Выключатели

§16. Магнитное поле и его характеристики и свойства

§16. Магнитное поле и его характеристики и свойства

Наряду с электризующимися трением кусочками янтаря постоянные магниты были для древних людей первым материальным свидетельством электромагнитных явлений (молнии на заре истории определенно относили к сфере проявления нематериальных сил). Объяснение природы ферромагнетизма всегда занимало пытливые умы ученых, однако и в настоящее время физическая природа постоянной намагниченности некоторых веществ, как природных, так и искусственно созданных, еще не до конца раскрыта, оставляя немалое поле деятельности для современных и будущих исследователей.

Традиционные материалы для постоянных магнитов

Они стали активно использоваться в промышленности, начиная с 1940 года с появления сплава алнико (AlNiCo). До этого постоянные магниты из различных сортов стали применялись лишь в компасах и магнето. Алнико сделал возможным замену на них электромагнитов и применение их в таких устройствах, как двигатели, генераторы и громкоговорители.

Это их проникновение в нашу повседневную жизнь получило новый импульс с созданием ферритовых магнитов, и с тех пор постоянные магниты стали обычным явлением.

Революция в магнитных материалах началась около 1970 года, с созданием самарий-кобальтового семейства жестких магнитных материалов с доселе невиданной плотностью магнитной энергии. Затем было открыто новое поколение редкоземельных магнитов на основе неодима, железа и бора с гораздо более высокой плотностью магнитной энергии, чем у самарий-кобальтовых (SmCo) и с ожидаемо низкой стоимостью. Эти две семьи редкоземельных магнитов имеют такие высокие плотности энергии, что они не только могут заменить электромагниты, но использоваться в областях, недоступных для них. Примерами могут служить крошечный шаговый двигатель на постоянных магнитах в наручных часах и звуковые преобразователи в наушниках типа Walkman.

Постепенное улучшение магнитных свойств материалов представлено на диаграмме ниже.

Неодимовые постоянные магниты

Они представляют новейшее и наиболее значительное достижение в этой области на протяжении последних десятилетий. Впервые об их открытии было объявлено почти одновременно в конце 1983 года специалистами по металлам компаний Sumitomo и General Motors. Они основаны на интерметаллическом соединении NdFeB: сплаве неодима, железа и бора. Из них неодим является редкоземельным элементом, добываемым из минерала моназита.

Огромный интерес, которые вызвали эти постоянные магниты, возникает потому, что в первый раз был получен новый магнитный материал, который не только сильнее, чем у предыдущего поколения, но является более экономичным. Он состоит в основном из железа, которое намного дешевле, чем кобальт, и из неодима, являющегося одним из наиболее распространенных редкоземельных материалов, запасы которого на Земле больше, чем свинца. В главных редкоземельных минералах моназите и бастанезите содержится в пять-десять раз больше неодима, чем самария.

Физический механизм постоянной намагниченности

Чтобы объяснить функционирование постоянного магнита, мы должны заглянуть внутрь его до атомных масштабов. Каждый атом имеет набор спинов своих электронов, которые вместе формируют его магнитный момент. Для наших целей мы можем рассматривать каждый атом как небольшой полосовой магнит. Когда постоянный магнитразмагничен (либо путем нагрева его до высокой температуры, либо внешним магнитным полем), каждый атомный момент ориентирован случайным образом (см. рис. ниже) и никакой регулярности не наблюдается.

Когда же он намагничен в сильном магнитном поле, все атомные моменты ориентируются в направлении поля и как бы сцепляются «в замок» друг с другом (см. рис. ниже). Это сцепление позволяет сохранить поле постоянного магнита при удалении внешнего поля, а также сопротивляться размагничиванию при изменении его направления. Мерой силы сцепления атомных моментов является величина коэрцитивной силы магнита. Подробнее об этом позже.

При более глубоком изложении механизма намагничивания оперируют не понятиями атомных моментов, а используют представления о миниатюрных (порядка 0,001 см) областях внутри магнита, изначально обладающих постоянной намагниченностью, но ориентированных при отсутствии внешнего поля случайным образом, так что строгий читатель при желании может отнести вышеизложенный физический механизм не к магниту в целом. а к отдельному его домену.

Индукция и намагниченность

Атомные моменты суммируются и образуют магнитный момент всего постоянного магнита, а его намагниченность M показывает величину этого момента на единицу объема. Магнитная индукция B показывает, что постоянный магнит является результатом внешнего магнитного усилия (напряженности поля) H, прикладываемого при первичном намагничивании, а также внутренней намагниченности M, обусловленной ориентацией атомных (или доменных) моментов. Ее величина в общем случае задаётся формулой:

B = µ 0 (H + M),

где µ 0 является константой.

В постоянном кольцевом и однородном магните напряженность поля H внутри него (при отсутствии внешнего поля) равна нулю, так как по закону полного тока интеграл от нее вдоль любой окружности внутри такого кольцевого сердечника равен:

H∙2πR = iw=0 , откуда H=0.

Следовательно, намагниченность в кольцевом магните:

В незамкнутом магните, например, в том же кольцевом, но с воздушным зазором шириной l заз в сердечнике длиной l сер, при отсутствии внешнего поля и одинаковой индукции B внутри сердечника и в зазоре по закону полного тока получим:

H сер l сер + (1/ µ 0)Bl заз = iw=0.

Поскольку B = µ 0 (H сер + М сер), то, подставляя ее выражение в предыдущее, получим:

H сер (l сер + l заз) + М сер l заз =0,

H сер = ─ М сер l заз (l сер + l заз).

В воздушном зазоре:

H заз = B/µ 0 ,

причем B определяется по заданной М сер и найденной H сер.

Кривая намагничивания

Начиная с ненамагниченного состояния, когда Н увеличивается от нуля, вследствие ориентации всех атомных моментов по направлению внешнего поля быстро увеличиваются М и B, изменяясь вдоль участка «а» основной кривой намагничивания (см. рисунок ниже).

Когда выровнены все атомные моменты, М приходит к своему значению насыщения, и дальнейшее увеличение В происходит исключительно из-за приложенного поля (участок b основной кривой на рис. ниже). При уменьшении внешнего поля до нуля индукция В уменьшается не по первоначальному пути, а по участку «c» из-за сцепления атомных моментов, стремящегося сохранить их в том же направлении. Кривая намагничивания начинает описывать так называемую петлю гистерезиса. Когда Н (внешнее поле) приближается к нулю, то индукция приближается к остаточной величине, определяемой только атомными моментами:

В r = μ 0 (0 + М г).

После того как направление H изменяется, Н и М действуют в противоположных направлениях, и B уменьшается (участок кривой «d» на рис.). Значение поля, при котором В уменьшается до нуля, называется коэрцитивной силой магнита B H C . Когда величина приложенного поля является достаточно большой, чтобы сломать сцепление атомных моментов, они ориентируются в новом направлением поля, а направление M меняется на противоположное. Значение поля, при котором это происходит, называется внутренней коэрцитивной силой постоянного магнита М Н C . Итак, есть две разных, но связанных коэрцитивных силы, связанных с постоянным магнитом.

На рисунке ниже показаны основные кривые размагничивания различных материалов для постоянных магнитов.

Из него видно, что наибольшей остаточной индукцией B r и коэрцитивной силой (как полной, так и внутренней, т. е. определяемой без учета напряженности H, только по намагниченности M) обладают именно NdFeB-магниты.

Поверхностные (амперовские) токи

Магнитные поля постоянных магнитов можно рассматривать как поля некоторых связанных с ними токов, протекающих по их поверхностям. Эти токи называют амперовскими. В обычном смысле слова токи внутри постоянных магнитов отсутствуют. Однако, сравнивая магнитные поля постоянных магнитов и поля токов в катушках, французский физик Ампер предположил, что намагниченность вещества можно объяснить протеканием микроскопических токов, образующих микроскопические же замкнутые контуры. И действительно, ведь аналогия между полем соленоида и длинного цилиндрического магнита почти полная: имеется северный и южный полюс постоянного магнита и такие же полюсы у соленоида, а картины силовых линий их полей также очень похожи (см. рисунок ниже).

Есть ли токи внутри магнита?

Представим себе, что весь объем некоторого стержневого постоянного магнита (с произвольной формой поперечного сечения) заполнен микроскопическими амперовскими токами. Поперечный разрез магнита с такими токами показан на рисунке ниже.

Каждый из них обладает магнитным моментом. При одинаковой ориентации их по направлению внешнего поля они образуют результирующий магнитный момент, отличный от нуля. Он и определяет существование магнитного поля при кажущемся отсутствии упорядоченного движения зарядов, при отсутствии тока через любое сечение магнита. Легко также понять, что внутри него токи смежных (соприкасающихся) контуров компенсируются. Нескомпенсированными оказываются только токи на поверхности тела, образующие поверхностный ток постоянного магнита. Плотность его оказывается равной намагниченности M.

Как избавиться от подвижных контактов

Известна проблема создания бесконтактной синхронной машины. Традиционная ее конструкция с электромагнитным возбуждением от полюсов ротора с катушками предполагает подвод тока к ним через подвижные контакты - контактные кольца со щетками. Недостатки такого технического решения общеизвестны: это и трудности в обслуживании, и низкая надежность, и большие потери в подвижных контактах, особенно если речь идет о мощных турбо- и гидрогенераторах, в цепях возбуждения которых расходуется немалая электрическая мощность.

Если сделать такой генератор на постоянных магнитах, то проблема контакта сразу же уходит. Правда, появляется проблема надежного крепления магнитов на вращающемся роторе. Здесь может пригодиться опыт, накопленный в тракторостроении. Там уже давно применяется индукторный генератор на постоянных магнитах, расположенных в пазах ротора, залитых легкоплавким сплавом.

Двигатель на постоянных магнитах

В последние десятилетия широкое распространение получили вентильные двигатели постоянного тока. Такой агрегат представляет собой собственно электродвигатель и электронный коммутатор его обмотки якоря, выполняющий функции коллектора. Электродвигатель представляет собой синхронный двигатель на постоянных магнитах, расположенных на роторе, как и на рис. выше, с неподвижной обмоткой якоря на статоре. Электронный коммутатор схемотехнически представляет собой инвертор постоянного напряжения (или тока) питающей сети.

Основным преимуществом такого двигателя является его бесконтактность. Специфическим его элементом является фото-, индукционный или холловский датчик положения ротора, управляющий работой инвертора.

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля . Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец - южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные - притягиваются (рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса , т. е. будет постоянным магнитом (рис. 2 ). Оба полюса - северный и южный, - неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются - у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

Опыт Эрстэда. Магнитное поле тока

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты . Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему (рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток (рис. 5 ). Направление линий определяется правилом правого винта:

Если винт вращать по направлению линий поля, он будет двигаться в направлении тока в проводнике .

Силовой характеристикой магнитного поля является вектор магнитной индукции B . В каждой точке он направлен по касательной к линии поля. Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке. В отличие от электрического, линии магнитного поля замкнуты, что связано с отсутствием в природе «магнитных зарядов».

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид - катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита (рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления - к наблюдателю - обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа (рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта (рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным - левый.

Магнитное поле внутри соленоида является однородным - вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B .

Направление силы определяется правилом левой руки :

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь - перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник (рис. 9 ).

Следует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Отношение не зависит от свойств проводника и характеризует само магнитное поле.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

В системе СИ единицей индукции магнитного поля служит тесла (Тл):

Магнитное поле. Таблицы, схемы, формулы

(Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)

Источниками постоянных магнитных полей (ПМП) на рабо­чих местах являются постоянные магниты, электромагниты, силь­ноточные системы постоянного тока (линии передачи постоян­ного тока, электролитные ванны и др.).

Постоянные магниты и электромагниты широко используются в приборостроении, в магнитных шайбах подъемных кранов, в магнитных сепараторах, в устройствах для магнитной обработки воды, в магнитогидродинамических генераторах (МГД), установ­ках ядерного магнитного резонанса (ЯМР) и электронного пара­магнитного резонанса (ЭПР), а также в физиотерапевтической практике.

Основными физическими параметрами, характеризующими ПМП, являются напряженность поля (Н), магнитный поток (Ф) и магнитная индукция (В). В системе СИ единицей измерения напряженности магнитного поля является ампер на метр (А/м), магнитного потока - Вебер (Вб ), плотности магнитного потока (магнитной индукции) - тесла (Тл ).

Выявлены изменения в состоянии здоровья лиц, работающих с источниками ПМП. Чаще всего эти изменения проявляются в форме вегетодистоний, астеновегетативного и периферического вазовегетативного синдромов или их сочетания.

Согласно действующему в нашей стране нормативу («Предель­но допустимые уровни воздействия постоянных магнитных полей при работе с магнитными устройствами и магнитными материа­лами» № 1742-77), напряженность ПМП на рабочих местах не должна превышать 8 кА/м (10 мТл). Допустимые уровни ПМП, рекомендованные Международным комитетом по неионизирующим излучениям (1991) дифференцированы по контингенту, ме­сту воздействия и времени работы. Для профессионалов: 0,2 Тл - при воздействии полный рабочий день (8 ч); 2 Тл - при кратков­ременном воздействии на тело; 5 Тл - при кратковременном воз­действии на руки. Для населения уровень непрерывного воздей­ствия ПМП не должен превышать 0,01 Тл.

Источники ЭМИ радиочастотного диапазона широко исполь­зуются в самых различных отраслях народного хозяйства. Они при­меняются для передачи информации на расстоянии (радиовеща­ние, радиотелефонная связь, телевидение, радиолокация и др.). В промышленности ЭМИ радиоволнового диапазона используют­ся для индукционного и диэлектрического нагрева материалов (за­калка, плавка, напайка, сварка, напыление металлов, нагрев внут­ренних металлических частей электровакуумных приборов в про­цессе откачки, сушка древесины, нагрев пластмасс, склейка пластикатов, термообработка пищевых продуктов и др.). ЭМИ широ­ко применяются в научных исследованиях (радиоспектроскопия, радиоастрономия) и медицине (физиотерапия, хирургия, онко­логия). В ряде случаев ЭМИ возникают как побочный неиспользуемый фактор, например, вблизи воздушных линий электропере­дачи (ВЛ), трансформаторных подстанций, электроприборов, в том числе бытового назначения. Основными источниками излуче­ния ЭМП РЧ в окружающую среду служат антенные системы радиолокационных станций (РЛС), радио- и телерадиостанций, включая системы мобильной радиосвязи и воздушные линии элек­тропередачи.



Организм человека и животных весьма чувствителен к воздей­ствию ЭМП РЧ.

К критическим органам и системам относятся: центральная нервная система, глаза, гонады, а по мнению некоторых авторов, и кроветворная система. Биологическое действие этих излучений зависит от длины волны (или частоты излучения), режима генерации (непрерывный, импульсный) и условий воздействия на организм (постоянное, прерывистое; общее, мест­ное; интенсивность; длительность). Отмечено, что биологическая активность убывает с увеличением длины волны (или снижением частоты) излучения. Наиболее активными являются санти-, деци и метровый диапазоны радиоволн. Поражения, вызываемые ЭМИ РЧ, могут быть острыми и хроническими. Острые возникают при действии значительных тепловых интенсивностей излучения. Они встречаются крайне редко - при авариях или грубых нарушениях техники безопасности на РЛС. Для профессиональных условий более характерны хронические поражения, выявляемые, как правило, после нескольких лет работы с источниками ЭМИ микро­волнового диапазона.

Основными нормативными документами, регламентирующи­ми допустимые уровни воздействия ЭМИ РЧ, являются: ГОСТ 12.1.006 - 84 «ССБТ. Электромагнитные поля радиочастот.

Допус­тимые уровни» и СанПиН 2.2.4/2.1.8.055-96 «Электромагнитные излучения радиочастотного диапазона». В них нормируется энер­гетическая экспозиция (ЭЭ) для электрического (Е) и магнитно­го (Н) полей, а также плотность потока энергии (ППЭ) за рабо­чий день (табл. 5.11).

Таблица 5.11.

Предельно- допустимые уровни (ПДУ) за рабочий день для работающих

С ЭМИ РЧ

Параметр Диапазоны частот, МГц
Наименование Единица измерения 0,003-3 3-30 30-300 300-300000
ЭЭ Е (В/м) 2 *ч -
ээ н (А/м) 2 *ч - - -
ппэ (мкВт/см 2)* ч - - -

Для всего населения при непрерывном воздействии установле­ны следующие ПДУ напряженности электрического поля, В/м:

Диапазон частот МГц

0,03-0,30........................................................... 25

0,3-3,0.............................................................. 15

3-30.................................................................. 10

30-300............................................................... 3*

300-300000...................................................... 10

* Кроме телевизионных станций, ПДУ для которых дифференцированы в

зависимости от частоты от 2,5 до 5 В/м.

К числу аппаратов, работающих в области радиочастотного диапазона, относятся и видеодисплеи терминалов персональных компьютеров. В наши дни персональные компьютеры (ПК) нахо­дят широкое применение на производстве, в научных исследова­ниях, в лечебно-профилактических учреждениях, в быту, в ву­зах, школах и даже в детских садах. При использовании на произ­водстве ПК в зависимости от технологических задач могут воз­действовать на организм человека в течение длительного времени (в пределах рабочего дня). В бытовых условиях время использова­ния ПК вообще не поддается контролю.

Для видеодисплейных терминалов ПК (ВДТ) установлены сле­дующие ПДУ ЭМИ (СанПиН 2.2.2.542-96 «Гигиенические требо­вания к видеодисплейным терминалам, персональным электрон­но-вычислительным машинам и организации работы») - табл. 5.12.

Таблица 5.12. Предельно допустимые уровни ЭМИ, создаваемых ВДТ

Что же такое постоянный магнит? Постоянным магнитом называется тело, способное долгое время сохранять намагничивание. В результате многократных исследований, проведенных многочисленных опытов, мы можем сказать, что только три вещества на Земле могут быть постоянными магнитами (рис. 1).

Рис. 1. Постоянные магниты. ()

Только эти три вещества и их сплавы могут быть постоянными магнитами, только они могут намагничиваться и сохранять такое состояние долгое время.

Постоянные магниты использовались очень давно, и в первую очередь это приборы ориентирования в пространстве - первый компас был изобретен в Китае для того, чтобы ориентироваться в пустыне. На сегодняшний день о магнитных стрелках, о постоянных магнитах уже никто не спорит, их используют повсеместно в телефонах и в радиопередатчиках и просто в различных электротехнических изделиях. Они могут быть разными: есть полосовые магниты (рис. 2)

Рис. 2. Полосовой магнит ()

А есть магниты, которые называются дугообразными или подковообразными (рис. 3)

Рис. 3. Дугообразный магнит ()

Исследование постоянных магнитов связано исключительно с их взаимодействием. Магнитное поле может создаваться электрическим током и постоянным магнитом, поэтому первое, что было проведено, - это исследования с магнитными стрелками. Если поднести магнит к стрелке, то мы увидим взаимодействие - одноименные полюса будут отталкиваться, а разноименные будут притягиваться. Такое взаимодействие наблюдается со всеми магнитами.

Расположим вдоль полосового магнита маленькие магнитные стрелки (Рис. 4), южный полюс будет взаимодействовать с северным, а северный будет притягивать южный. Магнитные стрелки будут располагаться вдоль линии магнитного поля. Принято считать, что магнитные линии направлены вне постоянного магнита от северного полюса к южному, а внутри магнита от южного полюса к северному. Таким образом, магнитные линии замкнуты точно так же, как и у электрического тока, это концентрические окружности, они замыкаются внутри самого магнита. Получается, что вне магнита магнитное поле направлено от севера к югу, а внутри магнита от юга к северу.

Рис. 4. Лини магнитного поля полосового магнита ()

Для того чтобы пронаблюдать форму магнитного поля полосового магнита, форму магнитного поля дугообразного магнита, воспользуемся следующими приборами или деталями. Возьмем прозрачную пластину, железные опилки и проведем эксперимент. Посыплем железными опилками пластину, находящуюся на полосовом магните (рис. 5):

Рис. 5. Форма магнитного поля полосового магнита ()

Мы видим, что линии магнитного поля выходят из северного полюса и входят в южный полюс, по густоте линий можно судить о полюсах магнита, где линии гуще - там находятся полюса магнита (рис. 6).

Рис. 6. Форма магнитного поля дугообразного магнита ()

Аналогичный опыт проведем с дугообразным магнитом. Мы видим, что магнитные линии начинаются на северном и заканчиваются на южном полюсе по всему магниту.

Нам уже известно, что магнитное поле образуется только вокруг магнитов и электрических токов. Как же нам определить магнитное поле Земли? Любая стрелка, любой компас в магнитном поле Земли строго ориентированы. Раз магнитная стрелка строго ориентируется в пространстве, следовательно, на нее действует магнитное поле, и это магнитное поле Земли. Можно сделать вывод о том, что наша Земля - это большой магнит (Рис. 7) и, соответственно, этот магнит создает в пространстве достаточно мощное магнитное поле. Когда мы смотрим на стрелку магнитного компаса, мы знаем, что красная стрелочка показывает на юг, а синяя на север. Как же располагаются магнитные полюсы Земли? В этом случае необходимо помнить о том, что на северном географическом полюсе Земли располагается южный магнитный полюс и на южном географическом полюсе располагается северный магнитный полюс Земли. Если рассмотреть Землю как тело, находящееся в пространстве, то можно говорить о том, что, когда мы идем по компасу на север, мы придем на южный магнитный полюс, а когда идем на юг - мы попадем на северный магнитный полюс. На экваторе стрелочка компаса будет располагаться практически горизонтально относительно поверхности Земли, и чем ближе мы будем находиться к полюсам, тем вертикальнее будет расположение стрелки. Магнитное поле Земли могло изменяться, были времена, когда полюсы менялись относительно друг друга, то есть южный был там, где северный, и наоборот. По предположению ученых, это было предвестником больших катастроф на Земле. Последние несколько десятков тысячелетий этого не наблюдалось.

Рис. 7. Магнитное поле Земли ()

Магнитные и географические полюса не совпадают. Внутри самой Земли тоже существует магнитное поле, и, как в постоянном магните, оно направлено от южного магнитного полюса к северному.

Откуда же берется магнитное поле в постоянных магнитах? Ответ на этот вопрос дал французский ученый Андре-Мари Ампер. Он высказал идею о том, что магнитное поле постоянных магнитов объясняется элементарными, простейшими токами, протекающими внутри постоянных магнитов. Эти простейшие элементарные токи определенным образом усиливают друг друга и создают магнитное поле. Отрицательно заряженная частица - электрон - движется вокруг ядра атома, это движение можно считать направленным, и, соответственно, вокруг такого движущегося заряда создается магнитное поле. Внутри любого тела количество атомов и электронов просто огромно, соответственно, все эти элементарные токи принимают упорядоченное направление, и мы получаем достаточно значительное магнитное поле. То же самое мы можем сказать о Земле, то есть магнитное поле Земли очень напоминает магнитное поле постоянного магнита. А постоянный магнит - это достаточно яркая характеристика любого проявления магнитного поля.

Кроме существования магнитных бурь, существуют еще магнитные аномалии. Они связаны с солнечным магнитным полем. Когда на Солнце происходят достаточно мощные взрывы или выбросы, они происходят не без помощи проявления магнитного поля Солнца. Это эхо достигает Земли и сказывается на ее магнитном поле, в результате мы с вами наблюдаем магнитные бури. Магнитные аномалии связаны с залежами железных руд в Земле, огромные залежи в течение долгого времени намагничиваются магнитным полем Земли, и все тела, находящиеся вокруг, будут испытывать действие магнитного поля со стороны этой аномалии, стрелки компасов будут показывать неправильное направление.

На следующем уроке мы с вами рассмотрим другие явления, связанные с магнитными действиями.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Class-fizika.narod.ru ().
  2. Class-fizika.narod.ru ().
  3. Files.school-collection.edu.ru ().

Домашнее задание

  1. Какой из концов стрелки компаса притягивается к северному полюсу Земли?
  2. В каком месте Земли нельзя верить магнитной стрелке?
  3. О чем говорит густота линий на магните?

Если через железо пропустить электрический ток , то железо на время прохождения тока приобретет магнитные свойства. Некоторые же вещества, например, закаленная сталь и ряд сплавов не теряют магнитных свойств и после отключения тока, в отличие от электромагнитов .

Вот такие тела, которые долго сохраняют намагниченность, называются постоянными магнитами. Постоянные магниты люди сначала научились добывать из природных магнитов – магнитного железняка, а потом уже научились изготавливать и сами из других веществ, искусственно намагничивая их.

Магнитное поле постоянного магнита

Постоянные магниты имеют два полюса, названные северным и южным магнитными полями. Между этими полюсами магнитное поле располагается в виде замкнутых линий, направленных от северного полюса к южному. Магнитное поле постоянного магнита действует на металлические предметы и другие магниты.

Если поднести два магнита друг к другу одноименными полюсами, то они будут отталкиваться друг от друга. А если разноименными, то притягиваться. Магнитные линии разноименных зарядов при этом как бы замкнутся друг на друге.

Если же в поле магнита попадает металлический предмет, то магнит намагничивает его, и металлический предмет сам становится магнитом. Он притягивается своим противоположным полюсом к магниту, поэтому металлические тела как бы «прилипают» к магнитам.

Магнитное поле Земли и магнитные бури

Магнитным полем обладают не только магниты, но и наша родная планета. Магнитное поле Земли обусловливает действие компасов, которые с древности использовали люди для ориентирования на местности. Земля, как и любой другой магнит, имеет два полюса – северный и южный. Магнитные полюса Земли находятся недалеко от географических полюсов.

Силовые линии магнитного поля Земли «выходят» из северного полюса Земли и «входят» в месте расположения южного полюса. Существование магнитного поля Земли физика подтверждает экспериментально, но объяснить полноценно пока не может. Считается, что причиной существования земного магнетизма являются токи, текущие внутри Земли и в атмосфере.

Время от времени возникают так называемые «магнитные бури». Вследствие солнечной активности и выбросов Солнцем потоков заряженных частиц, магнитное поле Земли кратковременно меняется. В связи с этим может странным образом вести себя компас, нарушается передача различных электромагнитных сигналов в атмосфере.

Подобные бури могут вызывать неприятные ощущения у некоторых чувствительных людей, так как нарушение нормального земного магнетизма вызывает незначительные изменения в довольно тонком инструменте – нашем организме. Считается, что с помощью земного магнетизма находят дорогу домой перелетные птицы и мигрирующие животные.

В некоторых местах Земли существуют области, где компас устойчиво не показывает на север. Такие места называются аномалиями. Объясняются подобные аномалии чаще всего огромными залежами железной руды на небольшой глубине, которые искажают естественное магнитное поле Земли.