В квартире

Схема управления (отключения) насосом по уровню воды (на откачку воды и на налив). Автоматика для насоса: типы оборудования и схема установки Схема управления количество жидкости воды и насосом

Схема управления (отключения) насосом по уровню воды (на откачку воды и на налив). Автоматика для насоса: типы оборудования и схема установки Схема управления количество жидкости воды и насосом

Без воды обойтись невозможно, а если у вас есть свое хозяйство или вы проживаете в частном доме то вам не обойтись без простой схемы управления насосом. Управление насосом должна работать хотя бы в двух режимах: дренаж – выкачивание воды из емкости, скважины или колодца и водоподъем - в режиме наполнения емкости. В случае наполнения водного резервуара возможен перелив, а в случае выкачивания воды из него насос может попасть под сухой ход и сгореть. Для избегания этих проблем и предназначена любая схема управления насосом.

В разработке применены два датчика: короткий стальной прут контролирует максимально разрешенный уровень воды и длинный металлический прут датчик минимального уровня. Сама резервуар металлический и подключен к минусовой шине. Если емкость сделана из диэлектрического материала тогда допускается применять дополнительный стальной прут во всю длину емкости. В случае контакта с водой длинным датчиком и с коротким датчиком, логический уровень на выводах микросхемы К561ЛЕ5 меняется с высокого на низкий, изменяя режим работы насоса.


Управление насосом схема на К561ЛЕ5

В случае если уровень воды ниже обоих датчиков, на десятом выводе микросхемы логический ноль. При плавном повышении уровня воды даже в случае, если вода будет контактировать с длинным датчиком, все равно будет логический ноль. Как только уровень воды дойдет до короткого датчика, появится логическая единица и транзистор включит реле управления насосом, который начнет откачивает воду из емкости.

Когда, уровень воды упадет, и короткий датчик не будет соприкасаться с водой, то на выводе 10 все равно будет логическая единица и насос продолжает работать. Но если уровень воды опустится ниже длинного датчика, то появится логический ноль и насос прекратит свою работу. Тумблер S1 используется для обратного действия.

В этой схеме Датчик уровня воды в резервуаре собран так, что контакты SF1 замыкаются, если уровень воды окажется ниже минимального, a геркона SF2 - замыкаются только тогда, когда вода достигнет максимального уровня.

Эту радиолюбительскую разработку я использовал на даче, для контроля и поддержания определенное количества уровня жидкости в поливальном баке.

Любой автомат подачи воды начинается с датчика. Чаще всего используют контактные датчики, погружаемые в воду и измеряющие сопротивление воды. Мне кажется что такой способ имеет серьезные недостатки. Вода постоянно находится под током. Да, этот ток мизерный, но каким бы он не был, он приводит к электрохимическим процессам в воде. Это не только усиливает коррозию металлического резервуара, контактов датчика, но и увеличивает в воде содержание солей металлов, что может быть неполезно для организма, конечно, кроме случая использования серебряных контактов и емкости из пищевой пластмассы. В таком случае добавление в воду ионов серебра может оказать и некоторую пользу организму. Но все же предпочтительно отказаться от Датчик уровня воды, используемый в этой разработке, представляет собой пластмассовую трубу, опущенную вертикально в бак с водой. Внутри трубы свободно перемещается поплавок, вырезанный из пенопласта, на котором закреплен магнит, взятый от старого динамика. Магнит расположен на поверхности поплавка и с водой не контактирует. Чтобы поплавок не выпадал из трубы при низком уровне воды нижнюю часть трубы перекрывают перемычкой, сделанной из корпуса старой шариковой авторучки (в стенках трубы напротив друг друга сверлят отверстия и с некоторым трением вставляют туда авторучку).


Управление насосом схема автомат

Снаружи на трубе закрепляют два геркона, место их установки подбирают экспериментально исходя из особенностей конкретного бака. Один геркон должен замыкаться под действием постоянного магнита поплавка при опустошении бака до минимального уровня, при котором нужно включать электронасос для пополнения бака. Второй геркон устанавливается в таком месте трубы, где он замыкается под действием магнита поплавка при максимальном заполнении бака, когда нансос нужно выключить. Для повышения надежности можно в месте установке каждого геркона установить несколько герконов, расположив их по кругу трубы и подключив параллельно друг другу. Дело в том, что в процессе движения датчик может поворачиваться, а геркон более чувствителен к перпендикулярному воздействию на него магнитного поля, поэтому при некотором положении магнита он может и не срабатывать.

Еще нужно учесть что расстояние между герконом (герконами) нижнего и верхнего уровня на трубе должно быть значительным чтобы ни в каком положении поплавка магнитное поле не могло приводить к замыканию обоих герконов (обоих групп герконов), так как одновременное замыкание герконов нижнего и верхнего уровня приводит к замыканию в цепи питания схемы. Герконы и идущие к ним провода необходимо тщательно изолировать от воды используя герметик.

Схема электронной части показана на рисунке выше. На элементах D1.1 и D1.2 построен триггер Шмитта с относительно небольшим входным сопротивлением (зависит от величины R1). Небольшое входное сопротивление приводит к минимальному уровню наводок на провод, идущий от геркона и снижает склонность схемы к повреждению статическим электричеством. Как известно, триггер Шмитта принимает состояние соответствующее состоянию на его входе. Входом являются соединенные вместе выводы элемента D1.1. Если на этот вход подать логическую единицу, то на выходе элемента D1.2 так же будет логическая единица, но если после этого вход триггера отключить, то он так и останется в единичном состояния за счет того, что на его вход будет поступать логическая единица с его же выхода через резистор R1. Аналогично и с установкой в нулевое состояние.

Геркон SG1 установлен в нижней части трубы и отвечает за включение насоса для наполнения бака. Геркон SG2 располагается в верхней части трубы и отвечает за выключение насоса. Один или другой герконы замыкаются только в верхнем и нижнем положении уровня воды. В среднем положении магнит не действует на них и они не замкнуты. Предположим схему включили, а уровень воды был средним. Триггер Шмитта при включении питания может установиться произвольно в любое положение. Если он установился в положение единицы, то включается насос и накачивает воду в бак до тех пор, пока не замкнется геркон SG2. Если триггер Шмитта установился в нулевое положение, то насос не включается до тех пор пока уровень воды не опустится до момента замыкания SG1. Предположим, уровень воды в баке минимальный. Тогда замыкается геркон SG1 и через него на вход триггера Шмитта поступает напряжение высокого уровня. На выходе D1.2 устанавливается логическая единица.

Соответственно, единица будет и на выходе D1.4. Транзистор VT3 открывается и подает питание на реле К1, если переключатель S1 находится в положении «АВТ», то это приведет к включению электронасоса. В таком состоянии схема будет находится до тех пор, пока поплавок не поднимется по трубе на столько, что его магнит замкнет геркон SG2. Теперь вход триггера Шмитта соединен с общим минусом, то есть, на нем низкий уровень. Соответственно низкий уровень будет и на выходе D1.2 и D1.4. Транзистор VT3 закрывается и если S1 в положении «АВТ» его контакты выключают электронасос. Светодиоды HL1 и HL2 служат для индикации состояния системы. Если насос включен горит HL1, а если выключен - HL2. По состоянию светодиодов можно следить за степенью заполнения резервуара и работой электронасоса. Переключатель S1 служит для перехода на ручное или автоматические управление. S1 -это тумблер с нейтральным положением. В нейтральном положении («ВЫК») электронасос выключен независимо от состояния датчиков.

В положении «ВК» насос включен независимо от состояния датчиков. А в положении «АВТ» происходит автоматическое управление насосом. Положения «ВК» и «ВЫК» нужны при проведении техобслуживания или ремонта водопровода, а так же, для ручного управления при неисправности датчиков. Микросхема К561ЛЕ5 или К561ЛА7 - логика работы входов инверторов не имеет значения, входы соединены вместе. Можно использовать любую микросхему серии К561, К176 или CD с числом инверторов не менее четырех. Например, К176ЛЕ5, К176ЛА7, К561ЛН2. Электромагнитное реле К1 с обмоткой на 12V и контактами на 230V при токе до ЗА. Можно использовать любое аналогичное реле или выбрать в зависимости от мощности насоса. Если мощность насоса не более 200W можно использовать реле КУЦ-1 от старого телевизора.

На изготовление блока управления насосом подтолкнула неидеальность нашего деревенского ЖКХ - а именно проблема с водоснабжением. То трубы у них прорывает, то насос на насосной сгорает и так далее. В результате этого у дома пробурена скважина и помещен в нее вибрационный насос типа «Малыш», а в подвале дома установлены емкость из нержавейки на 250л и компрессорная станция, поддерживающая давление в водопроводе дома. Но возникла проблема – поддерживать уровень воды в емкости. В Интернете ничего понравившееся не нашел и стал делать прибор под свои запросы. Стал искать датчики уровня и нашёл вот такие (см. фото датчика).

В качестве варианта управления насосом в скважине решил придумать что-то на контроллере, а заодно немного освоить, так как была нужна многорежимность. За основу был взят микроконтроллер ATtiy2313 и разработана такая вот схема (для лучшего качества смотрите вложение в формате splan7). Схема управления насосом:


Писалась на ассемблере, скачать можно здесь в архиве. Данная схема позволяет управлять насосом в 3-х режимах (выбираются кнопкой «Режим»):
1) Режим «Баня» - включение насоса от кнопки «Вкл/Выкл» - это для того, чтобы заливать воду напрямую из скважины в баню, ну или машину помыть.
2) Режим «Лето» - поддержание уровня воды в емкости с использование датчиков уровня (при достижении уровня контакты датчика замыкаются)
3) Режим «Зима» - долив воды (кнопка Вкл/Выкл) в емкость до уровня «Max» при уровне ниже «Min». Режим введен для того, что при зимних морозах вода в шланге замерзает и, чтобы включить насос в скважине, шланг надо сначала разморозить горячей водой.


Дисплей прикрутил из соображений удобности, сначала хотел светодиоды, но домашним не объяснишь какой огонек что значит, памяти не хватит). На первой строке дисплея выводится информация с названием режима, на второй – такая информация как «Работает насос», «Насос отключен» и «Уровень минимум» для зимнего режима. В итоге собранное устройство управления насосом выглядит следующим образом:


Для удобности добавил включение подсветки дисплея примерно на 8 секунд при нажатии любой кнопки. Питание 12 вольт и реле-повторители особо здесь не нужны. Установил их из-за большой длины кабелей (почти 15 метров) до датчиков уровня. Автор схемы: skateman.

Обсудить статью УПРАВЛЕНИЕ НАСОСОМ

Зачастую бывает мало иметь только насос для откачки или пополнения воды, еще необходимо и управлять им, то есть включать и включать вовремя. Все бы ничего если подобные процессы у вас запланированы, а если нет, то как же быть? Скажем, у вас есть погреб, где вода прибывает… Или обратная ситуация. Есть бак, который должен быть всегда полный, готов для полива. В течение дня вода согревается, а вечером вы поливаете. Так вот, за тем и другим необходимо постоянно следить, а это все время, заботы, ваши труды. Но в наш век такие задачи уже решаются на раз-два, то есть можно автоматизировать процесс. В итоге, автоматика будет все выполнять за вас, накачивать или откачивать воду, а вам лишь останется очень редко следить за ней. Проверять ее работоспособность. Что же, моя статья как раз и будет посвящена такой теме как реализация схемы по откачки или накачке воды по уровню, далее расскажуоб этом более подробно и предметно.

Схема управления (отключения) насосом на откачку воды по уровню

Начну со схемы по откачке воды, то есть когда перед вами стоит задача откачивать воду до определенного уровня, а затем отключать насос, чтобы он не работал на холостом ходу. Взгляните на схему ниже.

Именно такая принципиальная электрическая схема способна обеспечить откачку воды, до заданного уровня. Давайте разберем принцип ее работы, что здесь и зачем.

Итак, представим что вода пополняет наш резервуар, не важно что это ваше помещение, погреб или бак… В итоге, когда вода доходит до верхнего геркона SV1, то на катушку управляющего реле Р1 подается напряжение. Его контакты замыкаются, и через них происходит параллельное подключение геркону. Таким образом реле самоподхватывается. Также включается и силовое реле Р2, которое коммутирует контакты насоса, то есть насос включается на откачку. Далее уровень воды начинает понижаться и доходит до геркона SV2, в этом случае замыкается он и подает положительный потенциал на обмотку катушки. В итоге, на катушке с двух сторон оказывается положительный потенциал, ток не идет, магнитное поле реле ослабевает - реле Р1 отключается. При отключении Р1 отключается и подача питания для реле Р2, то есть насос тоже перестает откачивать воду. В зависимости от мощности насоса, вы можете подобрать реле на необходимый вам ток.
Я ничего не сказал о резисторе 200 Ом. Он необходимо для того, чтобы в процессе включения геркона SV2 не произошло короткого замыкания с минусом, через контакты реле. Резистор лучше всего подобрать такой, чтобы он позволял уверенно срабатывать реле Р1, но был при этом максимально большого возможного потенциала. В моем случае это было 200 Ом. Еще одной особенность схемы является применение герконов. Их плюс при применении очевиден, они не контактируют с водой, а значит, на электрическую схему не будут влиять возможные изменения токов и потенциалов при различных жизненных ситуациях, будь то вода соленая или грязная… Схема будет работать всегда стабильно и «без осечек». Не требуется настройки схемы, все работает сразу, при правильном соединении.

Спустя 2 месяца...

Теперь о том, что было сделано пару месяцев спустя, исходя из требований к уменьшению потребления питания в режиме ожидания. То есть это уже вторая версия всего того, о чем я рассказали выше.
Сами понимаете, что согласно схемы выше будет включен постоянно блок питания на 12 вольт, который между прочим тоже потребляет не бесплатное электричество! А исходя из этого было принято решение сделать схему для срабатывания насоса для откачки или налива воды с током в режиме ожидания равным 0 мА. На самом деле реализовать это оказалось легко. Взгляните на схему ниже.

Первоначально в схеме все цепи разомкнуты, а значит она потребляет наши заявленные 0 мА, то есть ничего. Когда же замыкается верхний геркон, то напряжение через трансформатор и диодный мостик включает реле Р1. Таким образом реле коммутирует через свои контакты и резистор 36 Ом питание на блок питание и опять на саму себя же, то есть самоподхватывается. Насос включается. Далее, когда уровень воды доходит до низа и срабатывает реле Р2, то оно разрывает ту саму цепь самоподхватывания реле Р1, таким образом обесточивая всю схему и приводя его в режим ожидания. Резистор 36 Ом служит для того, чтобы во время включения верхнего геркона ограничить ток на насос, хотя бы немного. Тем самым снизив индукционный ток на герконе и продлив его жизнь. Когда же блок питания будет запитан уже через реле Р1, после его срабатывание, то такое сопротивление без проблем обеспечит напряжение для удержания реле, то есть будет не критично, а во вторых не будет греться, так как через него будет протекать незначительный ток. Это лишь ток от потерь в обмотке и ток на питание реле Р1. Поэтому требования к резистору не критичны, разве что взять его помощнее!
Осталось сказать о том, что в любой из этих схем могут использоваться не только геркон, но и просто концевые датчики.

Что же, теперь давайте разберем обратную ситуацию, когда необходимо воду наоборот закачивать в бак и отключать при высоком уровне в нем. То есть насос включается при низком уровне воды, а выключается при высоком.

"+" - простота сборки и не требует наладки. Не потребляет ток в режиме ожидания!
"-" - В системе имеется концевой датчик работающий с высоким напряжение, поэтому лучше его вынести за пределы воды

Схема управления (отключения) насосом на налив воды по уровню

Если вы охватите нашу статью всю бегло и разом своим взглядом, то заметите, что второй схемы мы просто напросто в статье я не привел, кроме той, что выше.

На самом деле, это само собой разумеющийся факт, ведь чем по сути отличается схема откачивания от схемы накачивания, разве что тем, что герконы расположены один снизу второй внизу. То есть если переставить местами герконы, или переподключить контакты к ним, то одна схема превратиться в другую.

Резюмирую, что для того чтобы переделать вышеприложенную схему в схему по накачке воды, поменяйте местами герконы. В итоге, насос будет включать от нижнего датчика – геркона SV1, а отключаться на верхнем уровне от геркона SV2.

Реализация установки герконов в качестве концевых датчиков для срабатывания насоса в зависимости от уровня воды

Кроме электрической схемы, вам необходимо будет сделать и конструкцию обеспечивающую замыкание герконов, в зависимости от уровня воды. Я со свой стороны могу предложить вам парочку вариантов, которые будут удовлетворять таким условиям. Взгляните на них ниже.

В первом случае реализована конструкция с использованием нити, троса. Во втором жесткая конструкция, когда магниты установлены на стержне, плавающем на поплавке. Описывать элементы каждой из конструкций особого смысла нет, здесь в принципе и так все предельно понятно.

Подключение насоса по схеме срабатывания в зависимости от уровня воды в баке – подводя итоги

Самое главное, это то, что данные схема очень проста, не требует наладки и повторить ее может практически любой, даже не имея опыта работы с электроникой. Второе, схема очень надежная и потребляет минимальную мощность в режиме ожидания (1 вариант) или вовсе ничего (2 вариант), так как все ее цепи разомкнуты. Это значит, что потребление будет ограничиваться лишь потерями тока в блоке питания (1 вариант) или того менее!

Видео о работе датчиков уровня для накачивания и откачивания воды

Цель данной разработки — сконструировать простую, но эффективную схему управления водяным насосом, для наполнения или опустошения резервуара с водой. Схема управления насосом построена на интегральной микросхеме К561ЛЕ5, состоящая из четырех логических элементов .

В устройстве используются два датчика: короткий стальной прут — является датчиком максимального уровня воды и длинный — датчик минимального уровня. Сама емкость металлическая и подключена к минусу схемы. Если емкость не металлическая тогда можно применить дополнительный стальной прут длинной равной глубине емкости.

Схема разработана так, что при соприкосновении воды с длинным датчиком, а также с коротким датчиком, логический уровень соответственно на выводах 9 и 1,2 микросхемы DD1 меняется с высокого на низкий, вызывая изменения в работе насоса.

Когда уровень воды ниже обоих датчиков, на выводе 10 микросхемы DD1 логический ноль. При постепенном повышении уровня воды даже когда вода соприкасается с длинным датчиком на выводе 10 также будет логический ноль. Как только уровень воды поднимется до короткого датчика, на выводе 10 появится логическая единица, в результате чего транзистор VT1 включает реле управления насосом, который в свою очередь откачивает воду из резервуара.

Теперь, уровень воды уменьшается, и короткий датчик больше не будет в контакте с водой, но на выводе 10 все равно будет логическая единица, таким образом, насос продолжает работать. Но когда уровень воды опустится ниже длинного датчика, на выводе 10 появится логический ноль и насос остановится.

Переключатель S1 обеспечивает обратное действие. Когда резистор R3 соединен с выводом 11 микросхемы DD1. насос будет работать, когда емкость пустая, и остановится, когда емкость наполнится, то есть в этом случае насос будет использован для наполнения, а не для опустошения емкости.

Портативный USB осциллограф, 2 канала, 40 МГц....

Шагомер, расчет калорий, мониторинг сна, контроль сердечного ритма...