В квартире

Виды конструкционных материалов. Материаловедение

Виды конструкционных материалов. Материаловедение

Новые уловки телефонных мошенников, на которые может попасться каждый

Конструкционные материалы

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ - основные виды материалов, из которых изготовляются машины, оборудование, приборы, сооружаются каркасы зданий, мосты и другие конструкции и которые несут основную силовую нагрузку при их эксплуатации.

Конструкционные материалы классифицируются по широкому кругу признаков: по применяемости - в машиностроении, в строительстве; по природе образования - металлические, неметаллические, композиционные; по реакции на внешние воздействия - горючие, коррозионно-устойчивые, жаростойкие, хладостойкие; по свойствам, проявляемым при различных методах обработки,- пластичные, тугоплавкие, свариваемые, склонные к образованию трещин, закаливаемые и т. д.; по способам получения - сплавы, прессованные, катаные, тканые, формованные, пленки.

Важными показателями конструкционных материалов являются их прочностные качества - сопротивление сжатию, растяжению, работа на изгиб, выносливость при вибрационных нагрузках, а также ряд специальных свойств, учитываемых при проектировании машин, оборудования, строительных сооружений. Среди них - легкость при определенных прочностных качествах, сопротивляемость износу, электро- и теплопроводность, способность пропускать газы и др.

При выборе конструкционных материалов в процессе проектирования изделий используются их технико-экономические параметры - стоимость, коэффициент использования и трудоемкость в разных условиях обработки и т. п. В современных условиях, когда на первый план выдвинута задача кардинального повышения технического уровня и качества продукции, особенно машин и оборудования, всемерной экономии материальных ресурсов, внедрения ресурсосберегающих технологий, снижения массы конструкций при повышении их надежности, требования к качественным показателям конструкционные материалы резко возросли и усложнились.

Например, необходимы конструкционные материалы легкие и в то же время жаропрочные, сохраняющие прочность как при высоких, так и при низких температурах, пластичные и хорошо выдерживающие ударные нагрузки и т. п. Такие требования обусловили появление ряда новых конструкционных материалов. Перспективными являются сплавы на основе алюминия, титана и особенно магния.

С повышением требований к прочностным свойствам, а также к сохранению этих свойств в различных экстремальных условиях связано новое направление получения конструкционных материалов, а именно синтезирование их из элементов, имеющих предельные значения свойств - предельно прочные, тугоплавкие, термостабильные и т. д. Такие материалы составляют новый класс композиционных конструкционных материалов. В них используются различные волокна, нити, проволоки, нитевидные кристаллы, гранулы, дисперсные высокотвердые и тугоплавкие соединения, окислы, карбиды, которые составляют либо армировку, либо наполнитель композиционного конструкционного материала.

Подобные конструкционные материалы по определенным показателям могут превышать все известные исходные материалы. Новые прочностные качества конструкционных материалов получаются путем специальной обработки металлов, газотермического напыления металлических порошков и др.

Научно-технический прогресс в машиностроении и строительстве требует дальнейшего улучшения качества всех видов конструкционных материалов и развития технологии их обработки. XXVII съезд КПСС подчеркнул необходимость улучшить структуру и качество конструкционных материалов, исходя из задач создания новой, прогрессивной техники и реализации ресурсосберегающего направления в развитии экономики.

Предусматривается ускоренное развитие производства экономичных видов металлопродукции, синтетических и других прогрессивных материалов, расширение номенклатуры продукции, улучшение технико-экономических и повышение прочностных и антикоррозийных характеристик конструкционных материалов. Решение этой задачи имеет особенно важное значение в связи с растущим влиянием конструкционных материалов на ускорение научно-технического прогресса.

Конструкционные материалы, материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами конструкционных материалов являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). В связи с тем, что детали современных механизмов работают при сложных знакопеременных нагрузках, повышенных температурах и др., к основным критериям качества конструкционных материалов относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс. Основные конструкционные материалы - металлические сплавы на основе железа (чугуны и стали), меди (бронзы и латуни), свинца и олова.

Сплавы на основе железа. Чугуны. Стали. Классификация сталей, марки сталей. Применение в механических устройствах (валы, зубчатые колеса, крепеж).

Чугуны

Это сплавы железа с углеродом, содержащие постоянные примеси марганца, кремния, фосфора и серы, а также при необходимости легирующие элементы.

В зависимости от структуры и состояния, в котором находится углерод (свободный или химически связанный), различают серые, белые и ковкие чугуны. Чугуны также классифицируют в зависимости от назначения – на конструкционные и со специальными свойствами; и от химсостава – на легированные и нелегированные.

Как конструкционный материал наиболее широко применяются серые чугуны, в которых весь углерод находится в свободном состоянии в виде включений графита пластинчатой формы. Они обладают средней прочностью, хорошими литейными и другими технологическими свойствами (жидкотекучестью, малой линейной усадкой, обрабатываемостью резанием), малочувствительны к концентрации переменных напряжений, антифрикционны.

В белых чугунах избыточный углерод, не растворившийся в твердом растворе железа, присутствует в виде карбидов железа. Вследствие низких механических свойств – высокой хрупкости и твердости, плохой обрабатываемости резанием – белые чугуны не применяются в качестве конструкционных материалов.



Ковкий чугун получают из белого путем последующего отжига до распада графита в виде хлопьев. Детали из него могут подвергаться незначительным деформациям. Они обладают меньшей по сравнению с деталями из серого чугуна хрупкостью, но стоят на 30 … 100% дороже.

Высокопрочный чугун характеризуется шаровидной или близкой к ней формой включений графита, которую получают модифицированием жидкого чугуна присадками магния. Шаровидный графит в наименьшей мере ослабляет металлическую основу, что приводит к высоким механическим свойствам. Высокопрочный чугун обладает хорошими литейными и эксплуатационными свойствами.

Стали

Стали – это деформируемые сплавы железа с углеродом и другими элементами.

По химсоставу стали делят на углеродистые и легированные.

По назначению стали делят на конструкционные, инструментальные и с особыми свойствами. Наиболее

По качеству стали делят на обыкновенные, качественные, высоко и особо высококачественные.

По характеру застывания из жидкого состояния, степени раскисления различают спокойную, полуспокойную и кипящую стали.

Марки углеродистой стали обыкновенного качества обозначаются буквами
Ст (сталь) и цифрами от 0 до 6 , например Ст0 – Ст6 . Цифры соответствуют условному номеру марки в зависимости от химического состава и механических свойств. Чем больше число, тем больше содержание углерода в стали, выше прочность и ниже пластичность. Эти стали делят на три группы – А , Б и В . Сталь группы А имеет гарантированные механические свойства и не подвергается термообработке, в марке стали группа А не указывается . Для стали группы Б гарантируется химический состав, для стали группы В – химический состав и механические свойства.

Степень раскисления обозначается индексами, стоящими справа от номера марки: кп – кипящая, пс – полуспокойная, сп – спокойная. Например, сталь Ст2кп – сталь группы А , кипящая; БСт3пс – сталь группы Б , полуспокойная; ВСт5сп – сталь группы В , спокойная.

Углеродистые качественные стали маркируются двузначными цифрами (08, 10, 15, …, 70) , показывающими среднее содержание углерода в стали в сотых долях процента. Эти стали можно условно разделить на несколько групп. Стали 08, 10 обладают высокой пластичностью, хорошо штампуются и свариваются. Низкоуглеродистые стали 15, 20, 25 хорошо свариваются и обрабатываются резанием, после цементации и термообработки обладают повышенной износостойкостью.

Углеродистые инструментальные стали маркируют буквой У и цифрами, которые соответствуют содержанию углерода в десятых долях процента, например, сталь марки У9 содержит в среднем 0,9% углерода.

Маркируют легированные стали буквами и цифрами, указывающими ее химический состав. Первые цифры марок перед буквами указывают содержание углерода для конструкционных сталей в сотых долях процента (две цифры), а для инструментальных и специальных сталей – в десятых долях. Далее обозначение состоит из букв, указывающих, какие легирующие элементы входят в состав стали, и стоящих непосредственно за каждой буквой цифр, характеризующих среднее содержание легирующего элемента в процентах. Цифры за буквой не ставятся при содержании легирующего элемента менее 1,5%. Легирующие элементы обозначаются следующими буквами: Т – титан, С – кремний, Г – марганец, Х – хром, Н – никель, М – молибден, В – вольфрам и т.п. Например, нержавеющая сталь Х18Н10Т содержит 18% хрома, 10% никеля и до 1,5% титана; конструкционная легированная сталь 30ХГС содержит 0,30% углерода, а хрома, марганца и кремния до 1,5% каждого; инструментальная легированная сталь 9ХС содержит 0,9% углерода, а хрома и кремния до 1,5% каждого. В сталях 30ХГС и 9ХС кремния больше 0,8%, марганца в стали 30ХГС больше 1%.

Обозначения марок некоторых специальных сталей включают впереди букву, указывающую на назначение стали. Например, буква Ш –шарикоподшипниковая сталь (ШХ15 – с содержанием хрома ≈ 1,5%), Э – электротехническая и т.д.

Чаще всего в качестве материалов для валов и осей применяют следующие углеродистые и легированные стали: качественные стали 40, 45, 50 , сталь 40Х – для валов с термообработкой; стали 20, 20Х – для быстроходных валов на подшипниках скольжения с поверхностной цементацией цапф; углеродистые стали обыкновенного качества Ст4, Ст5 – для неответственных валов без термообработки; сталь Х18Н10Т – для коррозионно-стойких, немагнитных валов.

При изготовлении цилиндрических и конических колес основным материалом являются термически обрабатываемые стали. При окружных скоростях зубьев до 3 м/с применяют качественные стали 20, 30, 35 , а при более высоких окружных скоростях – стали 45, 50 , инструментальные стали У8А, У10А и легированные стали 20Х, 40Х, 40ХН, 30ХГСА, 12ХН3А с соответствующей термообработкой (нормализацией, закалкой, улучшением – закалкой с высоким отпуском). Рекомендуется твердость зубьев шестерни (они более нагружены) выбирать на (20 … 50)НВ больше твердости зубьев колеса. Поэтому материал шестерни стараются брать более прочным, чем материал для колес.

Болты, винты, гайки изготавливают из углеродистых и легированных сталей. Крепежные детали общего применения изготавливаются чаще всего из стали марок Ст3, Ст4, Ст5 без последующей термообработки. Более ответственные детали изготавливаются из сталей 35, 45, 40Х, 40ХН с поверхностной или общей термообработкой. Мелкие винты делают из латуни ЛС59-1 , дюралюминия Д1, Д16 . Для защиты поверхности крепежных деталей от коррозии, придания им необходимого цвета применяют цинкование, хромирование, кадмирование. Штифты изготавливают из сталей 45, А12, У8 . Шпонки изготавливают из среднеуглеродистых сталей 40, 45, Ст6 .

Сплавы на основе меди и алюминия. Классификация, обозначение, достоинства и недостатки. Применение сплавов как конструкционных материалов в механических устройствах (упругие элементы, опоры).

Медь и её сплавы

Медь в чистом виде характеризуется высокой электро- и теплопроводностью, хорошей обрабатываемостью давлением, небольшой прочностью и применяется для изготовления токопроводящих деталей. Более широкое применение получили медные сплавы: латунь и бронза. В латунях основным легирующим элементом является цинк, в бронзах – иные элементы.

Легирующие элементы в марках медных сплавов обозначают следующими буквами: А – алюминий, Н – никель, О – олово, Ц – цинк, С – свинец, Ж – железо, Мц – марганец, К – кремний, Ф – фосфор, Т – титан.

Латуни делят на двойные и многокомпонентные сплавы. В двойных содержание цинка может доходить до 50%. Марки таких латуней обозначают буквой Л и цифрой, показывающей содержание меди в процентах, например Л59 . Для улучшения механических, технологических и коррозийных свойств в латуни вводят кроме цинка в небольших количествах различные легирующие элементы (алюминий, кремний, марганец, олово, железо, свинец). В марках многокомпонентных латуней первые цифры указывают среднее содержание меди, а последующие – легирующих элементов. Например, латунь ЛКС80-3-3 содержит 80% меди, по 3% кремния и свинца, а остальное – цинк.

Марки бронз и медно-никелевых сплавов начинаются соответственно с букв Бр и М , а следующие буквы и цифры указывают на наличие легирующих элементов и соответственно их содержание в процентах. Например, бронза БрОЦС 5-5-5 содержит олова, цинка и свинца по 5% или медно-никелевый сплав мельхиор МН19 содержит 19% никеля.

Бронзы называют по основным легирующим элементам: оловянистые, алюминиевые, бериллиевые, кремнистые и т.д. Широко используются оловянистые бронзы, они характеризуются высокой стойкостью против истирания, низким коэффициентом трения скольжения. Все медные сплавы отличаются хорошей стойкостью против атмосферной коррозии.

Латуни и бронзы используют в качестве конструкционных материалов. В частности, латунь Л63, отличающуюся высокой пластичностью, используют для изготовления токопроводящих и конструктивных деталей типа наконечники, втулки, шайбы, а латунь ЛК80-3Л – для изготовления литых деталей. Безоловянистые бронзы БрАЖ9-4 , БРАМц9-2 обладают высокими механическими и антифрикционными свойствами, хорошо обрабатываются, поэтому используются при изготовлении небольших зубчатых и червячных колес, втулок подшипников скольжения, ходовых гаек в винтовых механизмах. Наилучшие антифрикционные свойства имеют оловянистые бронзы.

Особое место занимает при изготовлении упругих элементов из-за высокой прочности и упругости бериллиевая бронза марки БрБ2 . Она немагнитна, стойка к морозу, действию пресной и соленой воды, хорошо сваривается и обрабатывается резанием. Применяют ее для изготовления ответственных деталей типа токоведущих пружинящих контактов, пружин, мембран.

Прочность медных сплавов, особенно латуней, ниже, чем сталей, а коррозионная стойкость много больше. Все латуни и большинство бронз, за исключением алюминиевых, хорошо паяются.

Материал втулки должен быть износостойким, хорошо прирабатываться и иметь в паре с материалом цапфы минимальный коэффициент трения. Для стальных цапф этим условиям удовлетворяют: при высоких давлениях и малых окружных скоростях – бронза БрАЖ9-4 и латунь ЛС59-1 ; при высоких давлениях и скоростях – бронза БрОФ10-1 и БрОЦС-5-5-5 .

Контактные и моментные антимагнитные, коррозионно-стойкие пружины изготавливают из фосфористых БрОФ 6-0,15 , БрОФ 4-0,2 и бериллиевой БрБ2 бронз.

Трубчатые манометрические пружины, сильфоны, мембраны и мембранные коробки изготавливают из латуней Л62 , Л68 , Л80, бронзы БрОФ4–0,2 .

В качестве материала для спиральных пружин используют ленты из бронзы БрОФ 6,5-0,15 .

Металлические мембраны изготавливают из фосфористой и бериллиевой бронз.

Сильфоны изготавливаются цельнотянутыми или паяными из латуни Л80, беррилиевых бронз БрБ2 , БрБ2,5 .

Изготавливают трубчатые пружины из латуни Л80 или бронзы.

Алюминий и его сплавы

Чистый алюминий применяется редко, так как имеет низкую прочность. Чаще при изготовлении деталей применяют сплавы на основе алюминия. Они обладают малой плотностью, высокой электро- и теплопроводностью, коррозийной стойкостью и удельной прочностью. Алюминиевые сплавы в зависимости от технологических свойств делят на деформируемые и литейные.

Наибольшее распространение из деформируемых сплавов получили термически упрочняемые с помощью закалки и старения алюминиево-медно-магниевые и алюминиево-магниевые сплавы. Первые называют дюралюминами (марки Д1, Д16 ), из вторых наиболее часто применяется сплав марки АМг6 . Они обладают высокими механическими свойствами, выпускаются в виде прутков, листов, труб, фасонных профилей. Их применяют для средненагруженных деталей типа стоек, крышек, втулок и т.д. К деформируемым относится высокопрочный алюминиево-магниево-цинковый сплав В95 , который применяют для деталей с повышенными статическими нагрузками (валы, зубчатые колеса).

Деформируемыми являются так называемые спеченные алюминиевые сплавы, отличающиеся очень высокими прочностными свойствами (модуль упругости, пределы прочности σ ut и текучести σ у). Они бывают двух видов: САП (спеченная алюминиевая пудра) и САС (спеченный алюминиевый сплав). САП упрочняется дисперсными частицами окиси алюминия Al 2 O 3 , образуемой в процессе помола алюминиевой пудры в атмосфере азота с регулируемой подачей кислорода. Пудру брикетируют, спекают и подвергают деформации – прессованию, прокатке, ковке. В зависимости от содержания Al 2 O 3 (прочность сплава возрастает при увеличении окиси алюминия до 20 – 22%) различают 4 марки САП (САП-1, САП-2, САП-3 и САП-4) . Сплавы САС содержат до 25% кремния и 5% железа. Их получают распылением жидкого сплава, брикетированием полученных гранул и последующей деформацией. Спеченные алюминиевые сплавы применяют для изготовления высоконагруженных деталей (корпусов блоков, каркасов, стоек и т.д.) и различных профилей.

Из литейных алюминиевых сплавов наибольше распространение получили сплавы алюминия с кремнием – силумины. Они обладают хорошими литейными и средними механическими свойствами. Силумины марок АЛ-2, АЛ-4, АЛ-9 применяют для изготовления литьем корпусов, крышек, кронштейнов и других сложных средненагруженных деталей.

Алюминий и его сплавы трудно паяются.

Конструкционные материалы – это материалы, на основе которых изготавливают детали для машин, инженерных сооружений и конструкций. Они в ходе работы неоднократно будут подвергаться механическим нагрузкам. Такие детали характеризуются большим разнообразием не только форменным, но и эксплуатационным. Их применяют в разных отраслях промышленности, с их помощью делают промышленные печи, детали для автомобилей, их используют в авиационной сфере. Задача производителя выполнить конструкционную деталь, готовую работать при разных температурах, в разных средах и с достаточно интенсивными нагрузками. Главным отличием продукции от остальных дополнений конструкций является их готовность долговременно принимать на себя максимальные нагрузки.

Виды, типы, классификации

Ввиду того что металлы являются практически самыми надежными и долговечными составляющими, конструкционные материалы изготавливаются в большей степени из них. Поэтому КМ классифицируются и распознаются по материалу, из которого были изготовлены. Зачастую из металлов предпочитают сталь из-за ее прочности, надежности и легкости в обработке.

За основу материалов берут сплавы, выполненные из стали, чугуна и железа. Данный вид имеет хорошую прочность, детали и элементы используются чаще других. Также используют сплавы с магнитными и немагнитными формами. Применяются цветные и не цветные сочетания металлов. Зачастую это алюминий, но в некоторых деталях возможно использование сплавов на его основе. Сплавы используют в том случае, когда деталь нужно деформировать и преобразовывать неоднократно. Из цветных также используют медь (бронзу), титан.

Неметаллические материалы стали использоваться гораздо позднее предыдущей группы. Развитие технологий помогло создать более дешевую альтернативу. При этом неметаллы также прочны и надежны. Неметаллические конструкционные материалы изготавливают из древесины, керамики, стекла и разных видов резины.

  • Композиционные материалы

Композиционные материалы состоят из элементов, сильно отличающихся друг от друга по свойствам. Они позволяют создавать конструкции с заранее определенными характеристиками. Материалы применяют для повышения эффективности. Название состава задается материалом матрицы. Такие материалы все имеют основу. Композиты, имеющие металлическую матрицу – металлические, керамическую – керамические и так далее. Они созданы искусственным путем, материал, который получают на выходе, имеет новый комплекс свойств. Композиционные материалы могут включать в себя как металлические, так и с неметаллические составляющие.

Существует еще одна классификация, позволяющая распознать какой именно необходим материал для выполнения выбранной задачи – это разбор на виды по техническим критериям.

  • Материалы с повышенной прочностью;
  • Материалы, имеющие отличительные технологические возможности;
  • Долговечные материалы (элементы, на эксплуатацию которых не влияют механические раздражители);
  • Упругие конструкционные материалы;
  • Неплотные материалы;
  • Материалы устойчивые к природным воздействиям;
  • Материалы, имеющие высокую прочность.

Сферы применения

Использование конструкционных материалов приходится на любую сферу, связанную со строением и производством. Наиболее широкий спектр в использовании получили электроэнергетическая, строительная и машиностроительная отрасли. Именно здесь собрание конструкций является первой частью для созидания большого проекта.

Группы Материалы Сфера применения Мех. свойства
Металлические конструкционные материалы Бронза Для получения фасонных отливок, втулок, подшипников, зубчатых колес и шестерен. Высокая прочность на сжатие и фрикционные нагрузки, не окисляется.
Инструментальная сталь Для изготовления мерительных инструментов, режущих частей и мерных шаблонов. Прочная, тяжелая, не окисляется, водостойкая.
Титан Ответственные детали в сфере авиации, ракетостроения и медицине. Легкий, водостойкий, токопроводящий.
Неметаллические конструкционные материалы Резина Уплотняющие элементы любых конструкций, изоляторы от напряжения, герметизация, гибкие детали в сфере автомобилестроения, медицины, ракетостроения. Низкая плотность при высокой упругости. Устойчивость к химическим и термическим воздействиям.
Пластмассы Широкое применение для изготовления изделий народного хозяйства, автомобилестроения, пищевой, авиационной, строительной промышленностей. Низкая плотность и хорошая прочность. Низкая температура плавления. Устойчивость к химическим воздействиям.
Азбест Производство труб, покрытия домов, огнеупорных тканей и уплотнителей. Низкая прочность при ударе. Устойчивость к природным воздействиям и химическим.
Керамика Изготовление посуды, изделий для туалета и ванной. Изготовление моделей и сувениров. Отдельные виды используются для изготовления ножей и режущего инструмента. Высокая плотность, хрупкость, устойчивость к коррозии. Низкая упругость. Устойчивость к стиранию.
Производство бронежилетов, армирующего слоя автомобильных шин, защитного слоя кабелей, экипировка для космонавтов, мотоциклистов, пожарников. Высокая прочность, гибкость и низкая плотность. Устойчивость к химическому и механическому воздействию.
Композиционные материалы Фанера Мебельное производство, отделка помещений, сборно-щитовые конструкции в строительстве Низкая плотность при высокой прочности. Простота обработки
Бетон Строительство самых разнообразных домов и конструкций. Высокая прочность на сжатие. Большая плотность.
Стеклопластик Изготовление корпусов лодок и катеров. Обвеска автомобиля и диэлектрические детали. Корпуса бассейнов и декоративных изделий. Высокая прочность и низкая плотность. Низкая пластичность.

БЕЛОРУССКИЙ ГОСУДРАСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра инженерной графики

РЕФЕРАТ

На тему:

«Конструкционные материалы»

МИНСК, 2008

Требования к конструкционным материалам

Качество детали и механизма зависит в значительной мере от правильного выбора материала. При выборе материала прежде всего учитывают эксплуатационные, технологические и экономические требования, предъявляемые к детали. Эксплуатационные требования к материалу определяются условиями работы детали в механизме. Для выполнения этих требований учитываются следующие свойства материала: прочность – способность материала сопротивляться разрушению или появлению остаточных деформаций, характеризуется пределом прочности σ u , пределом текучести σ y , условным пределом текучести σ 0,2 , пределом выносливости σ R , твердостью по Бринеллю НВ или Роквеллу HRC э; износостойкость – способность материала сопротивляться износу, характеризуется твердостью НВ, HRC э или допустимым удельным давлением q adm ; жесткость – способность материала сопротивляться упругим деформациям, характеризуется при растяжении (сжатии) и изгибе модулем упругости Е , при кручении – модулем упругости G ; упругость характеризуется пределом упругости σ e и модулем упругости Е ; антифрикционность характеризуется коэффициентом трения скольжения f; плотность ; удельные характеристики – характеристики, приходящиеся на единицу массы; электропроводность , теплопроводность , коррозионная стойкость , жаропрочность и др.

Технологические требования к материалу определяют возможность изготовления деталей с минимальными трудозатратами. При изготовлении деталей методами обработки давлением (штамповка, прессование и т.д.) учитывают пластичность – свойство материала получать без разрушения значительные остаточные деформации; при изготовлении литьем учитывают легкоплавкость и жидкотекучесть – заполняемость без пустот узких полостей различных форм; при изготовлении методами механической обработки учитывают обрабатываемость резанием . К технологическим требованиям относят также термообрабатываемость – способность материала изменять механические свойства при термической (закалка, отпуск, отжиг) и термохимической (цементация, азотирование и т.д.) обработках и свариваемость – способность материала образовывать прочные соединения при сварке.

Экономические требования к материалу определяются его стоимостью и дефицитностью. Более веским экономическим требованием является себестоимость детали, которая включает как стоимость материала, так и производственные затраты на ее изготовление. Производственные затраты в значительной мере зависят от технологического процесса изготовления детали. Например, при массовом и крупносерийном производствах дешевле изготавливать детали штамповкой, прессованием, с помощью литья, а при единичном или мелкосерийном производстве эти технологии из-за большой стоимости оснастки (штампы, пресс-формы, литейные формы) очень дороги, здесь выгоднее применять детали, полученные с помощью механической обработки. Выбор технологии изготовления детали влияет и на выбор материала.

При изготовлении конструктивных элементов механизмов используют черные металлы (стали и чугуны), цветные металлы и сплавы и неметаллические материалы.

Черные металлы

К черным металлам относят железоуглеродистые сплавы на основе железа, которые в зависимости от содержания углерода делят на стали – до 2,14% углерода и чугуны – свыше 2,14% углерода.

Чугуны

Это сплавы железа с углеродом, содержащие постоянные примеси марганца, кремния, фосфора и серы, а также при необходимости легирующие элементы.

В зависимости от структуры и состояния, в котором находится углерод (свободный или химически связанный), различают серые, белые и ковкие чугуны. Чугуны также классифицируют в зависимости от назначения – на конструкционные и со специальными свойствами; и от химсостава – на легированные и нелегированные.

Как конструкционный материал наиболее широко применяются серые чугуны, в которых весь углерод находится в свободном состоянии в виде включений графита пластинчатой формы. Они обладают средней прочностью, хорошими литейными и другими технологическими свойствами (жидкотекучестью, малой линейной усадкой, обрабатываемостью резанием), мало чувствительны к концентрации переменных напряжений, антифрикционны.

В белых чугунах избыточный углерод, не растворившийся в твердом растворе железа, присутствует в виде карбидов железа. Вследствие низких механических свойств – высокой хрупкости и твердости, плохой обрабатываемости резанием – белые чугуны не применяются в качестве конструкционных материалов.

Ковкий чугун получают из белого путем последующего отжига до распада графита в виде хлопьев. Детали из него могут подвергаться незначительным деформациям. Они обладают меньшей по сравнению с деталями из серого чугуна хрупкостью, но стоят на 30 … 100% дороже.

Высокопрочный чугун характеризуется шаровидной или близкой к ней формой включений графита, которую получают модифицированием жидкого чугуна присадками магния. Шаровидный графит в наименьшей мере ослабляет металлическую основу, что приводит к высоким механическим свойствам. Высокопрочный чугун обладает хорошими литейными и эксплуатационными свойствами.

Для улучшения прочностных характеристик и получения особых эксплуатационных свойств: износостойкости, немагнитности, коррозионной стойкости и т.д., в состав чугунов вводят легирующие элементы (никель, хром, медь, алюминий, титан и др.). Легирующими элементами могут служить также марганец (при содержании более 2%) и кремний (более 4%).

Марки чугуна обозначаются буквами, показывающими назначение чугуна: СЧ – серый чугун, ВЧ – высокопрочный, КЧ – ковкий чугун; для антифрикционных чугунов в начале марки указывается буква А (АСЧ, АВЧ, АКЧ). Цифры в обозначении марки нелегированного чугуна указывают на его механические свойства. Для серых чугунов цифры указывают величину предела прочности (кгс/мм 2) при растяжении. Например, марка СЧ18 показывает, что чугун имеет σ ut = 18 кгс/мм 2 = 180 МПа. Для высокопрочного и ковкого чугуна цифры определяют предел прочности (кгс/мм 2) и относительное удлинение при растяжении в процентах, например ВЧ60-2 – высокопрочный чугун с σ ut = = 600МПа и δ = 2%.

Стали

Стали – это деформируемые сплавы железа с углеродом и другими элементами.

По химсоставу стали делят на углеродистые и легированные. Углеродистые стали содержат кроме железа и углерода также марганец (до 1%) и кремний до (0,8%), а также примеси, от которых трудно избавиться в процессе выплавки – серу и фосфор. Сера и фосфор снижают механические свойства сталей: сера увеличивает хрупкость в горячем состоянии (красноломкость), а фосфор – при пониженных температурах (хладноломкость). В зависимости от содержания углерода различают низко- (С ≤ 0,25%), средне- (0,25 < С ≤ 0,6%) и высокоуглеродистые (C > 0,6%) стали.

В состав легированных сталей помимо указанных компонентов для улучшения технологических и эксплуатационных характеристик и придания особых свойств вводят легирующие элементы (хром, никель, молибден, вольфрам, ванадий, титан, ниобий и др.). Легирующими элементами могут быть также марганец при содержании более 1% и кремний – более 0,8%.

По назначению стали делят на конструкционные, инструментальные и с особыми свойствами. Наиболее широко применяют конструкционные стали. Они бывают как углеродистыми (С ≤ 0,7%), так и легированными. Инструментальные стали служат для изготовления режущего, ударно-штампового и мерительного инструментов. Они бывают углеродистыми (С ≥ 0,8 … 1,3%) и легированные хромом, марганцем, кремнием и другими элементами. К сталям с особыми свойствами относят нержавеющие, немагнитные, электротехнические стали, стали постоянных магнитов и др.

По качеству стали делят на обыкновенные, качественные, высоко и особо высококачественные. Различие между ними заключается в количестве вредных (сера и фосфор) примесей. Так, в сталях обыкновенного качества допускается содержание серы до 0,06% и фосфора до 0,07%; в качественных – каждого элемента не более 0,035%; а в высококачественных – не более 0,025%.

По характеру застывания из жидкого состояния, степени раскисления различают спокойную, полуспокойную и кипящую стали. Чем полнее удален из расплава кислород, тем спокойнее протекает процесс затвердевания и меньше выделение пузырьков окиси углерода («кипение»). Выбор технологии раскисления определяется назначением и возможностями производства, но каждый способ имеет свои достоинства и недостатки.

Марки углеродистой стали обыкновенного качества обозначаются буквами Ст (сталь) и цифрами от 0 до 6, например Ст0 – Ст6. Цифры соответствуют условному номеру марки в зависимости от химического состава и механических свойств. Чем больше число, тем больше содержание углерода в стали, выше прочность и ниже пластичность. Эти стали делят на три группы – А, Б и В. Сталь группы А имеет гарантированные механические свойства и не подвергается термообработке, в марке стали группа А не указывается. Для стали группы Б гарантируется химический состав, для стали группы В – химический состав и механические свойства.

Степень раскисления обозначается индексами, стоящим справа от номера марки: кп – кипящая, пс – полуспокойная, сп – спокойная. Например, сталь Ст2кп – сталь группы А, кипящая; БСт3пс – сталь группы Б, полуспокойная; ВСт5сп – сталь группы В, спокойная.

Углеродистые качественные стали маркируются двузначными цифрами (08, 10, 15, …, 70), показывающими среднее содержание углерода в стали в сотых долях процента. Эти стали можно условно разделить на несколько групп. Стали 08, 10 обладают высокой пластичностью, хорошо штампуются и свариваются. Низкоуглеродистые стали 15, 20, 25 хорошо свариваются и обрабатываются резанием, после цементации и термообработки обладают повышенной износостойкостью. Наибольшее распространение получили среднеуглеродистые стали 30, 35, 40, 45 и 50 благодаря хорошему сочетанию прочностных и пластических свойств, хорошей обрабатываемости резанием. Высокоуглеродистые стали 60, 65, 70 обладают высокой прочностью, износостойкостью и упругостью, используются для изготовления деталей типа пружин. Прочность и твердость средне- и высокоуглеродистых сталей можно повысить с помощью термической обработки.

Все конструкционные материалы можно условно разделить на однородные икомпозиционные, металлические и неметаллические (Рисунок 6.1).

Металлы – химические элементы, образующие в свободном состоянии простые вещества с металлической связью между атомами.

Сплавы – твердые вещества, образованные сплавлением двух или более компонентов. Сплав образуется в результате как чисто физических процессов (растворение, перемешивание), так и в результате химического взаимодействия между элементами. Разнообразие состава типов межатомной связи и кристаллических структур сплавов обуславливает значительное различие их физико-химических, электрических, магнитных, механических, оптических и других свойств. Сплавы на основе железа называютсячерными , на основе других металловцветными .

Неметаллические материалы – неорганические и органические материалы, композиционные материалы на неметаллической основе, клеи, герметики, лакокрасочные покрытия, графит, стекло, керамика и т.д.

Полимеры – вещества, макромолекулы которых состоят из многочисленных элементарных звеньев (мономеров) одинаковой структуры.

Композиционные материалы – гетерофазные (состоящие из различных по физическим и химическим свойствам фаз) системы, полученные из двух и более компонентов с сохранением индивидуальности каждого отдельного компонента.

При этом:

      материал является однородным в макромасштабе и неоднородным в микромасштабе (компоненты различаются по свойствам, между ними существует явная граница раздела);

      один из компонентов, обладающий непрерывностью по всему объему, является матрицей; компонент прерывистый, разделенный в объеме композиции, считается усиливающим или армирующим.

В приборостроении большое применение находят различные неметаллические материалы, такие как пластмассы, резина, стекло, керамика, лакокрасочные и клеевые материалы, причем с развитием химии и новых технологий доля неметаллических материалов в приборостроении постоянно увеличивается.

Выбор пластмасс определяется назначением детали и характерной особенностью ее получения (прессование, литье и другие способы), причем особенности строения, механические и физические свойства пластмасс существенно влияют на конструкцию детали и способ ее изготовления.

Применение порошковых материалов определяется необходимостью изготовления изделий с особыми свойствами и структурой, которые недостижимы другими методами производства, либо изделий с обычным составом, структурой и свойствами, но при значительно более выгодных экономических показателях производства.

Свойства конструкционных материалов подразделяются на:

      механические;

      технологические;

      эксплуатационные.

К механическим свойствам относятся:

      прочность;

      упругость;

      пластичность;

      твердость;

      ударная вязкость.

Эти свойства определяют прочность и долговечность конструкции.

Прочность – это способность материала сопротивляться деформации и разрушению.

Деформацией называется изменение размеров и формы тела под действием внешних сил. Деформации подразделяются на упругие и пластические. Упругие деформации исчезают после окончания действия сил, а пластические остаются.

Пластичность – способность материала деформироваться. Пластичность обеспечивает конструктивную прочность деталей под нагрузкой и нейтрализует влияние концентраторов напряжений – отверстий, вырезов и т.п. При пластическом деформировании металла одновременно с изменением формы изменяется ряд свойств, в частности при холодном деформировании повышается прочность, но снижается пластичность.

Большинство механических характеристик материалов определяют в результате испытания образцов на растяжение (ГОСТ 1497-84).

При растяжении образцов с площадью поперечного сечения S 0 и рабочей (расчетной) длиной l о строят диаграмму растяжения в координатах: нагрузкаP– удлинение ∆lобразца (рисунок 6.2).

Рисунок 6.2 – Диаграмма растяжения

Диаграмма растяжения характеризует поведение металла при деформировании от момента начала нагружения до разрушения образца. На диаграмме выделяют три участка:

      упругой деформации – до нагрузки Р упр;

      равномерной пластической деформации от Р упр до Р мах;

      и сосредоточенной пластической деформации от Р мах до Р к.

Если образец нагрузить в пределах Р упр, а затем полностью разгрузить и замерить его длину, то никаких последствий нагружения не обнаружится.

Закон Гука для линейного участка диаграммы: σ = Е ε, где Е – называется модулем упругости или модулем Юнга. Е имеет размерность кг/см 2 и является одной из физических констант материала. Модуль упругости при растяжении численно равен тангенсу угла наклона диаграммы напряжений к оси абсцисс.

Между относительной поперечной деформацией и относительной продольной деформацией при простом растяжении и сжатии в пределах применимости закона Гука существует постоянное соотношение, абсолютная величина которого называется коэффициентом Пуассона μ = ε 1 /ε – безразмерная величина и для всех изотропных материалов лежит в пределах 0 – 0,5 (0 для пробки, 0,5 для каучука, для стали 0,3).

При нагружении образца более Р упр появляетсяостаточная (пластическая) деформация. Пластическое деформирование идет при возрастающей нагрузке, так как металл упрочняется в процессе деформирования. Упрочнение металла при деформировании называетсянаклепом .

При дальнейшем нагружении пластическая деформация, а вместе с ней и наклеп все более увеличиваются, равномерно распределяясь по всему объему образца. После достижения максимального значения нагрузки Р мах в наиболее слабом месте появляется местное утонение образца – шейка, в которой в основном и протекает дальнейшее пластическое деформирование. В связи с развитием шейки, несмотря на продолжающееся упрочнение металла, нагрузка уменьшается отР мах до Р к, и при нагрузке Р к происходит разрушение образца. При этом упругая деформация образца исчезает, а пластическая ∆l ост остается.

При деформировании твердого тела внутри него возникают внутренние силы. Величину сил, приходящуюся на единицу площади поперечного сечения образца, называют напряжением . Размерность напряжения МПа.

Пользуясь указанными характеристиками, и зная площадь сечения образца S 0 , определяют основные характеристики прочности материала:

σ пц = Р пц /S 0 - предел пропорциональности; σ уп = Р уп /S 0 - предел упругости; σ т = Р т /S 0 - предел текучести; σ в = Р мах /S 0 - предел прочности или временной сопротивление; σ к = Р к /S 0 - напряжение в момент разрыва.

Поскольку диаграмма растяжения металлов характеризует не только свойства металлов, но и размеры образца, то ее принято перестраивать в относительных координатах σ – ε, такая диаграмма называется диаграммой напряжений.

Пластичность характеризуется относительным удлинениеми относительным сужением:

где l 0 ,S 0 - начальные длина и площадь поперечного сечения образца;l k ,S k - конечная длина и площадь в месте разрыва.

Допустимые значения напряжений в расчетах выбирают меньше в 1,5 - 2,5 раза.

Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора). О твердости судят либо по глубине проникновения индентора, либо по величине отпечатка от вдавливания. Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Наибольшее распространение получили методыопределения твердости Бринелля, Роквелла, Виккерса и микротвердости. Схемы испытаний представлены на Рисунке 3.4.

Рисунок 6.3 – Схема определения твердости материала по Бринеллю (а), по Роквеллу (б), по Виккерсу (в).

Твердость по Бринеллю определяют на твердомере Бринелля. В качестве индентора используется стальной закаленный шарик диаметром Д = 2,5; 5; 10 мм, в зависимости от толщины изделия.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля. Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка.

Метод Роквелла основан на вдавливании в поверхность под определенной нагрузкой наконечника в виде шарика или алмазного конуса. Для мягких материалов (до НВ 230) используется стальной шарик диаметром 1/16” (1,6 мм), для более твердых материалов – конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка Р 0 (100 н) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р 1 , в течение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечникаhпод нагрузкойP.

Твердость по Виккерсу определяется по величине отпечатка индентора: алмазная четырехгранная пирамида с углом при вершине 136 o .

Твердость рассчитывается как отношение приложенной нагрузки Р к площади поверхности отпечатка.

Нагрузка Р составляет 50…1000 н. Диагональ отпечатка dизмеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонких изделий, поверхностных слоёв. Метод обеспечивает высокую точность при высокой чувствительности.

Способ микротвердости – используется для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра). Метод аналогичен способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливанииPсоставляют 5…500 н.

Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению. Испытания на ударную вязкость производят на маятниковых копрах. Испытуемые образцы имеют надрезы определенной формы и размеров. Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника, который поднимают на определенную высоту. Ее определяют по ГОСТ как удельную работу разрушения призматического образца с концентратором (надрезом) посередине одним ударом маятникового копра: КС = К/S, где К - работа разрушения;S- площадь поперечного сечения образца в месте концентратора. Измеряется в МДж/м 2 .ОбозначаютKCU,KCV,KCT,U,V,T- вид концентратора (U,V- образный; Т - трещина усталости).

Технологические свойства конструкционных материалов.

Технологические свойства характеризуют способность материала подвергаться различным способам холодной и горячей обработки.

К технологическим свойствам металлов и сплавов относятся:

      литейные свойства;

      деформируемость;

      свариваемость;

      обрабатываемость режущим инструментом.

Эти свойства позволяют производить формоизменяющую обработку и получать заготовки и детали машин.

Литейные свойства характеризуют способность материала к получению из него качественных отливок.

Литейные свойства определяются способностью расплавленного металла или сплава к заполнению литейной формы (жидкотекучесть), степенью химической неоднородности по сечению полученной отливки (ликвация), а также величиной усадки – сокращением линейных размеров при кристаллизации и дальнейшем охлаждении.

Способность материала к обработке давлением – это способность материала изменять размеры и форму под влиянием внешних нагрузок не разрушаясь (обработка без снятия стружки). Она контролируется в результате технологических испытаний, проводимых в условиях, максимально приближенных к производственным. Листовой материал испытывают на перегиб и вытяжку сферической лунки. Проволоку испытывают на перегиб, скручивание, на навивание. Трубы испытывают на раздачу, сплющивание до определенной высоты и изгиб. Критерием годности материала является отсутствие дефектов после испытания.

Свариваемость – это способность материала образовывать неразъемные соединения требуемого качества при сварке. Свойство оценивается по качеству сварного шва.

Обрабатываемость резанием – характеризует способность материала поддаваться обработке режущим инструментом. Оценивается по стойкости инструмента и по качеству обработанной поверхности.

Технологические свойства часто определяют выбор материала для конструкции. Разрабатываемые материалы могут быть внедрены в производство только в том случае, если их технологические свойства удовлетворяют необходимым требованиям.

Современное автоматизированное производство, предъявляет к технологическим свойствам материала особые требования: проведение сварки на больших скоростях, ускоренное охлаждение отливок, обработка резанием на повышенных режимах и т. п. при обеспечении необходимого условия – высокого качества получаемой продукции.

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях:

      износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения;

      коррозионная стойкость – способность материала сопротивляться действию агрессивных кислотных и щелочных сред;

      жаростойкость – способность материала сопротивляться окислению в газовой среде при высокой температуре;

      жаропрочность – это способность материала сохранять прочность и твердость при высоких температурах;

      хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах;

      антифрикционность – способность материала прирабатываться к другому материалу.

Эти свойства определяются специальными испытаниями в зависимости от условий работы изделий. При выборе материала для создания конструкции необходимо учитывать конструкционные, технологические и эксплуатационные свойства.