Выключатели

Назначение сверления. Назначение и способы сверления

Назначение сверления. Назначение и способы сверления

сверление растачивание станок отверстие

Сверлильные и расточные станки относятся к группе часто используемых металлорежущих станков. Принцип их действия основан на том, что методом расточки при помощи резцов производится обработка стенок отверстий круглых сечений.

Сверление применяется: для получения неответственных отверстий, невысокой степени точности и чистоты, например под крепежные болты, заклепки, шпильки. Рассверливанием называется процесс увеличения диаметра отверстия при помощи сверла (рисунок 2).

Отверстия применяются для соединения деталей болтами, винтами, заклепками или другими крепежными деталями; получения и под последующее нарезание резьбы.

Точность сверления может быть повышена благодаря тщательному регулированию станка, правильно заточенному сверлу или сверлением при помощи специального приспособления, называемого кондуктором.

При сверлении различают сквозные, глухие и неполные отверстия. Высококачественное отверстие обеспечивается правильным выбором приемов сверления, правильным расположением сверла относительно обрабатываемой поверхности и совмещением оси сверла с центром (осью) будущего отверстия

Процесс резания при сверлении может быть осуществлен при наличии двух рабочих движений режущего инструмента по отношению к обрабатываемой детали: вращательного движения и подачи.

Для сверления обрабатываемую заготовку (деталь) неподвижно закрепляют в приспособлении, а сверлу сообщают два одновременных движения

  • · вращательное - которое называется главным (рабочим) движением, или движением резании;
  • · поступательное направленное вдоль оси сверла, которое называется движением подачи.

При сверлении под влиянием силы резания происходит отделение частиц металла и образование элементов стружки

Для получения отверстий под нарезание резьбы, применяется развертывание и зенкерование Рассверливанием называется процесс увеличения диаметра отверстия при помощи сверла.

Рисунок 2 Рабочие движения при сверлении

Скоростью резания V называется окружная скорость сверла, измеряемая по его наружному диаметру. Скорость резанья рассчитывается по формуле:

где v - скорость резанья, D-диаметр сверла, n- число оборотов в минуту сверла;

Величина скорости резанья зависит от обрабатываемого материала, диаметра и материала сверла и формы его заточки, подачи, глубины резания.

Подача s -- величина перемещения сверла вдоль оси за один оборот или за один оборот заготовки (если вращается заготовка, а сверло движется поступательно). Она измеряется в мм/об. так сверло имеет две режущие кромки, то подача на одну режущую кромку будет:

Плавильный выбор подачи имеет большое значение для стойкости режущего инструмента. Всегда выгоднее работать с большой подачей и меньшей скоростью резания, в этом случае сверло изнашивается медленнее.

Однако при сверлении отверстий малых диаметров величина подачи ограничивается прочностью сверла. С увеличением диаметра сверла прочность его возрастает, позволяя увеличивать подачу; следует учесть, что увеличение подачи ограничивается прочностью станка.

При выборе режимов резания в первую очередь подбирают наибольшую подачу в зависимости от качества обрабатываемой поверхности, прочности сверла и станка и других факторов; затем устанавливают такую максимальную скорость резания, при которой стойкость инструмента между переточками будет наибольшая.

Для обработки точных отверстий со строгими требованиями по размерам прямолинейности осей, межосевым расстоянием, а также для образования отверстий больших диаметров применяют операцию расточки.

Растачивание - процесс механической обработки внутренних поверхностей расточными резцами для увеличения их диаметра. Осуществляется при помощи, расточных металлорежущих станков. Сущность процесса расточки состоит:

  • · в обработке отверстий больших диаметров;
  • · в растачивании отверстий с выдержкой высокоточных размеров по величине, сносности, данной координате;
  • · в сверлении отверстий без предварительной разметки по заданным координатам, обеспечивая большую точность межосевых расстояний и перпендикулярность отверстий.

Растачивание производится расточными резцами. На расточной резец действуют сила резания, которую можно измерить .

Сверление

Сверление, зенкерование и развертывание

Сверление представляет собой про­цесс удаления металла для получения отверстий. Процесс сверления вклю­чает два движения: вращение инстру­мента V (рис. 48) или детали вокруг оси и подачу S вдоль оси. Режущие кромки сверла срезают тонкие слои металла с неподвижно укрепленной де­тали, образуя стружку, которая, скользя по спиральным канавкам сверла, выходит из обрабатываемого отверстия. Сверло является многолез­вийным режущим инструментом. В ре­зании участвуют не только два главных лезвия, но и лезвие перемычки, также два вспомогательных, находя­щихся на направляющих ленточках сверла, что очень усложняет процесс образования стружки. При рассмотрении схемы образования стружки при сверлении хорошо видно, что условия работы режущей кромки сверла в раз­ных точках лезвия различны. Так, пе­редний угол наклона режущей кромки у (рис. 49),

Рис. 48. Схема ре­зания при сверлении. Силы, действующие на сверло

Рис. 49. Образование стружки при сверлении

расположенный ближе к периферии сверла (сечение А-А), является положительным. Режущая кромка работает в сравнительно лег­ких условиях.

Передний угол наклона режущей кромки, расположенный дальше от пе­риферии, ближе к центру сверла (сечение В-В), является отрицатель­ным. Режущая кромка работает в бо­лее тяжелых условиях, чем расположенная ближе к периферии.

Резание поперечной режущей кром­кой (сечение С-С) представляет со­бой процесс резания, близкий к выдавливанию. При сверлении по сравнению с точением значительно хуже условия отвода стружки и подвода охлаждаю­щей жидкости; имеет место значитель­ное трение стружки о поверхность ка­навок сверла, трение стружки и свер­ла об обработанную поверхность; вдоль режущей кромки возникает рез­кий перепад скоростей резания - от нуля до максимума, в результате чего в различных точках режущей кромки срезаемый слой деформируется и сре­зается с разной скоростью; вдоль ре­жущей кромки сверла деформация различна - по мере приближения к периферии деформация уменьшается. Эти особенности резания при сверле­нии создают более тяжелые по сравне­нию с точением условия стружкообразования, увеличение тепловыделения и повышенный нагрев сверла. Если же рассматривать процесс стружкообразования на отдельных микро участках режущей кромки, то упругие и плас­тические деформации, тепловыделение, наростообразованне, упрочнение, износ инструмента здесь возникают по тем же причинам, что и при точении. На температуру резания при сверлении скорость резания имеет большее влия­ние, чем подача.

Рис.50. Спиральное сверло


Элементы сверла. Наиболее рас­пространенным и имеющим универ­сальное назначение является спираль­ное сверло (рис. 50). Сверло состоит из рабочей части, конусного или цилинд­рического хвостовика, служащего для закрепления сверла, а лапки, являющейся упором при удалении сверла. Рабочая часть сверла представляет со­бой цилиндрический стержень с двумя спиральными или винтовыми канавка­ми, по которым удаляется стружка. Режущая часть заточена по двум коническим поверхностям, имеет переднюю и заднюю поверхности (рис. 50) и две режущие кромки, соединенные пе­ремычкой под углом 55°. На цилинд­рической части по винтовой линии про­ходят две узкие ленточки, центрирую­щие и направляющие сверло в отверс­тии. Ленточки значительно уменьшают трение сверла о стенки обрабатывае­мого отверстия. Для уменьшения тре­ния рабочей части сверла в сторону хвостовика сделан обратный конус. Диаметр сверла уменьшается на каж­дые 100 мм длины на 0,03-0,1 мм.

Режущая часть сверла изготовля­ется из инструментальных сталей в твердых сплавов. Как и резец, сверло имеет передний и задний углы (рис.51). Передний угол у (сечение Б-Б) в каждой точке режущей кромки является величиной переменной. Наибольшее значение угол у имеет на периферии сверла, наименьшее-у вершины сверла. Вследствие того что сверло во время работы не только вращается, но и перемещается. вдоль оси, действительное значение заднего угла а отличается от угла, по-. лученного при заточке. Чем меньше диаметр окружности, на которой нахо­дится рассматриваемая точка режу­щей кромки, и чем больше подача, тем меньше действительный задний угол.

Действительный же передний угол в процессе резания соответственно бу­дет больше угла, замеренного после заточки. Чтобы обеспечить достаточ­ную величину заднего угла в работе

Обработка отверстий – это целый ряд технологических операций, целью которых является доведение геометрических параметров, а также степени шероховатости внутренней поверхности предварительно выполненных отверстий до требуемых значений. Отверстия, которые обрабатываются при помощи таких технологических операций, могут быть предварительно получены в сплошном материале не только при помощи сверления, но также методом литья, продавливания и другими способами.

Конкретный способ и инструмент для обработки отверстий выбираются в соответствии с характеристиками необходимого результата. Различают три способа обработки отверстий – сверление, развертывание и зенкерование. В свою очередь эти методы подразделяются на дополнительные технологические операции, к которым относятся рассверливание, цекование и зенкование.

Чтобы понять особенности каждого из вышеперечисленных способов, стоит рассмотреть их подробнее.

Сверление

Чтобы обрабатывать отверстия, их необходимо предварительно получить, для чего можно использовать различные технологии. Наиболее распространенной из таких технологий является сверление, выполняемое с использованием режущего инструмента, который называется сверлом.

При помощи сверл, устанавливаемых в специальных приспособлениях или оборудовании, в сплошном материале можно получать как сквозные, так и глухие отверстия. В зависимости от используемых приспособлений и оборудования сверление может быть:

  • ручным, выполняемым посредством механических сверлильных устройств или электро- и пневмодрелей;
  • станочным, осуществляемым на специализированном сверлильном оборудовании.

Использование ручных сверлильных устройств является целесообразным в тех случаях, когда отверстия, диаметр которых не превышает 12 мм, необходимо получить в заготовках из материалов небольшой и средней твердости. К таким материалам, в частности, относятся:

  • конструкционные стали;
  • цветные металлы и сплавы;
  • сплавы из полимерных материалов.

Если в обрабатываемой детали необходимо выполнить отверстие большего диаметра, а также добиться высокой производительности данного процесса, лучше всего использовать специальные сверлильные станки, которые могут быть настольными и стационарными. Последние в свою очередь подразделяются на вертикально- и радиально-сверлильные.

Рассверливание – тип сверлильной операции – выполняется для того, чтобы увеличить диаметр отверстия, сделанного в обрабатываемой детали ранее. Рассверливание также выполняется при помощи сверл, диаметр которых соответствует требуемым характеристикам готового отверстия.

Такой способ обработки отверстий нежелательно применять для тех из них, которые были созданы методом литья или посредством пластической деформации материала. Связано это с тем, что участки их внутренней поверхности характеризуются различной твердостью, что является причиной неравномерного распределения нагрузок на ось сверла и, соответственно, приводит к его смещению. Формирование слоя окалины на внутренней поверхности отверстия, созданного с помощью литья, а также концентрация внутренних напряжений в структуре детали, изготовленной методом ковки или штамповки, может стать причиной того, что при рассверливании таких заготовок сверло не только сместится с требуемой траектории, но и сломается.

При выполнении сверления и рассверливания можно получить поверхности, шероховатость которых будет доходить до показателя Rz 80, при этом точность параметров формируемого отверстия будет соответствовать десятому квалитету.

Зенкерование

При помощи зенкерования, выполняемого с использованием специального режущего инструмента, решаются следующие задачи, связанные с обработкой отверстий, полученных методом литья, штамповки, ковки или посредством других технологических операций:

  • приведение формы и геометрических параметров имеющегося отверстия в соответствие с требуемыми значениями;
  • повышение точности параметров предварительно просверленного отверстия вплоть до восьмого квалитета;
  • обработка цилиндрических отверстий для уменьшения степени шероховатости их внутренней поверхности, которая при использовании такой технологической операции может доходить до значения Ra 1,25.

Если такой обработке необходимо подвергнуть отверстие небольшого диаметра, то ее можно выполнить на . Зенкерование отверстий большого диаметра, а также обработка глубоких отверстий выполняются на стационарном оборудовании, устанавливаемом на специальном фундаменте.

Ручное сверлильное оборудование для зенкерования не используется, так как его технические характеристики не позволяют обеспечить требуемую точность и шероховатость поверхности обрабатываемого отверстия. Разновидностями зенкерования являются такие технологические операции, как цекование и зенкование, при выполнении которых используются различные инструменты для обработки отверстий.

  • Зенкерование следует проводить в процессе той же установки детали на станке, при которой осуществлялось сверление отверстия, при этом из параметров обработки меняется только тип используемого инструмента.
  • В тех случаях, когда зенкерованию подвергается необработанное отверстие в деталях корпусного типа, необходимо контролировать надежность их фиксации на рабочем столе станка.
  • Выбирая величину припуска на зенкерование, надо ориентироваться на специальные таблицы.
  • Режимы, на которых выполняется зенкерование, должны быть такими же, как и при осуществлении сверления.
  • При зенкеровании должны соблюдаться те же правила охраны труда и техники безопасности, как и при сверлении на слесарно-сверлильном оборудовании.

Зенкование и цекование

При выполнении зенкования используется специальный инструмент – зенковка. При этом обработке подвергается только верхняя часть отверстия. Применяют такую технологическую операцию в тех случаях, когда в данной части отверстия необходимо сформировать углубление для головок крепежных элементов или просто снять с нее фаску.

При выполнении зенкования также придерживаются определенных правил.

  • Выполняют такую операцию только после того, как отверстие в детали будет полностью просверлено.
  • Сверление и зенкование выполняются за одну установку детали на станке.
  • Для зенкования устанавливают небольшие обороты шпинделя (не больше 100 оборотов в минуту) и применяют ручную подачу инструмента.
  • В тех случаях, когда зенкование осуществляется цилиндрическим инструментом, диаметр цапфы которого больше диаметра обрабатываемого отверстия, работу выполняют в следующей последовательности: сначала сверлится отверстие, диаметр которого равен диаметру цапфы, выполняется зенкование, затем основное отверстие рассверливается на заданный размер.

Целью такого вида обработки, как цекование, является зачистка поверхностей детали, которые будут соприкасаться с гайками, головками болтов, шайбами и стопорными кольцами. Выполняется данная операция также на станках и при помощи цековки, для установки которой на оборудование применяются оправки.

Развертывание

Процедуре развертывания подвергаются отверстия, которые предварительно были получены в детали при помощи сверления. Обработанный с использованием такой технологической операции элемент может иметь точность, степень которой доходит до шестого квалитета, а также невысокую шероховатость – до Ra 0,63. Развертки делятся на черновые и чистовые, также они могут быть ручными или машинными.

  • 7. Технологические процессы получения цветных металлов и сплавов.
  • 8. Технологические процессы получения деталей из пластмасс.
  • 9. Показатели качества детали и изделий.
  • 10. Показатель качества поверхности детали – шероховатость.
  • 11. Технологические процессы получения деталей из неметаллических материалов: картона, войлока, резины, текстолита, гетинакса.
  • 12. Классификация способов получения заготовок.
  • 13. Получение заготовок методом литья в кокиль.
  • 14. Получение заготовок литьем по выплавляемым моделям.
  • 15. Литье в оболочковые формы.
  • 16. Получение заготовок литьем в песчано-глинистые формы.
  • 17. Литье под давлением.
  • 18. Центробежное литье.
  • 19. Получение заготовок пластическим деформированием (прокатка, волочение, ковка).
  • 21. Получение заготовок холодной штамповкой (листовая и объемная штамповка; резка, гибка, вытяжка, формовка).
  • 22. Получение заготовок горячей штамповкой (на молотах, на прессах, на горизонтально-ковочных машинах).
  • 23. Критерии определения возможных видов и способов обработки заготовок деталей.
  • 24. Получение заготовок из порошковых материалов. Классификация порошковых материалов по назначению, по степени нагруженности. Сущность процесса горячего динамического и изостатического прессования.
  • 25. Механическая обработка деталей резанием.
  • 26. Точение. Сущность процесса, назначение и область применения, применяемое оборудование (станок), инструмент, приспособления, точность размеров и шероховатость обрабатываемой поверхности.
  • 27. Фрезерование. Сущность процесса, назначение и область применения, применяемое оборудование (станок), инструмент, приспособления, точность размеров и шероховатость обрабатываемой поверхности.
  • 28. Шлифование. Сущность процесса, назначение и область применения, применяемое оборудование (станок), инструмент, приспособления, точность размеров и шероховатость обрабатываемой поверхности.
  • 29. Сверление. Сущность процесса, назначение и область применения, применяемое оборудование (станок), инструмент, приспособления, точность размеров и шероховатость обрабатываемой поверхности.
  • 30. Протягивание. Сущность процесса, назначение и область применения, применяемое оборудование (станок), инструмент, приспособления, точность размеров и шероховатость обрабатываемой поверхности.
  • 31. Режимы резания. Факторы, влияющие на выбор режимов резания.
  • 32. Отделочные методы обработки деталей (полирование, магнито-абразивная обработка, абразивно-струйная обработка).
  • 34. Средства технологического оснащения при разных методах обработки.
  • 35. Особенности обработки деталей на станках с чпу.
  • 36. Термическая обработка в технологическом процессе изготовления изделий (отжиг, нормализация, закалка, отпуск).
  • 37. Износостойкие, антикоррозионные и декоративные покрытия.
  • 38. Технологический процесс сборочных работ.
  • 39. Содержание технологических процессов сборочных работ.
  • 40. Сварные соединения. Типы сварных швов.
  • 41. Сварные соединения. Сущность процесса сварки.
  • 42. Ручная дуговая сварка. Область применения, сущность процесса.
  • 43. Контактная сварка. Область применения, сущность процесса.
  • 44.Стыковая сварка. Область применения, сущность процесса.
  • 45.Точечная сварка. Область применения, сущность процесса.
  • 46.Электрошлаковая сварка. Область применения, сущность процесса.
  • 47.Газокислородная, плазменная и лазерная сварка. Область применения, сущность процесса.
  • 48.Сварка в среде защитных газов. Область применения, сущность процесса.
  • 49.Паяные соединения. Область применения, сущность процесса.
  • 50.Заклепочные соединения. Область применения, сущность процесса.
  • 51.Клеевые соединения. Область применения, сущность процесса.
  • 52. Технологическая документация (виды, назначение).
  • 53.Операционные эскизы. Требования, предъявляемые к операционным эскизам.
  • 54.Проблемы обеспечения качества изделия.
  • 55.Содержание технологической подготовки производства изделия
  • 56.Измерение детали на координатно-измерительной машине.
  • 57. Методы обеспечения технологичности и конкурентоспособности изделий машиностроения.
  • 29. Сверление. Сущность процесса, назначение и область применения, применяемое оборудование (станок), инструмент, приспособления, точность размеров и шероховатость обрабатываемой поверхности.

    Сверление - основной способ получения сквозных и глухих отверстий в сплошном материале заготовки. В качествеинструмента используетсясверло . Обработка производится насверлильных и токарных станках . На сверлильных станках сверло совершает вращательное движение и продольное вдоль оси отверстия, а заготовка закреплена на столе станка. На токарных станках обрабатываемая деталь закрепляется в патрон и совершает вращательное движение, сверло крепится в заднюю бабку станка и совершает поступательное движение вдоль оси отверстия.

    Рис.2. Схемы: а, б - сверления, в – рассверливания, г-зенкерования, д- развертывания

    Диаметр просверливаемого отверстия можно увеличить сверлом большего размера. Такие операции называют рассверливанием . При сверлении обеспечивается сравнительно невысокая точность и качество поверхности.

    Для получения отверстий более высокой точности и меньшей шероховатости поверхности выполняются зенкерование и развертывание. Зенкерованием обрабатывают предварительно полученные отверстия многолезвийным инструментомзенкером , который имеет более жесткую рабочую часть. Число зубьев не менее трех.

    Развертыванием можно исправить неточности формы отверстия.Развертки - многолезвийный инструмент, срезающий очень тонкие слои с обрабатываемой поверхности.

    Назначение сверления: Сверление необходимая операция для получения отверстий в различных материалах при их обработке, целью которой является:

      Изготовление отверстий под нарезание резьбы, зенкерование, развёртывание или растачивание.

      Изготовление отверстий (технологических) для размещения в них электрических кабелей, анкерных болтов, крепёжных элементов и др.

      Отделение (отрезка) заготовок из листов материала.

      Ослабление разрушаемых конструкций.

      Закладка заряда взрывчатого вещества при добыче природного камня.

    Операции сверления производятся на следующих станках:

      Вертикально-сверлильные станки.

      Горизонтально-сверлильные станки.

      Вертикально-расточные станки.

      Горизонтально-расточные станки.

      Вертикально-фрезерные станки.

      Горизонтально-фрезерные станки.

      Универсально-фрезерные станки.

      Токарные станки (сверло неподвижно а обрабатываемая заготовка вращается).

      Токарно-затыловочные станки (сверление вспомогательная операция, сверло неподвижно).

    Для облегчения процессов резания материалов применяют следующее:

      Охлаждение (вода, эмульсии, олеиновая кислота, углекислый газ, графит).

      Ультразвук (ультразвуковые вибрации сверла увеличивают производительность и дробление стружки).

      Подогрев (ослабляет твёрдость труднообрабатываемых материалов).

      Удар (при ударно-поворотном сверлении (бурении) камня, бетона).

    30. Протягивание. Сущность процесса, назначение и область применения, применяемое оборудование (станок), инструмент, приспособления, точность размеров и шероховатость обрабатываемой поверхности.

    Протягивание - высокопроизводительный метод обработки деталей разнообразных форм, обеспечивающимвысокую точность формы и размеров обрабатываемой поверхности. Из-за высокой стоимостиинструмента - протяжки , протягивание применяют в крупносерийном производстве. В протяжке каждый режущий зуб больше последующего на определенную величину. Процесс резания при протягивании производится на протяжныхвертикального и горизонтального исполнений станках при поступательном движении инструмента относительно неподвижной заготовки за один проход.

    Отверстия различной геометрической формы протягивают на горизонтально-протяжных станках для внутреннего протягивания. Размеры отверстий от 5 до 250 мм.


    Рис. 6. Схемы протягирания: 1-обрабатываемая деталь,2 – протяжка; а…д- внутреннее протягивание; з…ж- наружнее протягивание

    Цилиндрические отверстия протягивают после сверления, растачивания или зенкерования. Шпоночные и шлицевые пазы протягивают протяжками, форма которых в поперечном сечении соответствует профилю протягиваемого отверстия.

    Наружные поверхности различной геометрической формы протягивают на вертикально-протяжных станках для наружного протягивания.

    Протягивание применяется в крупносерийном и массовом производстве металлоизделий, и редко в мелкосерийном и единичном. Протяжки различных конструкций - наружные, внутренние, и дорны, являются одними из наиболее дорогих инструментов для выполнения металлообработки. Подчас каждая протяжка при своем изготовлении требует наивысшей точности и правильного расчета. Это обусловлено тем, что инструмент при протягивании работает в наиболее тяжёлых и суровых условиях огромных нагрузок (растяжение, сжатие, изгиб, абразивное и адгезионное выкрашивание лезвий протяжки). Протягиванию предшествуют подготовительные операции металлообработки, такие как сверление, зенкерование, развертывание, вырубка (т. е. для проведения протягивания требуется достаточно точно обработанная поверхность заготовки).

    Дорнование (дорнирование) – вид обработки заготовок без снятия стружки. Сущность дорнования сводится к перемещению в отверстии заготовки с натягом жёсткого инструмента – дорна. Размеры поперечного сечения инструмента больше размеров поперечного сечения отверстия заготовки на величину натяга.

    Станки для протягивания:

      Горизонтально-протяжные станки: Все виды внутреннего и наружного протягивания заготовок.

      Пресса: Обработка отверстий дорнами (прошивка, формообразование, калибровка).

    Виды протягивания:

    Внутреннее протягивание. Наружное протягивание. Дорнование. Накаливание.

    Различного диаметра и глубины, или многогранные отверстия различного сечения и глубины.

    Назначение сверления

    Сверление - необходимая операция для получения отверстий в различных материалах при их обработке, целью которой является:

    • Изготовление отверстий под нарезание резьбы, зенкерование , развёртывание или растачивание.
    • Изготовление отверстий (технологических) для размещения в них электрических кабелей, анкерных болтов, крепёжных элементов и др.
    • Отделение (отрезка) заготовок из листов материала.
    • Ослабление разрушаемых конструкций.
    • Закладка заряда взрывчатого вещества при добыче природного камня.

    Станки и инструменты для выполнения сверления

    Сверление цилиндрических отверстий, а также сверление многогранных (треугольных, квадратных, пяти- и шестигранных, овальных) отверстий выполняют с помощью специальных режущих инструментов - свёрл . Свёрла в зависимости от свойств обрабатываемого материала изготавливаются нужных типоразмеров из следующих материалов:

    • Углеродистые стали (У8, У9, У10, У12 и др): Сверление и рассверливание дерева, пластмасс, мягких металлов.
    • Низколегированные стали (Х, В1,9ХС,9ХВГ и др): Сверление и рассверливание дерева, пластмасс, мягких металлов. Повышенная по сравнению с углеродистыми теплостойкость (до 250 °C) и скорость резания.
    • Быстрорежущие стали (Р9, Р18, Р6М5, Р9К5 и др): Сверление всех конструкционных материалов в незакалённом состоянии. Теплостойкость до 650 °C.
    • Свёрла, оснащенные твёрдым сплавом , (ВК3, ВК8, Т5К10, Т15К6 и др): Сверление на повышенных скоростях незакалённых сталей и цветных металлов. Теплостойкость до 950 °C. Могут быть цельными, с напайными пластинами, либо со сменными пластинами (крепятся винтами)
    • Свёрла, оснащённые боразоном : Сверление закалённых сталей и белого чугуна , стекла , керамики , цветных металлов.
    • Свёрла, оснащённые алмазом : Сверление твёрдых материалов, стекла, керамики, камней.

    Операции сверления производятся на следующих станках:

    • Вертикально-сверлильные станки
    • Горизонтально-сверлильные станки : Сверление - основная операция.
    • Вертикально-расточные станки: Сверление - вспомогательная операция.
    • Горизонтально-расточные станки: Сверление - вспомогательная операция.
    • Вертикально-фрезерные станки: Сверление - вспомогательная операция.
    • Горизонтально-фрезерные станки: Сверление - вспомогательная операция.
    • Универсально-фрезерные станки: Сверление - вспомогательная операция.
    • Токарные станки: Сверло неподвижно, а обрабатываемая заготовка вращается.
    • Токарно-затыловочные станки: Сверление - вспомогательная операция. Сверло неподвижно.
    • Токарно-револьверные станки : Сверление - вспомогательная операция. Сверло может быть неподвижно (статический блок) или вращаться (приводной блок)

    И на ручном оборудовании:

    • Механические дрели : Сверление с использованием мускульной силы человека.
    • Электрические дрели: Сверление на монтаже переносным электроинструментом (в том числе ударно-поворотное сверление).

    Для облегчения процессов резания материалов применяют следующие меры:

    • Охлаждение: Смазочно-охлаждающие жидкости и газы(вода , эмульсии, олеиновая кислота , углекислый газ, графит и др.)
    • Ультразвук : Ультразвуковые вибрации сверла увеличивают производительность и дробление стружки.
    • Подогрев: Подогревом ослабляют твёрдость труднообрабатываемых материалов.
    • Удар : При ударно-поворотном сверлении (бурении) камня, бетона .

    Виды сверления

    • Сверление цилиндрических отверстий.
    • Сверление многогранных и овальных отверстий.
    • Рассверливание цилиндрических отверстий (увеличение диаметра).
    • Центровка: высверливание небольшого количества материала для позиционирования другого сверла (например, при глубоком сверлении) или для фиксирования детали задним центром.
    • Глубокое сверление: Сверление на глубину 5 и более диаметров отверстия. Часто требует специальных технических решений.

    Охлаждение при сверлении

    Большой проблемой при сверлении является сильный разогрев сверла и обрабатываемого материала из-за трения. В месте сверления температура может достигать нескольких сотен градусов Цельсия.

    При сильном разогреве материал может начать гореть или плавиться. Многие стали при сильном разогреве теряют твердость, в результате режущие кромки стальных свёрл быстрее изнашиваются, из-за чего трение только усиливается, что в итоге приводит к быстрому выходу свёрл из строя и резкому снижению эффективности сверления. Аналогично, при использовании твердосплавного сверла или сверла со сменными пластинами, твердый сплав при перегреве теряет твердость, и начинается пластическая деформация режущей кромки, что является нежелательным типом износа.

    Для борьбы с разогревом применяют охлаждение с помощью охлаждающих эмульсий или смазочно-охлаждающих жидкостей (СОЖ). При сверлении на станке часто возможно организовать подачу жидкости непосредственно к месту сверления. Подача охлаждающей жидкости также может осуществляться через каналы в самом сверле, если это позволяет станок. Такие каналы делаются во многих цельных сверлах и во всех корпусных. Внутренняя подача СОЖ необходима при сверлении глубоких отверстий (глубиной 10 и более диаметров). При этом важно не столько охлаждение, сколько удаление стружки. Давление СОЖ вымывает стружку из зоны резания, что позволяет избежать её пакетирования или повторного резания. Если в таком случае невозможно организовать подачу СОЖ, то приходится осуществлять сверление с периодическими выводами сверла для удаления стружки. Такой метод крайне непроизводителен.

    При сверлении ручным инструментом сверление время от времени прерывают и окунают сверло в ёмкость с жидкостью.

    Литература

    • Металлорежущие инструменты. Учебник (гриф УМО). Томск: Изд-во Томского ун-та. 2003. 392 с. (250 экз.).
    • Кожевников Д. В., Кирсанов С. В. Резание материалов. Учебник (гриф УМО). М.: Машиностроение. 2007. 304 с. (2000 экз.).

    См. также

    Ссылки