повел бы себя «водяной» термометр. В пределах от 0° до 4° Ц он показывал бы при нагревании понижение температуры.

Можно, конечно, попытаться выбрать вме­сто теплового расширения какое-нибудь дру­гое свойство вещества, изменяющееся при на­гревании. Можно, например, построить термо­метры на основе изменения (при нагревании) упругости пара жидкости (например, спир­та), электрического сопротивления (например, платины), термоэлектродвижущей силы (термо­пара). В наше время такие термометры широко применяются в технике.

При условии предварительной калибровки по двум постоянным точкам такие термометры, например, при 200°Ц будут показывать: спир­товой (по упругости пара) 1320°, платиновый (по сопротивлению) 196°, спай платины и спла­ва ее с родием (термопара) 222°.

Так какая же из всех этих разных «тем­ператур» настоящая? Как и чем нужно изме­рять температуру?

Прежде чем ответить на эти вопросы, сле­дует уяснить себе самое важное в них - их точное содержание и смысл: «чем нужно изме­рять температуру». Почему такой «простой» вопрос вообще может возникать?

Чем мы измеряем длину? Метрами. Метр - это длина линейки эталона, который ученые

очень бережно хранят, чтобы он не пропал и не испортился. Чем мы измеряем объемы? Можно измерять литрами. Литр - это объем, равный одному кубическому дециметру. А чем мы измеряем температуру?

Эти вопросы совершенно сходны, но ответы на них принципиально различны. Если мы сольем в бочку несколько ведер холодной воды, то бочка будет заполнена водой. Сумма объемов воды в ведрах будет равна объему бочки. Но сколько бы холодной воды вы ни влили в бочку, горячей воды при этом не полу­чится. Рассуждение это совсем не смешно и не наивно, и факт этот вовсе не очевиден сам собой. Это очень важный закон природы, к которому мы просто привыкли, потому что знаем его из опыта. Из нескольких коротких палок можно составить одну длинную, соеди­нив их между собою встык. Но нельзя сложить температуру раскаленного угля из печи и тем­пературу куска льда. Раскаленный уголь от этого не станет более горячим.

Измерять температуру, подобно тому как измеряют длину, объем, массу, нельзя потому, что температуры не складываются. Невозможна такая единица температуры, которой можно непосредственно измерять любую температуру, подобно тому как метром можно измерить любую длину. Объем, длина, масса - примеры экстенсивных свойств системы. Если железный стержень разделить на несколько частей, тем­пература каждой из них от этого не изменится. Температура - пример интенсивных свойств системы. Непосредственно установить число­вое соотношение между различными темпера­турами невозможно и бессмысленно.

Но ведь измерять температуру необходимо. Так как же ее измерять, если ее нельзя изме­рить методом, пригодным для измерения экстен­сивных величин?

Для этого возможен только один путь - использовать объективную связь между темпера­турой и любой экстенсивной величиной: изме­нением объема, длины, отклонением стрелки гальванометра и т. п.

Поэтому ответ на вопрос - какая из пере­численных выше различных «температур» на­стоящая - может показаться с первого раза странным: все они равноправны. Любое свой­ство системы, зависящее от температуры, мо­жет быть выбрано для ее характеристики и измерения.

Термодинамика сумела указать способ и вещество, которое позволяет осуществить тем­пературные измерения наиболее целесообразно.

Это - идеальный газ. По его расширению при постоянном давлении или по росту давления при постоянном объеме могут быть проведены наиболее целесообразно измерения температуры. При таком способе измерения бесчисленные выражения для любых закономерностей в при­роде становятся наиболее простыми.

Но у идеального газа есть один существен­ный недостаток: такого газа нет в природе.

Давление

Насколько сложно и трудно понятие о тем­пературе, настолько просто и ясно понятие «давление». Его хорошо знает любой школьник из самого начального учебника физики. Да­вление - это сила, действующая на единицу площади поверхности. Направлено давление в случае газов и жидкостей всегда перпендику­лярно к поверхности. Понятие «давление» мож­но приложить к твердым телам, но следует ном-нить, что свойства твердых тел могут зависеть от направления, в котором действует давление (например, пьезоэффект).

В термодинамике давление и температура - два основных, главнейших параметра, опре­деляющих состояние термодинамической систе­мы. Это определение означает, что одно и то же количество вещества при одних и тех же зна­чениях температуры и давления занимает всегда один и тот же объем. Правда, необходимо до­бавить: это определение справедливо, когда в системе достигнуто равновесное состоя­ние.

Химику очень полезно знать, что один грамм-моль любого газа при 0° Ц и при дав­лении в 1 атм занимает объем, равный при­близительно 22,4 литра. Это стоит запомнить.

Теплота

Наверное, не одна сотня тысяч лет про­текла с тех пор, как наши далекие предки впервые познакомились с огнем и научились сами получать теплоту. Каждый из нас грелся у горячей печки и мерз в стужу. Казалось бы, что может быть теперь привычнее и понят­ней, чем так хорошо знакомая всем теплота.

Но вопрос - что такое теплота - далеко не так прост. Правильный ответ на него был найден наукой совсем недавно. Долгое время ученые даже не замечали всю сложность этой проблемы.

Первое истолкование природы теплоты было основано на бесспорном и очевидном как буд­то бы факте: при нагревании тела его темпера­тура повышается - следовательно, тело полу­чает теплоту. При остывании, охлаждаясь, тело ее теряет. Поэтому всякое нагретое тело представляет собой смесь того вещества, из которого оно состоит, и тепла. Чем выше температура тела, тем больше в нем приме­шано теплоты. Теперь уже мало кто помнит, что слово «температура» в переводе с латинского и означает «смесь». Когда-то, например, о бронзе говорили, что она - «температура олова и меди».

Два совершенно различных объяснения, две гипотезы о природе теплоты спорили между собой в науке почти два столетия.

Первую из этих гипотез высказал в 1613 г. великий Галилей. Теплота - это вещество. Оно необычно. Оно способно проникать в любые тела и выходить из них. Тепловое вещество, иначе теплород, или флогистон, не порождается и не уничтожается, а только перераспределяется между телами. Чем его больше в теле, тем тем­пература тела выше. Еще не так давно говори­ли - «градус теплоты» (а не температуры), считая, что термометр измеряет крепость смеси из ма­терии и теплорода. (До сих пор еще сохранился обычай мерить в градусах крепость вина - смесь воды и спирта.)

Вторую гипотезу, совершенно, казалось бы, отличную от представления Галилея, выска­зал в 1620 г. знаменитый философ Бэкон. Он обратил внимание на то, что было издавна известно любому кузнецу: под сильными уда­рами молота становится горячим холодный кусок железа. Известен способ получения огня трением. Значит, ударами и трением можно произвести теплоту, не получая ее от уже нагретого тела. Бэкон из этого заключил, что теплота есть внутреннее движение мельчайших частиц тела и температура тела определяется скоростью движения частиц в нем. Эта теория получила в науке название механической тео­рии теплоты. Для ее обоснования и развития очень много сделал гениальный Ломоносов.

При коренном расхождении обе гипотезы имеют немало сходства: из теории теплорода следовало, что термометр измеряет количество теплорода, содержащегося в теле, согласно же механической теории тепла, термометр пока­зывает количество движения, содержащегося в теле. Согласно обеим теориям, должен суще­ствовать абсолютный нуль температуры. Он будет достигнут тогда, когда, по теории теплорода, от тела будет отнят весь теплород, а по механической теории - когда тело потеряет все содержащееся в нем движение.

Теория теплорода почти два века господст­вовала в науке. Она проста и наглядна. Но она ошибочна. Точное взвешивание тел при разных температурах показало, что теплота невесома. Невесомость теплоты хорошо согласовывалась с механической теорией тепла. Тогда думали, что движение никоим образом не может по­влиять на вес тела. Правда, теперь мы знаем, что это не точно. Энергия, согласно закону Эйнштейна, должна обладать массой и, сле­довательно, тоже «весит»; только соответствую­щая прибавка в весе лежит далеко за пределами даже современной точности взвешивания.

Не следует смешивать теплоту с тепловой энергией тела. Тепловая энергия тела опреде­ляется кинетической энергией движения его молекул. Но теплота (это очень важно) дале­ко не равна тепловой энергии. И еще более важно, что теплота вообще не содержится в теле. Теплоты от дров, горящих в печи, в дровах вообще не было. Теплота только поступает в тело или уходит из него.

Совсем не трудно подсчитать количество энер­гии хаотического теплового движения в систе­ме, состоящей из молекул перегретого водя­ного пара,- это и будет его тепловая энергия. Но количество теплоты, которое может выде­литься из этой системы при ее охлаждении, совсем не равно тепловой энергии: сначала охладится пар, потом он начнет конденсиро­ваться в жидкую воду, затем охладится вода и, наконец, вода замерзнет. Теплота же испа­рения воды и теплота плавления льда очень велики. От перегретого пара, таким образом, можно получить гораздо больше теплоты, чем в нем содержится тепловой энергии.

Поэтому, строго говоря, обе гипотезы не верны - ни представление о теплоте как о теп­ловом веществе, ни механическая теория тепла. Вторая из них подтверждена опытом, но она не имеет никакого отношения к теплоте и касается только тепловой энергии, а это не одно и то же.

Работа

Совершать механическую работу - это зна­чит преодолевать или уничтожать сопротив­ления: молекулярные силы, силу пружины, силу тяжести, инерцию материи и т. д. Исти­рать, шлифовать тело, разделять его на части, поднимать грузы, тянуть по дороге повозку,

по рельсам - поезд, сжимать пружину - все это значит совершать работу; это значит преодолевать в течение некоторого времени сопротивление. Совершать работу - это значит преодолевать сопротивление газа, жидкости, твердого тела, кристалла. Сжимать газ, жид­кость, кристалл - это значит совершать работу.

Одним и тем же именем «работа» названы несходные явления, но за внешними различия­ми надо видеть общие основные черты. Работа связана с движением: груз поднимается, по­возка перемещается, поршень скользит в ци­линдре двигателя. Без движения нет работы.

Работа связана с упорядоченным движени­ем. Весь груз перемещается вверх. Вся повозка движется по дороге в одном направлении. Весь поршень в одном направлении движется в ци­линдре. Работа невозможна без двух участ­ников. Для поднятия одного груза должен опуститься другой груз, должна распрямиться пружина, должен расшириться газ. Оба участ­ника движутся упорядочение. Работа - это передача упорядоченного движения от одной системы к другой.

Не следует думать, что работа может быть связана только с механическим движением. Работа может совершаться и при изменении электрического или магнитного поля.

Способность системы совершать работу, конечно, очень важна для термодинамики. Но какую именно работу может совершить систе­ма - это для термодинамики несущественно. Как именно данную работу можно рассчитать и как ее измерить, должна сказать другая наука.

Определение механической работы дает механика. Это определение знает каждый школьник: работа (А) равна произведению силы (F) на путь (l).

Если же сила непостоянна, то приходится подсчитывать величину работы на каждом до­статочно малом участке пути (математики гово­рят - на бесконечно малом), на котором силу можно считать постоянной

dA=Fdl,

и затем просуммировать бесконечно малые значения работы по всему пройденному пути:

Тем, кто еще не отучился пугаться математи­ческих формул, полезно запомнить, что знак интеграла ∫- это просто вытянутая буква S - начальная в слове «сумма».

В физической химии часто рассматриваются процессы, связанные с дроблением вещества в тонкий порошок (в пыль) или с возникно­вением из пара новой фазы тумана или дыма. При таких процессах возникает огромная но­вая поверхность множества мельчайших ча­стиц, и на ее образование должна быть затра­чена немалая работа. Эту работу нельзя не учитывать. Она равна произведению поверх­ностного натяжения (а) на площадь новой поверхности (S):

Такая работа затрачивается и при выдувании мыльного пузыря.

Теплотехника при подсчете работы любых тепловых машин пользуется величиной работы расширяющегося газа, например водяного пара в цилиндре паровоза или в турбине. Этот очень важный вид работы измеряется произве­дением давления газа на изменение его объема:

Электрохимия, например, знает другой вид работы. Электрическая работа аккумулятора или гальванического элемента равна произве­дению электродвижущей силы (Е) на изменение заряда (q):

Полезно заметить и запомнить, что все выражения для различного вида работы очень сходны между собой. Любая работа обязатель­но измеряется произведением двух сомножи­телей: некоторой обобщенной силы / (это мо­жет быть сила всемирного тяготения, сила магнитного или электрического поля, давле­ние, поверхностное натяжение, любые меха­нические силы и т. д.) и величины а - изме­нения соответствующего параметра системы (пройденный путь, электрические заряды, вели­чина поверхности, объем и т. д.):

А=∫fda.

В задачи термодинамики не входит изу­чать различие между разными видами работы. Об этом должны позаботиться другие науки. Различных работ может быть очень много. Теплота только одна.