В квартире

Турбогенераторы электростанций выполняют исключительно с валом. Паровая турбина: устройство, принцип действия, основные элементы

Турбогенераторы электростанций выполняют исключительно с валом. Паровая турбина: устройство, принцип действия, основные элементы

Турбогенераторы представляют собой генераторы синхронного типа, которые напрямую подсоединены к ТЭС. Турбины их работают на органическом топливе и поэтому обладают самыми высокими показателями экономичности. Особенно это касается большой частоты их вращения.

Это генерирующее оборудование обеспечивает около 80 процентов суммарного мирового объема вырабатываемой электрической энергии.

Основной задачей турбогенератора является трансформация механической энергии паровой либо газовой турбины в электрическую. Осуществляется это при большой скорости вращения ротора (от 3000 до 15000 оборотов в минуту).

Турбогенераторы – это довольно непростой тип электрических агрегатов, в котором сочетаются:

  • проблемы с мощностью;
  • электромагнитные характеристики;
  • размеры;
  • охлаждение и нагрев;
  • статическая и динамическая прочность.

Исполняются данные устройства горизонтально и имеют возбуждающую обмотку с неявно выраженными полюсами, которая находится на самом роторе. А на статоре располагается трехфазная обмотка.

Принцип работы турбогенератора

Механическая энергия самой турбины превращается в электрическую. Это возможно благодаря вращающемуся магнитному полю, создаваемого с помощью непрерывного тока, протекающему в обмотке самого ротора. Это способствует и формированию трехфазного переменного тока, а также напряжению в статоре (его обмотках). Крутящий момент от двигателя передается на ротор генератора.

Данная характеристика турбогенератора позволяет при обращении ротора образовывать магнитный момент, который и создает электрический ток в его обмотках. Благодаря системе возбуждения в агрегате обеспечивается поддержка постоянного напряжения на всех режимах функционирования данного устройства.

Циркуляция воды в теплообменниках и газоохладителях происходит при помощи насосов, которые располагаются вне самого турбогенератора.

Паровой турбогенератор

Паровой турбогенератор обладает повышенной надежностью своей работы, при этом развивая проектную мощность постоянно на протяжении многих часов работы. Такие современные устройства могут обладать мощностью до 1300 МВт. Зачастую, паровые турбогенераторы могут работать параллельно. Передача мощности при этом может осуществляться в одну электрическую цепь.

Тепловая экономичность электростанции, в которой установлен паровой турбогенератор, напрямую зависит от видов и параметров теплового цикла использования тепла образовавшегося пара, а также от самого оборудования и его характеристик.

Зачастую, паровая турбина турбогенератора, обладающая небольшой мощностью, монтируется в промышленных котельных, там где используется мазута или твердое топливо. Турбины тут функционируют в качестве дросселирующих устройств редукционно-охладительных установок, на разнице величины давления от котла до промышленного отбора, либо же теплообменника. /p>

Мощность турбогенератора, работающего в данной отрасли, находится в пределах от 250 киловатт до 5 Мегаватт. Такая установка позволяет получить очень дешевую электрическую энергию. Она получается в восемь раз дешевле покупной. А все оборудование, при работе больше чем 5000 часов в год, сможет быстро окупить себя, уже за три года.

Паровая турбина турбогенератора маленькой нагрузки может применяться не только лишь в качестве привода электрогенератора, но также и для приведения в действия устройств, необходимых для работы котельных любого назначения.

Статор турбогенератора

Он изготавливается из корпуса, в котором имеется сердечник с углублениями для установки в них обмотки. В основу сердечника входят слои, которые набираются из нескольких листов стали (электротехнической), дополнительно имеющих лаковое покрытие. Между этими слоями имеются специальные каналы для вентиляции (порядка 5 – 10 сантиметров).

В месте, где находятся углубления, обмотка закрепляется при помощи клиньев, а ее передняя часть укреплена на специальных кольцах. Располагается она с конца статора. Сам сердечник помещен в прочный сварной корпус, изготовленный из стали.

Ротор турбогенератора

Чтобы сформировалась высокая прочность, ротор турбогенератора выпускают в виде толстого цилиндра из сплошной стальной заготовки. В таком случае используют углеродистую сталь, как правило, марки «35» (в случаи малой нагрузки данного агрегата).

Ротор турбогенератора оснащен двумя рядами отверстий, расположенных вдоль первых обмоточных отверстий. Необходимо это, чтобы закрепить там специальные балансировочные грузы. Длина ротора турбогенератора существенно меньше его активных размеров.

При частоте вращения порядка 3000 оборотов в минуту, ротор изготавливают диаметром в 1,2 метра. Обмотку делают из специальной полосовой меди с дополнительной присадкой серебра. Она удерживается в пазах благодаря дюралевым клиньям.

Для того, чтобы повысить тепловую стойкость ротора от воздействия на него обратных токов, сверху изоляции обмотки укладываются короткозамкнутые кольца, которые изготавливают в виде двухслойного медного гребенка.

Для повышения единичной мощности охлаждение турбогенератора делают более интенсивным, без существенного увеличения габаритов. Если нагрузка таких устройств превышает 50 Вт, то используют жидкое либо водородное охлаждение его обмоток.

Охлаждение турбогенераторов

Турбогенераторы с воздушным охлаждением

Изготавливаются такие агрегаты нагрузкой в 2,5; 4; 6; 12 и 20 МВт. Конструкция таких устройств осуществляется закрытым типом. Самовентиляция обеспечивается по закрытому циклу. Вращение воздуха в турбогенераторе происходит благодаря вентиляторам, которые закрепляются с обеих сторон внутри ротора.

Для того, чтобы избежать проникновения пыли вовнутрь, на валу имеются специальные воздушные уплотнители. А утечка воздуха компенсируется благодаря его засосу из внешней среды.

Устройства с водородным охлаждением

Это устройства, мощность которых составляет 60 и 100 Мегаватт.

Охлаждение турбогенератора, а именно роторных обмоток, исполняется напрямую водородом. Статор охлаждается косвенно и обдает сварную оболочку, которая газонепроницаема и неразъемная.

Агрегаты, охлаждаемые водой

Обмотки ротора и статора устройств такого типа охлаждаются при помощи непосредственной подачи воды. Сталь сердечника статора отстужается при помощи специально предназначенных охладителей, изготовленных из силумина. Воздух, который заполняет сам генератор, охлаждается водой.

Объединенное охлаждение

Такие устройства с водородно-водяным охлаждением бывают мощностью 160 – 1200 Мегаватт. А количество оборотов в минуту составляет 3000. Такие агрегаты имеют прямое охлаждение обмотки статора при помощи дистиллированной воды, а ротора – водородом. Наружная их поверхность охлаждается при помощи только лишь водорода.

Корпус таких агрегатов изготавливается цельным, сварным, газонепроницаемым, неразъемным, а также, его внутренняя поверхность обладает дополнительными поперечными кольцами жесткости, которая способствует закреплению сердечника. С двух сторон статор закрывается наружными пластинами.

Это касается таких агрегатов, нагрузка которых составляет 160 – 220 МВт. Если же мощность турбогенератора составляет 300 – 800 Мегаватт, то каркас таких устройств выполняется разъемным из трех секций. Заполняется он водородом, который потом обращается с помощью двух осевых вентиляторов, закрепленных на самом роторе. Остужается он в газоохладители турбогенератора.

Возбуждающий режим

В виде основного такого метода служит бесщеточная система. Возбудитель закрытого типа обладает изолированной вентиляцией. Для турбогенераторов, производительность которых составляет 160 – 800 Мегаватт, используется тиристорная система, с самостоятельной активизацией. Сам возбудитель представляет собой синхронный трехфазный генератор переменного тока.

При помощи термопреобразователей осуществляется проверка теплового режима главных узлов, а также охлаждающей системы. Подсоединяются они к установке центрального управления.

Благодаря специальной аппаратуре можно осуществлять контроль давления, расход охлаждающей воды, дистиллята, следить за давлением масла и т.п. С ее помощью происходит непрерывное отслеживание всех изменений заданных параметров от нормы.

На данных агрегатах устанавливают и специальные системы защиты. Такая характеристика турбогенератора сообщает о снижении уровня воды, расходуемой в газоохладителе.

Эксплуатация турбогенераторов

Самой большой проблемой при работе устройств с водородным охлаждением является борьба с утечкой воды. Перед вводом в эксплуатацию таких машин или после их капитального ремонта в обязательном порядке должна быть осуществлена проверка генератора, а также самой системы водородного охлаждения на ее газовую плотность.

Расход водорода в сутки не должен превышать более 10 процентов от общего его количества в данном агрегате. А стоячая его утечка – не превышать 5%. Также, следует помнить и знать, что при увеличении температуры уплотняющего масла растет и количество водорода, растворяемого в нем. Это может привести к утечке водорода.

Вибрационное состояние турбогенератора является одним из основных параметров, который отвечает за безопасность и надежность во время эксплуатации. Она может быть вызвана в ряду механических причин, обусловленных неуравновешенностью вращающихся узлов турбогенератора, нарушением конструкции подшипников, несимметричностью воздушных зазоров, замыканием витков в обмотках роторе, нарушением изоляции обмоток и т.п.

Допускается длительная работа турбогенератора при несимметричной мощности, когда обратный ток не больше восьми процентов от номинальной величины тока самого статора. При этом токи в фазах обязаны быть больше номинальных величин.

Продолжительная эксплуатация турбогенераторов обеспечивается и в том случае, если в этом случае они включаются при помощи метода «точной синхронизации».

При аварийном режиме устройство включать можно, но ток статора обязан быть не больше тройного номинального значения. Допустимая температура охлаждающего водорода составляет 40°С. Снижать ее менее 20 градусов нельзя. Если его температура растет, то следует снизить номинальную нагрузку генератора. Все значения уменьшения мощности имеются в инструкции по работе таких устройств.

Возможна работа данного устройства и при входном напряжении, не превышающего 110 процентов от номинального значения.

Для нормальной и бесперебойной работы турбогенератора, температура охлаждающей жидкости, находящейся в газоохладителе, должна быть 33 градуса. Минимальное ее значение составляет 15°С.

Турбогенераторы на выставке

Международная выставка «Электро» является крупнейшим мероприятием, на котором будет представлено электрооборудование для энергетики, электротехнике, автоматизации, а также промышленной световой техники.

Вы сможете увидеть множество сегментов и современных тенденций отрасли, начиная от генерации электрической энергии и завершая конечным ее потреблением; узнать, что такое турбогенератор, принцип его работы, виды, характеристики.

В данной выставке ежегодно участвуют предприятия их разных стран мира: Китая, Германии, Словении, Испании, Индии, Чехии и многих других.

На мероприятии «Электро» вы увидите:

  • турбогенераторы, компрессоры, газотурбинные установки, различное вспомогательное оборудование;
  • электрическое оборудование для электростанций, сетей передачи, а также распределения энергии;
  • проектирование всевозможных объектов электроэнергетики и систем снабжения электричеством;
  • интеллектуальные сети;
  • электрическая безопасность;
  • средства, отвечающие за охрану труда;
  • спецодежда.

Также, вы сможете пройти специальную программу обучения и подготовки персонала.

В отделе промышленной светотехники вы сможете ознакомиться с:

  • проектированием систем освещения;
  • освещением в аварийных ситуациях;
  • офисными системами освещения, а также промышленными и складскими;
  • освещением улиц и многим другим.

Придя на выставку «Электро», вы сможете узнать очень много интересных и современных технологий и оборудования. Это, несомненно, сможет помочь в развитии вашего бизнеса. А приобретение необходимого оборудования позволит вам эффективно модернизировать и ускорить ваше производство.

Организаторы данной выставки предоставляют возможность любой компании продемонстрировать свои новейшие разработки, что позволит занять особое место в презентационной программе.

Целью такого проекта является обращение внимания потенциальных покупателей на самые новые разработки и продвижение их на российском рынке. С его помощью вы сможете завлечь посетителей к своему проекту, который только вышел на рынок, рассказать о его преимуществах и новых технологических решениях.

Лекция 9

Электрическая часть электростанций

Электрическая станция представляет собой промышленное предприятие, на котором производится электрическая, а в некоторых случаях и тепловая энергия на основе преобразования первичных энергоресурсов.
В зависимости от вида природных источников энергии (твердое топливо, жидкое, газообразное, ядерное, водяная энергия) станции подразделяются на тепловые (ТЭС), гидравлические (ГЭС), атомные (АЭС). Станции, на которых одновременно с электрической вырабатывается и тепловая энергия, называют теплоэлектроцентралями (ТЭЦ).

Независимо от типа электростанции ее электрическую часть составляют электрогенераторы – устройства для преобразования первичной энергии (чаще всего механической) в электрическую, а также другие аппараты для преобразования и управления потоком электрической энергии: трансформаторы, выключатели, разъединители.

Электрогенераторы

Для выработки электроэнергии на современных электрических станциях применяют синхронные генераторы трехфазного переменного тока. Различают турбогенераторы (ТГ) (первичный двигатель – паровая или газовая турбина) и гидрогенераторы (первичный двигатель - гидротурбина).

Турбогенераторы предназначены для непосредственного соединения с паровыми или газовыми турбинами и, так как особенностью этих турбин является их быстроходность, имеют высокую частоту вращения. Чем выше частота вращения турбины, тем меньше ее габариты и больше к. п.д., поэтому естественно стремление повысить быстроходность турбогенераторов. Однако эта быстроходность имеет предел, ограниченный номинальной частотой сети f = 50 Гц и минимальным числом пар полюсов генератора р = 1.

Для синхронных генераторов в установившемся режиме существует строгое соответствие между частотой вращения агрегата n , об/мин, и частотой сети f , Гц

где – число пар полюсов обмотки статора генератора.

Паровые и газовые турбины выпускают на большие частоты вращения (3000 и 1500 об/мин), так как при этом турбогенераторы имеют наилучшие технико-экономические показатели. На ТЭС, сжигающих обычное топливо, частота вращения агрегатов составляет, как правило, 3000 об/мин, а синхронные генераторы имеют два полюса.

Таким образом, при частоте сети 50 Гц, принятой в нашей стране и в странах Западной Европы, максимальная частота вращения турбогенераторов равна 3000 об/м, а в США и Японии, где частота сети 60 Гц, наибольшая частота вращения двухполюсных турбогенераторов равна 3600 об/мин.

На АЭС применяют также генераторы с двумя парами полюсов. К турбине они подключаются через редуктор, снижающий частоту вращения до 1500 об/мин.

Высокая частота вращения ТГ определяет и особенности его конструкции. Эти генераторы выполняются с горизонтальным расположением ротора. Ротор ТГ работает при больших механических и тепловых нагрузках. Поэтому он изготовляется из цельной поковки специальной высококачественной стали (хромоникелевой или хромоникельмолибденовой), обладающей высокими магнитными и механическими свойствами.

У турбогенераторов ротор , как правило, выполняется неявнополюсным . Вследствие значительной частоты вращения размеры его ограничены: по длине (во избежание прогибов, приводящий к вибрациям) – 6-6,5 м и по диаметру (для снижения окружных усилий при вращении) – 1,1-1,2 м.

В активной части ротора, по которой проходит основной магнитный поток, фрезеруются пазы, заполняемые катушками обмотки возбуждения. В пазовой части обмотки закрепляются немагнитными легкими, но прочными клиньями из дюралюминия. Лобовая часть обмотки, не лежащая в пазах, предохраняется от смещения под действием центробежных сил с помощью бандажа. Бандажи являются наиболее напряженными в механическом отношении частями ротора и обычно выполняются из немагнитной высокопрочной стали.


Турбогенераторы – применение в энергетике

Турбогенераторы с комбинированным водородно-водяным охлаждением предназначены для работы на атомных электростанциях (АЭС). Асинхронные турбогенераторы используются в составе мощных ТЭЦ и в энергосистемах со значительными колебаниями нагрузки. Асинхронные турбогенераторы также имеют комбинированное водородно-водяное охлаждение. Турбогенераторы с воздушным и масляным охлаждением применяются на тепловых электростанциях (ТЭС) с различной мощностью.

Гидравлические турбины имеют обычно относительно малую частоту вращения (60 – 600 об/мин). Частота вращения тем меньше, чем меньше напор воды и чем больше мощность турбины. Гидрогенераторы поэтому являются тихоходными машинами и имеют большие размеры и массы, а также большое число пар полюсов.

Частота вращения гидрогенератора принимается равной наиболее выгодной частоте вращения турбины, отвечающей при данных напоре (Н) и расходе воды наилучшим гидравлическим характеристикам турбины и её наибольшей экономичности

,

где К б - коэффициент быстроходности, зависящий от типа турбины, об/мин;

Н - напор, м;

Р - мощность турбины, МВт.

Так как напоры и расходы воды на различных гидроэлектростанциях отличаются большим разнообразием, частота вращения гидрогенераторов лежит в широком диапазоне, от 50 до 750 об/мин. Частота вращения тем меньше, чем ниже напор воды и выше мощность гидроагрегата.

Гидроагрегаты поэтому являются тихоходными машинами, имеют большие размеры и массы, а также большое число полюсов.

К б составляет 20-40 об/мин для ковшевых турбин, 50-450 об/мин для радиально осевых турбин и 400-1200 об/мин (чаще 600-800 об/мин) для поворотно-лопастных турбин.
Как видно из формулы (1-2), частота вращения тем меньше, чем выше мощность гидроагрегата и ниже напор. Большая часть исполненных машин имеет частоту вращения в пределах от 50 до 125 об/мин, т. е. относится к тихоходным машинам. Число полюсов всегда выражается целым числом, поэтому частота вращения гидрогенераторов иногда оказывается дробной, например гидрогенераторы Иркутской ГЭС имеют частоту вращения 83,3 об/мин (р = 36), Саратовской ГЭС - 51,5 об/мин (р = 58), Краноярской ГЭС - 93,8 об/мин (р = 32).

Гидрогенераторы выполняют с явнополюсными роторами и преимущественно с вертикальным расположением вала. Диаметры роторов мощных гидрогенераторов достигают 14 – 16 метров, а диаметры статоров – 20 – 22 м (рис. 6.2).

В машинах с большим диаметром ротора сердечником служит обод, собираемый на спицах, которые крепятся на втулках ротора. Полюсы, как и обод, делают наборными из стальных листов и монтируют на ободе ротора с помощью Т-образных выступов. На полюсах помимо обмотки возбуждения размещается еще так называемая демпферная обмотка, которая образуется из медных стержней, закладываемых в пазы на полюсных наконечниках и замыкаемых с торцов ротора кольцами. Эта обмотка предназначена для успокоения колебаний ротора агрегата, которые возникают при всяком возмущении, связанном с резкими изменениями нагрузки генератора.

От десятков тысяч оборотов в минуту (у синхронных турбогенераторов с возбуждением от постоянных магнитов "НПК "Энергодвижение") до 3000, 1500 об/мин (у синхронных турбогенераторов с возбуждением ротора). Механическая энергия от турбины преобразуется в электрическую посредством вращающегося магнитного поля ротора в статоре . Поле ротора, которое создается либо установленными на ротор постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновению трёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше, чем сильнее поле ротора, т.е. больше ток протекающий в обмотках ротора. У синхронных турбогенераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель - небольшой генератор на валу турбогенератора. Турбогенераторы имеют цилиндрический ротор установленный на двух подшипниках скольжения , в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), и многополюсные машины, в зависимости от мест эксплуатации и требований Заказчика. По способам охлаждения обмоток турбогенератора различают: с жидкостным охлаждением через рубашку статора; с жидкостным непосредственным охлаждением обмоток; с воздушным охлаждением; с водородным охлаждением (чаще применяются на АЭС).

Энциклопедичный YouTube

    1 / 3

    Электротехника. Принцип действия генератора и ДПТ..wmv

    Электротехника. Синхронные электрические машины.

    Принцип работы генератора переменного тока

    Субтитры

История

Один из основателей компании «ABB » Чарльз Браун построил первый турбогенератор в 1901 году . Это был 6-ти полюсный генератор мощностью 100 кВА .

Появление во второй половине XIX века мощных паровых турбин привело к тому, что потребовались высокоскоростные турбогенераторы. Первое поколение этих машин имело стационарную магнитную систему и вращающуюся обмотку. Но данная конструкция имеет целый ряд ограничений, одно из них - небольшая мощность. Кроме этого, ротор явнополюсного генератора не способен выдерживать большие центробежные усилия.

Основным вкладом Чарльза Брауна в создание турбогенератора было изобретение ротора, в котором его обмотка (обмотка возбуждения) укладывается в пазы, которые получаются в результате механической обработки поковки. Вторым вкладом Чарльза Брауна в создание турбогенератора была разработка в 1898 году ламинированного цилиндрического ротора. И, в конечном итоге, в 1901 году он построил первый турбогенератор. Данная конструкция используется в производстве турбогенераторов по сей день.

Типы турбогенераторов

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов: с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением.

Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза . В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии. Например, турбогенератор ТГ-60 работает на отбираемом от компрессора авиадвигателя сжатого воздуха, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов - статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор - вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор - стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок - вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

Возбуждение ротора генератора

Первоначальный (возбуждающий) постоянный ток ротора генератора подается на него с возбудителя генератора. Обычно возбудитель соосно соединён упругой муфтой с валом генератора и является продолжением системы турбина-генератор-возбудитель. Хотя на крупных электрических станциях предусмотрено и резервное возбуждение ротора генератора. Такое возбуждение происходит от отдельно стоящего возбудителя. Такие возбудители постоянного тока приводятся в действие своим электродвигателем переменного трехфазного тока и включены как резерв в схему сразу нескольких турбоустановок. С возбудителя постоянный ток подается в ротор генератора посредством скользящего контакта через щётки и контактные кольца. Современные турбогенераторы используют тиристорные системы самовозбуждения.

24 октября 2012

Электрическая энергия давно вошла в нашу жизнь. Еще греческий философ Фалес в 7 веке до нашей эры обнаружил, что янтарь, потертый о шерсть начинает притягивать предметы. Но долгое время на этот факт никто не обращал внимание. Лишь в 1600 году впервые появился термин «Электричество», а в 1650 году Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания. Это была первая простейшая электростатическая машина.

Прошло много лет с тех пор, но даже сегодня, в мире, заполненном терабайтами информации, когда можно самому узнать все, что тебя интересует, для многих остается загадкой как производится электричество, как его доставляют к нам в дом, офис, на предприятие…

В несколько частей рассмотрим эти процессы.

Часть I. Генерация электрической энергии.

Откуда же берется электрическая энергия? Появляется эта энергия из других видов энергии – тепловой, механической, ядерной, химической и многих других. В промышленных масштабах электрическую энергию получают на электростанциях. Рассмотрим только самые распространенные виды электростанций.

1) Тепловые электростанции. Сегодня из можно объединить одним термином – ГРЭС (Государственная Районная Электростанция). Конечно, сегодня этот термин потерял первоначальный смысл, но он не ушел в вечность, а остался с нами.

Тепловые электростанции делятся на несколько подтипов:

А) Конденсационная электростанция (КЭС) - тепловая электростанция, производящая только электрическую энергию, своим названием этот тип электростанций обязан особенностям принципа работы.

Принцип работы: В котел при помощи насосов подается воздух и топливо (газообразное, жидкое или твердое). Получается топливо-воздушная смесь, которая горит в топке котла, выделяя огромное количество теплоты. При этом вода проходит по трубной системе, которая располагается внутри котла. Выделяющаяся теплота передается этой воде, при этом ее температура повышается и доводится до кипения. Пар, который был получен в котле снова идет в котел для перегревания его выше температуры кипения воды (при данном давлении), затем по паропроводам он поступает на паровую турбину, в которой пар совершает работу. При этом он расширяется, уменьшается его температура и давление. Таким образом, потенциальная энергия пара передается турбине, а значит, превращается в кинетическую. Турбина же в свою очередь приводит в движение ротор трехфазного генератора переменного тока, который находится на одном валу с турбиной и производит энергию.

Рассмотрим некоторые элементы КЭС поближе.

Паровая турбина.

Поток водяного пара поступает через направляющие аппараты на криволинейные лопатки, закрепленные по окружности ротора, и, воздействуя на них, приводит ротор во вращение. Между рядами лопаток, как видите, есть промежутки. Они есть потому, что этот ротор вынут из корпуса. В корпус тоже встроены ряды лопаток, но они неподвижны и служат для создания нужного угла падения пара на движущиеся лопатки.

Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум.

Турбина и генератор, которые находятся на одном валу называются турбогенератором. Трехфазный генератор переменного тока (синхронная машина).

Он состоит из:


Который повышает напряжение до стандартного значения (35-110-220-330-500-750 кВ). При этом ток значительно уменьшается (например, при увеличении напряжения в 2 раза, ток уменьшается в 4 раза), что позволяет передавать мощность на большие расстояния. Следует отметить, что когда мы говорим о классе напряжения, то мы имеем в виду линейное (междуфазное) напряжение.

Активную мощность, которую вырабатывает генератор, регулируют изменением количеством энергоносителя, при этом изменяется ток в обмотке ротора. Для увеличения выдаваемой активной мощности нужно увеличить подачу пара на турбину, при этом ток в обмотке ротора возрастет. Не следует забывать, что генератор синхронный, а это значит, что его частота всегда равна частоте тока в энергосистеме, и изменение параметров энергоносителя не повлияет на частоту его вращения.

Кроме того, генератор вырабатывает и реактивную мощность. Ее можно использовать для регулирования выдаваемого напряжения в небольших пределах (т.е. это не основное средство регулирования напряжения в энергосистеме). Работает это таким образом. При перевозбуждении обмотки ротора, т.е. при повышении напряжения на роторе сверх номинала, «излишек» реактивной мощности выдается в энергосистему, а когда обмотку ротора недовозбуждают, то реактивная мощность потребляется генератором.

Таким образом, в переменном токе мы говорим о полной мощности (измеряется в вольт-амперах – ВА), которая равна корню квадратному от суммы активной (измеряется в ваттах – Вт) и реактивной (измеряется в вольт-амперах реактивных – ВАР) мощностях.

Вода в водохранилище служит для отведения тепла от конденсатора. Однако, часто для этих целей используют брызгальные бассейны


или градирни. Градирни бывают башенными Рис.8

или вентиляторными Рис.9

Градирни устроены почти так же как и , с тем лишь различием, что вода стекает по радиаторам, передает им тепло, а уже они охлаждаются нагнетаемым воздухом. При этом часть воды испаряется и уносится в атмосферу.
КПД такой электростанции не превышает 30%.

Б) Газотурбинная электростанция.

На газотурбинной электростанции турбогенератор приводится в движение не паром, а непосредственно газами, получаемыми при сгорании топлива. При этом можно использовать только природный газ, иначе турбина быстро выйдет из стоя из-за ее загрязнения продуктами горения. КПД на максимальной нагрузке 25-33%

Гораздо больший КПД (до 60%) можно получить, совмещая паровой и газовый циклы. Такие установки называются парогазовыми. В них вместо обычного котла установлен котел-утилизатор, не имеющий собственных горелок. Теплоту он получает от выхлопа газовой турбины. В настоящее время ПГУ активнейшим образом внедряются в нашу жизнь, но пока в России их немного.

В) Теплоэлектроцентрали (очень давно стали неотъемлемой частью крупных городов). Рис.11

ТЭЦ конструктивно устроена как конденсационная электростанция (КЭС). Особенность электростанции такого типа состоит в том, что она может вырабатывать одновременно как тепловую, так и электрическую энергию. В зависимости от вида паровой турбины, существуют различные способы отборы пара, которые позволяют забирать из нее пар с разными параметрами. При этом часть пара или полностью весь пар (зависит от типа турбины) поступает в сетевой подогреватель, отдает ему теплоту и конденсируется там. Теплофикационные турбины позволяют регулировать количество пара для тепловых или промышленных нужд что позволяет ТЭЦ работать в нескольких режимах по нагрузке:

тепловому - выработка электрической энергии полностью зависит от выработки пара для промышленных или теплофикационных нужд.

электрическому - электрическая нагрузка независима от тепловой. Кроме того, ТЭЦ могут работать и в полностью конденсационном режиме. Это может потребоваться, например, при резком дефиците активной мощности летом. Такой режим является невыгодным для ТЭЦ, т.к. значительно снижается КПД.

Одновременное производство электрической энергии и тепла (когенерация) – выгодный процесс, при котором КПД станции существенно повышается. Так, например, расчетный КПД КЭС составляет максимум 30%, а у ТЭЦ – около 80%. Плюс ко всему, когенерация позволяет уменьшить холостые тепловые выбросы, что положительно сказывается на экологии местности, в которой расположена ТЭЦ (по сравнению с тем, если бы тут была КЭС аналогичной мощности).

Рассмотрим подробнее паровую турбину.

К теплофикационным паровым турбинам относятся турбины с:

Противодавлением;

Регулируемым отбором пара;

Отбором и противодавлением.

Турбины с противодавлением работают с выхлопом пара не в конденсатор, как у КЭС, а в сетевой подогреватель, то есть весь пар, пошедший через турбину, идет на теплофикационные нужды. Конструкция таких турбин обладает существенным недостатком: график электрической нагрузки полностью зависит от графика тепловой нагрузки, то есть такие аппараты не могут принимать участия в оперативном регулировании частоты тока в энергосистеме.

В турбинах, имеющих регулируемый отбор пара, происходит его отбор в нужном количестве в промежуточных ступенях, при этом выбирают такие ступени для отбора пара, какие подходят в данном случае. Такой тип турбины обладает независимостью от тепловой нагрузки и регулирование выдаваемой активной мощности можно регулировать в больших пределах, чем у ТЭЦ с противодавлением.

Турбины с отбором и противодавлением совмещают в себе функции первых двух видов турбин.

Теплофикационные турбины ТЭЦ не всегда не способны за малый промежуток времени изменить тепловую нагрузку. Для покрытия пиков нагрузки,а иногда и для увеличения электрической мощности путем перевода турбин в конденсационный режим, на ТЭЦ устанавливают пиковые водогрейные котлы.

2) Атомные электростанции.

В России на настоящий момент существует 3 вида реакторных установок. Общий принцип их работы примерно похож на работу КЭС (в былые времена АЭС называли ГРЭС). Принципиальное различие состоит лишь в том, что тепловую энергию получают не в котлах на органическом топливе, а в ядерных реакторах.

Рассмотрим две самых распространенных типов реакторов в России.

1) Реактор РБМК .


Отличительная особенность этого реактора состоит в том, что пар для вращения турбины получают непосредственно в активной зоне реактора.

Активная зона РБМК. Рис.13

состоит из вертикальных графитовых колонн, в которых находятся продольные отверстия, с вставленными туда трубами из циркониевого сплава и нержавеющей стали. Графит выполняет роль замедлителя нейтронов. Все каналы делятся на топливные и каналы СУЗ (система управления и защиты). Они имеют разные контуры охлаждения. В топливные каналы вставляют кассету (ТВС – тепловыделяющую сборку) со стержнями (ТВЭЛ – тепловыделяющий элемент) внутри которых находятся урановые таблетки в герметичной оболочке. Понятно, что именно от них получают тепловую энергию, которая передается непрерывно циркулирующему снизу вверх теплоносителю под большим давлением – обычной, но очень хорошо очищенной от примесей воде.

Вода, проходя по топливным каналам, частично испаряется, пароводяная смесь поступает от всех отдельных топливных каналов в 2 барабан-сепаратора, где происходит отделение (сепарация) пара от воды. Вода снова уходит в реактор с помощью циркуляционных насосов (всего из 4 на петлю), а пар по паропроводам идет на 2 турбины. Затем пар конденсируется в конденсаторе, превращается в воду, которая снова идет в реактор.

Тепловой мощностью реактора управляют только с помощью стержней-поглотителей нейтронов из бора, которые перемещаются в каналах СУЗ. Вода, охлаждающая эти каналы идет сверху вниз.

Как вы могли заметить, я еще ни разу не сказал про корпус реактора. Дело в том, что фактически у РБМК нет корпуса. Активная зона про которую я вам сейчас рассказывал помещена в бетонную шахту, сверху она закрыта крышкой весом в 2000 тонн.

На приведенном рисунке видна верхняя биологическая защита реактора. Но не стоит ожидать, что приподняв один из блоков, можно будет увидеть желто-зеленое жерло активной зоны, нет. Сама крышка располагается значительно ниже, а над ней, в пространстве до верхней биологической защиты остается промежуток для коммуникаций каналов и полностью извлеченных стержней поглотителей.

Между графитовыми колоннами оставляют пространство для теплового расширения графита. В этом пространстве циркулирует смесь газов азота и гелия. По ее составу судят о герметичности топливных каналов. Активная зона РБМК рассчитана на разрыв не более 5 каналов, если разгерметизируется больше – произойдет отрыв крышки реактора и раскрытие остальных каналов. Такое развитие событий вызовет повторение Чернобыльской трагедии (тут я имею в виду не саму техногенную катастрофу, а ее последствия).

Рассмотрим плюсы РБМК:

—Благодаря поканальному регулированию тепловой мощности есть возможность менять топливные сборки, не останавливая реактор. Каждый день, обычно, меняют несколько сборок.

—Низкое давление в КМПЦ (контур многократной принудительной циркуляции), что способствует более мягкому протеканию аварий, связанных с его разгерметизацией.

—Отсутствие сложного в изготовлении корпуса реактора.

Рассмотрим минусы РБМК:

—В ходе эксплуатации были обнаружены многочисленные просчеты в геометрии активной зоны, устранить которые на действующих энергоблоках 1-го и 2-го поколений (Ленинград, Курск, Чернобыль, Смоленск) полностью не возможно. Энергоблоки РБМК 3-его поколения (он один – на 3 энергоблоке Смоленской АЭС) лишен этих недостатков.

—Реактор одноконтурный. То есть турбины вращает пар, полученный непосредственно в реакторе. А это значит, что он содержит радиоактивные компоненты. При разгерметизации турбины (а такое было на Чернобыльской АЭС в 1993 году) ее ремонт будет сильно усложнен, а, может быть, и невозможен.

—Срок службы реактора определяется сроком службы графита (30-40 лет). Затем наступает его деградация, проявляющаяся в его разбухании. Этот процесс уже вызывает серьезные опасения на старейшем энергоблоке РБМК Ленинград-1, построенном в 1973 году (ему уже 39 лет). Наиболее вероятный выход из ситуации – заглушение n-нного количества каналов для уменьшения теплового расширения графита.

—Графитовый замедлитель является горючим материалом.

—Ввиду огромного количества запорной арматуры, реактор сложен в управлении.

— На 1 и 2 поколениях существует неустойчивость при работе на малых мощностях.

В целом можно сказать, что РБМК – хороший реактор для своего времени. В настоящее время принято решение не строить энергоблоки с этим типом реакторов.

2) Реактор ВВЭР.

На смену РБМК в настоящее время приходит ВВЭР. Он обладает значительными плюсами по сравнению с РБМК.

Активная зона полностью находится в очень прочном корпусе, который изготавливают на заводе и привозят железнодорожным, а затем и автомобильным транспортом на строящийся энергоблок в полностью готовом виде. Замедлителем является чистая вода под давлением. Реактор состоит из 2-х контуров: вода первого контура под большим давлением охлаждает топливные сборки, передавая тепло 2-му контуру с помощью парогенератора (выполняет функцию теплообменника между 2-ми изолированными контурами). В нем вода второго контура кипит, превращается в пар и идет на турбину. В первом контуре вода не кипит, так как она находится под очень большим давлением. Отработанный пар конденсируется в конденсаторе и снова идет в парогенератор. Двухконтурная схема обладает значительными плюсами по сравнению с одноконтурной:

Пар, идущий на турбину не радиоктивен.

Мощностью реактора можно управлять не только стержнями-поглотителями, но и раствором борной кислоты, что делает реактор более устойчивым.

Элементы первого контура располагаются очень близко друг от друга, поэтому их можно поместить в общую защитную оболочку. При разрывах в первом контуре радиоактивные элементы попадут в гермооболочку и не выйдут в окружающую среду. Кроме того гермооболочка защищает реактор от внешнего воздействия (например от падения небольшого самолета или взрыва за периметром станции).

Реактор не сложен в управлении.

Имеются так же и минусы:

—В отличие от РБМК, топливо нельзя менять при работающем реакторе, т.к. оно находится в общем корпусе, а не в отдельных каналах, как в РБМК. Время перезагрузки топлива обычно совпадает со временем текущего ремонта, что уменьшает воздействие этого фактора на КИУМ (коэффициент используемой установленной мощности).

—Первый контур находится под большим давлением, что потенциально может вызвать больший масштаб аварии при разгерметизации, чем РБМК.

—Корпус реактора очень сложно перевезти с завода-изготовителя на стройплощадку АЭС.

Что же, работу тепловых электростанций мы рассмотрели, теперь рассмотрим работу

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. ГЭС обладают очень высокой маневренностью вырабатываемой мощности, а также малой стоимостью вырабатываемой электроэнергии. Эта особенность ГЭС привела с созданию другого типа электростанции – ГАЭС. Такие станции способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (обычно ночью), гидроагрегаты ГАЭС работают как насосы, потребляя электрическую энергию из энергосистемы, и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность (в пики нагрузки), вода из них поступает в напорный трубопровод и приводит в действие турбины. ГАЭС выполняют исключительно важную функцию в энергосистеме (регулирование частоты), но они не получают широкого распространения у нас в стране, т.к. в итоге они потребляют больше мощности, чем выдают. То есть станция такого типа убыточна для владельца. Например, на Загорской ГАЭС мощность гидрогенераторов в генераторном режиме 1200 МВт, а в насосном – 1320 МВт. Однако такой тип станции наилучшем образом подходит для быстрого увеличения или уменьшения вырабатываемой мощности, поэтому их выгодно сооружать около, например, АЭС, так как последние работают в базовом режиме.

Мы с вами рассмотрели как именно производится электрическая энергия. Пора задать себе серьезный вопрос: «А какой тип станций наилучшем образом отвечает всем современным требованиям по надежности, экологичности, а кроме этого, еще и будет отличаться малой стоимостью энергии?» Каждый ответит на этот вопрос по-разному. Приведу свой список «лучших из лучших».

1) ТЭЦ на природном газе. КПД таких станций очень высок, высока и стоимость топлива, но природный газ – один из самых «чистых» видов топлива, а это очень важно для экологии города, в черте которых обычно и располагаются ТЭЦ.

2) ГЭС и ГАЭС. Преимущества над тепловыми станциями очевидно, так как этот тип станции не загрязняет атмосферу и производит самую «дешевую» энергию, которая плюс ко всему является возобновляемым ресурсом.

3) ПГУ на природном газе. Самый высокий КПД среди тепловых станций, а так же малое количество потребляемого топлива, позволит частично решить проблему теплового загрязнения биосферы и ограниченных запасов ископаемого топлива.

4) АЭС. В нормальном режиме работы АЭС выбрасывает в окружающую среду в 3-5 раз меньше радиоактивных веществ, чем тепловая станция той же мощности, поэтому частичное замещения тепловых электростанций атомными вполне оправдано.

5) ГРЭС. В настоящее время на таких станциях в качестве топлива используют природный газ. Это является абсолютно бессмысленным, так как с тем же успехов в топках ГРЭС можно утилизировать попутный нефтяной газ (ПНГ) или сжигать уголь, запасы которого огромны, по сравнению с запасами природного газа.

На этом я завершаю первую часть статьи.

Материал подготовил:
студент группы ЭС-11б ЮЗГУ Агибалов Сергей.

Конструкция данного агрегата описывается еще в учебниках 8 класса по физике. Об устройстве паровой турбины рассказывается в книгах следующим образом. Данный вид турбины - это вид двигателя, в котором пар или же нагретый воздух способен вращать вал двигателя без взаимодействия с поршнем, шатуном или коленчатым валом.

Краткое описание устройства

Кратко устройство паровой турбины можно описать следующим образом. На основной элемент, то есть вал, закрепляется диск, к которому крепятся лопатки. Около данных элементов также располагаются такие части, как трубы-сопла. Через них и происходит подача пара из котла. При прохождении пара сквозь сопло он оказывает определенное давление на лопатки, а также диск всей установки. Именно это воздействие приводит во вращение диск турбины вместе с лопатками.

В настоящее время в таких агрегатах чаще всего используется несколько дисков, которые насаживаются на один вал. При таком устройстве паровой турбины происходит следующее. Энергия пара, проходя через каждую лопатку каждого диска, будет отдавать часть своей энергии этим элементам. Основное применение паровые турбины нашли на атомных, а также где они соединяются с валом электрического тока. Скорость вращения вала паровой турбины достигает 3000 оборотов в минуту. Данного значения хватает для приемлемой работы генераторов электрического тока.

Если говорить о применении данных агрегатов, то стоит упомянуть, что они успешно эксплуатируются на кораблях и суднах. Однако из-за устройства паровой турбины, в частности, по причине того, что необходимо большое количество воды для работы турбины, ее эксплуатация на сухопутных и воздушных средствах передвижения невозможна.

Устройство сопла турбины. На что оно влияет

Одним из важнейших элементов для работы устройства стало сопло, сквозь которое и осуществляется прохождение пара.

В наиболее раннем устройстве паровой турбины, когда еще до конца не были изучены такие вещи, как расширение пара, построить рационально функционирующий агрегат с высоким КПД было проблематично. Причина заключалась в том, что сопло, которое использовалось вначале, имело одинаковый диаметр по всей своей длине. А это влекло за собой то, что пар, проходя через трубу и попадая в пространство с меньшим давлением, чем внутри, терял давление и увеличивал свою скорость, но только до определенного значения. Если говорить о насыщении сухого пара, то его давление на выходе из трубки не может быть меньше, чем 0,58 от начального давления. Данный параметр называют Основываясь на этом значении, можно получить и предельную скорость движения пара, которую называют также критической скоростью, а ее значение для перегретого пара равно 0,546 от начального давления.

Таких параметров оказалось мало для нормального функционирования турбины. К тому же при выходе из сопла такой формы пар начинал клубиться из-за расширения в атмосфере. Все эти недостатки удалось устранить, когда устройство паровой турбины, ее сопла, было изменено. В начале отбора труба была узкой, постепенно расширяясь к концу. Основная отличительная особенность, которая стала решающим фактором, - это то, что с такой формой стало возможно привести давление у конца сопла к давлению окружающей среды после трубы. Это решило проблему с клубами пара, которые сильно снижали скорость, а также удалось добиться сверхкритических значений для этого параметра, а также давления.

Устройство паровой турбины и принцип работы

Здесь важно сказать о том, что паровая турбина использует два различных принципа работы, которые зависят от ее устройства.

Первый принцип называют активными турбинами. В этом случае, имеются в виду устройства, у которых расширения пара осуществляется только в неподвижных соплах, а также до поступления его на рабочие лопатки.

Устройство паровой турбины и принцип работы второго типа называют реактивным. К таким агрегатам относят те, у которых расширение пара происходит не только до вступления его на рабочие лопатки, но и во время прохождения между таковыми. Еще такие устройства называют работающими на реакции. Если падения тепла в соплах составляет примерно половину от общего теплопадения, то турбину называют также реактивной.

Если рассматривать устройство паровой турбины и ее основных элементов, то нужно обратить внимание на следующее. Внутри турбины происходит такой процесс: струя жидкости, которая направляется на лопатку, будет оказывать на нее давление, которое будет зависеть от таких параметров, как расход, скорость при входе, а также при выходе на поверхность, форма поверхности лопатки, угол направления струи по отношению к данной поверхности. Здесь важно отметить, что при такой работе вовсе не нужно делать так, чтобы поток воды бил о лопатку. Напротив, в устройствах паровых агрегатов этого принято избегать, и чаще всего делают так, чтобы струя плавно обтекала лопатку.

Активная работа

Каково устройство паровой турбины, работающей на таком принципе. Здесь за основу взят закон о том, что любое тело, обладающее даже малой скоростью, может иметь высокую кинетическую энергию, если движется с большой скоростью. Однако здесь сразу же надо учитывать, что эта энергия очень быстро пропадает, если скорость тела начнет падать. В таком случае, имеется два варианта развития событий, если струя пара ударится о плоскую поверхность, которая будет перпендикулярна ее движению.

Первый вариант - удар происходит о неподвижную поверхность. В таком случае вся кинетическая энергия, которой обладало тело, частично превратится в тепловую энергию, а остальная часть израсходуется на то, чтобы отбросить частицы жидкости в обратном направлении, а также назад. Естественно, что никакой полезной работы выполнено при этом не будет.

Второй вариант - поверхность может перемещаться. В таком случае некоторая часть энергии уйдет на то, чтобы сдвинуть платформу с места, а остальная все так же будет затрачена впустую.

В устройстве паровой турбины и принципе действия, который называется активным, используется именно второй вариант. Естественно, нужно понимать, что при работе агрегата необходимо добиться того, чтобы расход энергии на бесполезную работу был минимальным. Еще одно важное условие заключается в том, что необходимо направить струю пара таким образом, чтобы она не повреждала лопатки при ударе. Достичь выполнения этого условия можно лишь при определенной форме поверхности.

Путем испытаний и расчетов было установлено, что наилучшей поверхностью для работы со струями пара является та, которая сможет обеспечить плавный поворот, после которого движение рабочего вещества будет перенаправлено в противоположную сторону от изначальной. Другими словами, необходимо придать лопаткам форму полукруга. В таком случае, сталкиваясь с препятствием, максимальная часть кинетической энергии будет передаваться механическом устройству, заставляя его вращаться. Потери же сведутся к минимуму.

Как работает активная турбина

Устройство и принцип действия паровой турбины активного типа заключается в следующем.

Свежий пар с определенными значениями давления и скорости передается в сопло, где происходит его расширение также до определенного показателя давления. Естественно, что вместе с этим параметром, будет увеличиваться и скорость струи. С увеличенным значением скорости, поток пара доходит до механических частей - лопаток. Воздействуя на эти элементы, струя рабочего вещества заставляет вращаться диск, а также вал, на котором он закреплен.

Далее, при выходе из лопаток, поток пара обладает уже другим значением скорости, которое обязательно будет ниже, чем перед этими элементами. Это происходит из-за того, что часть кинетической энергии преобразовалась в механическую. Здесь также важно отметить, что во время прохождения по лопаткам значение давления меняется. Однако важно то, что на входе и на выходе из этих элементов данный параметр имеет одинаковое значение. Это обусловлено тем, что каналы между лопатками обладают одинаковым сечением по всей своей длине, а также внутри этих деталей не происходит добавочного расширения пара. Для того чтобы выпустить пар, который уже отработал, имеется специальный патрубок.

Механическое устройство турбины

Устройство и работа паровой турбины с точки зрения механики выглядят так.

Агрегат состоит из трех цилиндров, каждый из которых представляет собой статор, имеющий неподвижный корпус, а также вращающийся ротор. Отдельно расположенные роторы соединяются муфтами. Цепочка, которая собирается из отдельных роторов цилиндров, а также из генератора и возбудителя, называется валопроводом. Длина данного устройства при максимальном значении составляющих компонентов (в настоящее время - это не больше 5 генераторов) - 80 метров.

Далее, устройство и работа паровой турбины выглядят так. Валопровод выполняет вращательное движение в таких элементах, как опорные подшипники скольжения вкладышей. Вращение происходит на тонкой масляной пленке, металлической же части этих вкладышей вал во время вращения не касается. На сегодняшний день все роторы конструкции размещаются на двух опорных подшипниках.

В некоторых случаях между роторами, принадлежащими к ЦВД и ЦСД, имеется лишь один общий опорный подшипник. Весь пар, который расширяется в турбине, заставляет каждый из роторов выполнять вращательное движение. Вся мощность, которая вырабатывается каждым из роторов, складывается на полумуфте в общее значение и там достигает своего максимального показателя.

Кроме того, каждый элемент находится под воздействием осевого усилия. Эти усилия суммируются, а их максимальное значение, то есть общая осевая нагрузка, передается с гребня на упорные сегменты. Эти детали устанавливаются в корпусе упорного подшипника.

Устройство ротора турбины

Каждый ротор помещается в корпус цилиндра. Показатели давления на сегодняшний день они могут достигать 300 МПа, так что корпус данных устройств выполняется двустенным. Это помогает уменьшить разность давления на каждый из них, что позволяет уменьшать толщину каждой из них. Кроме того, это помогает упростить процесс затяжки фланцевых соединений, а также дает возможность турбине при необходимости быстро изменить показатель своей мощности.

Обязательным является наличие горизонтального разъема, который предназначен для легкого процесса монтажа внутрь корпуса, а также должен обеспечивать быстрый доступ к уже установленному ротору, во время проведения ревизии или ремонта. Когда осуществляется непосредственный то все плоскости разъемов нижних корпусов монтируются специальным образом. Чтобы упростить данную операцию, принято считать, что все горизонтальные плоскости соединены в одну общую.

Когда в дальнейшем наступает момент монтажа валоповоротного устройства паровой турбины, то его помещают в уже имеющийся горизонтальный разъем, что обеспечивает его центровку. Это необходимо для того, чтобы избежать ударения ротора о статор во время вращения. Такой дефект может привести к довольно серьезной аварии на объекте. Из-за того, что пар внутри турбины характеризуется очень высокой температурой, а вращение ротора происходит на масляных пленках, температура масла должна быть не более чем 100 градусов по Цельсию. Это значение подходит как по требованиям пожаробезопасности, так и соответствует наличию определенных смазочных свойств у материала. Для того чтобы добиться таких показателей, вкладыши подшипников выносятся за корпус цилиндра. Их размещают в специальных точках - опорах.

Паровые установки на атомных станциях

Устройство паровой турбины на АЭС можно рассматривать на примере установок насыщенного пара, которые имеются лишь на тех объектах, где используется водяной теплоноситель. Здесь стоит отметить, что начальные характеристики паровых турбин на атомных станциях, характеризуются низкими показателями. Это вынуждает пропускать большее количество рабочего вещества, чтобы добиться нужного результата. Кроме того, из-за этого образуется повышенная влажность, которая быстро нарастает по ступеням турбины. Это привело к тому, что на таких объектах приходится использовать внутритурбинные и внешние влагоулавливающие устройства.

Из-за высокой влажности используемого пара снижается коэффициент полезного действия, а также довольно быстро развивается эрозийный износ проточных частей. Для того чтобы избежать данной проблемы, приходится использовать различные методы укрепления поверхности. К таким способам относятся хромирование, закаливание, электроискровая обработка и т. д. Если на других объектах удается использовать простейшее устройство паровых турбин, то на АЭС нужно не только думать о защите от коррозии, но и об отводе влаги.

Наиболее эффективным способом отвода лишней влаги из турбины стал отбор пара. Отбор вещества осуществляется на регенеративные подогреватели. Тут важно отметить, что если такие отборы установлены после каждой ступени расширения, то необходимость в разработке дополнительных внутритурбинных влагоулавливателей отпадает. Также можно добавить, что допустимые пределы влажности пара основываются на диаметре лопатки, а также на скорости вращения.

Каково устройство паровых и газовых турбин

Наилучшим качеством, которое стало важнейшим преимуществом паровой турбины, является то, что она не требует какого-либо соединения с валом электрического генератора. Также это устройство отлично справлялось с перегрузками, и его легко можно было регулировать по частоте вращения. у таких агрегатов также довольно высок, что в сочетании с другими преимуществами и вывело их на передний план, если возникала необходимость соединения с электрическими генераторами. Таким же является и устройство паровой турбины AEG.

Схожими объектами стали и газовые турбины. Если рассматривать эти приспособления с точки зрения конструкции, то они практически ничем не отличаются. Как и паровая турбина, газовая является машиной лопаточного типа. Кроме этого, в обоих агрегатах вращение ротора достигается за счет того, что происходит трансформация кинетической энергии потока рабочего вещества.

Существенное отличие между этими установками заключается как раз в типе рабочего вещества. Естественно, что в паровой турбине таким веществом является водяной пар, а в газовой установке - это газ, который чаще всего получен при сжигании каких-либо продуктов, либо является смесью пара и воздуха. Еще одно отличие заключается в том, что для образования этих рабочих веществ необходимо иметь разное дополнительное оборудование. Таким образом, получается, что сами по себе турбины очень похожи, но установки, образующиеся на объектах вокруг них, довольно сильно отличаются.

Паровая турбина с конденсатом

Конденсационные устройства и паровые турбины Лосев С. М. описывал в своей книге, выпущенной в 1964 году. Издание содержало теорию, конструкцию и эксплуатацию паровых установок, а также конденсационных агрегатов.

Турбинная установка, которая находится в котле, имеет три среды - вода, пар и конденсат. Эти три вещества образуют между собой некий замкнутый цикл. Тут важно отметить, что в такой среде во время преобразования теряется достаточно малое количество пара и жидкости. Чтобы компенсировать небольшие потери, в установку добавляют сырую воду, которая перед этим проходит водоочистительное устройство. В этом агрегате жидкость подвергается воздействию различных химикатов, основное предназначение которых в удалении ненужных примесей из воды.

Принцип работы в таких установках следующий:

  • Пар, который уже отработал и обладает пониженным давлением и температурой, попадает из турбины в конденсатор.
  • При прохождении этого участка пути имеется большое количество трубок, по которым непрерывно качается охлаждающая вода при помощи насоса. Чаще всего эта жидкость берется из рек, озер или прудов.
  • В момент соприкосновения с холодной поверхностью трубки отработавший пар начинает образовывать конденсат, так как его температура все еще выше, чем в трубах.
  • Весь скопившийся конденсат постоянно поступает в конденсатор, откуда он непрерывно откачивается насосом. После этого жидкость передается в деаэратор.
  • Из этого элемента вода снова поступает в паровой котел, где превращается в пар, и процесс начинается сначала.

Кроме основных элементов и простого принципа работы, имеется пара дополнительных агрегатов, таких как турбонаддув и подогреватель.