В квартире

Основы селекции. Методы и задачи

Основы селекции. Методы и задачи

Основные методы селекции растений

Классическими методами селœекции растений были и остаются гибридизация и отбор.
Размещено на реф.рф
Различают две основные формы искусственного отбора: массовый и индивидуальный .

1. Массовый отбор применяют при селœекции перекрестноопыляемых растений, таких, как рожь, кукуруза, подсолнечник. При этом выделяют группу растений, обладающих ценными признаками. В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя даже от одного материнского растения обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

2. Индивидуальный отбор эффективен для самоопыляемых растений (пшеницы, ячменя, гороха). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и принято называть чистой линией . Чистая линия - потомство одной гомозиготной самоопыленной особи. У любой особи тысячи генов, и так как происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всœего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.

3. Естественный отбор в селœекции играет определяющую роль. На любое растение в течение всœей его жизни действует целый комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определœенному температурному и водному режиму.

4. Инбридинг используют при самоопылении перекрестноопыляемых растений , к примеру, для получения чистых линий кукурузы. При этом подбирают такие растения, гибриды которых дают максимальный эффект гетерозиса - жизненной силы, образуют початки более крупные, чем початки родительских форм. От них получают чистые линии - на протяжении ряда лет, производят принудительное самоопыление - срывают метелки с выбранных растений и, когда появляются рыльца пестиков, их опыляют пыльцой этого же растения. Изоляторами предохраняют соцветия от попадания чужой пыльцы. У гибридов многие рецессивные неблагоприятные гены при этом переходят в гомозиготное состояние, и это приводит к снижению их жизнеспособности, к депрессии. Далее скрещивают чистые линии между собой для получения гибридных семян, дающих эффект гетерозиса.

Эффект гетерозиса объясняется двумя основными гипотезами. Гипотеза доминирования предполагает, что эффект гетерозиса зависит от количества доминантных генов в гомозиготном или гетерозиготном состоянии. Чем больше в генотипе генов в доминантном состоянии - тем больший эффект гетерозиса, и первое гибридное поколение дает прибавку урожая до 30% (рис. 339).

ААbbCCdd x aaBBccDD

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования: иногда гетерозиготное состояние по одному или нескольким генам дает гибриду превосходство над родительскими формами по массе и продуктивности. Но начиная со второго поколения эффект гетерозиса затухает, так как часть генов переходит в гомозиготное состояние.

АА 2Аа аа

5. Перекрестное опыление самоопылителœей дает возможность сочетать свойства различных сортов. Рассмотрим, как это практически выполняется при создании новых сортов пшеницы. У цветков растения одного сорта удаляются пыльники, рядом в банке с водой ставится растение другого сорта͵ и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селœекционеру признаки разных сортов.

6. Очень перспективен метод получения полиплоидов, у растений полиплоиды обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Многие культуры представляют из себяестественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

7. Отдаленная гибридизация - скрещивание растений, относящихся к разным видам. Но отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не конъюгируют), и не образуются гаметы.

В 1924 году советский ученый Г.Д.Карпеченко получил плодовитый межродовой гибрид. Он скрестил редьку (2n = 18 редечных хромосом) и капусту (2n = 18 капустных хромосом). У гибрида в диплоидном наборе было 18 хромосом: 9 редечных и 9 капустных, но при мейозе редечные и капустные хромосомы не конъюгировали, гибрид был стерильным.

С помощью колхицина Г.Д.Карпеченко удалось удвоить хромосомный набор гибрида, полиплоид стал иметь 36 хромосом, при мейозе редечные (9 + 9) хромосомы конъюгировали с редечными, капустные (9 + 9) с капустными. Плодовитость была восстановлена. Таким способом были получены пшенично-ржаные гибриды (тритикале), (рис. 341) пшенично-пырейные гибриды и др.
Размещено на реф.рф
Виды, у которых произошло объединœение разных геномов в одном организме, а

затем их кратное увеличение, называются аллополиплоидами.

8. Использование соматических мутаций применимо для селœекции вегетативно размножающихся растений, что использовал в своей работе еще И.В.Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Вместе с тем, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

9. Экспериментальный мутагенез основан на открытии воздействия различных излучений для получения мутаций и на использование химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций, сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Многие методы селœекции растений были предложены И.В.Мичуриным. С помощью метода ментора И.В.Мичурин добивался изменения свойств гибрида в нужную сторону. К примеру, в случае если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества; или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В.Мичурин указывал на возможность управления доминированием определœенных признаков при развитии гибрида. Для этого на ранних стадиях развития крайне важно воздействие определœенными внешними факторами. К примеру, в случае если гибриды выращивать в открытом грунте, на бедных почвах, повышается их морозостойкость.

Основные методы селекции растений - понятие и виды. Классификация и особенности категории "Основные методы селекции растений" 2017, 2018.

В 30-х гг. прошлого столетья Н.И. Вавилов отметил, что проблема создания устойчивых к болезням сортов сельскохозяйственных культур может быть развязана двумя путями: селекцией у узком понимании этого слова (отбором устойчивых растений среди существующих форм) и с помощью гибридизации (скрещивания между собой разных растений). Методы селекции растений на иммунитет к патогенным организмам не специфичны. Они представляют собой модификации обычных селекционных методов. Основные трудности в создании иммунных сортов — необходимость одновременного учета особенностей растений и вредных организмов, которые их повреждают. На данный момент в селекции на устойчивость используют все общепринятые современные методы селекционной работы: гибридизация, отбор, а также полиплоидию, экспериментальный мутагенез, биотехнологию и генную инженерию.

Одной из основных трудностей в селекции растений на иммунитет есть генетическое сцепление признаков растений, которые отображают их филогенетическую историю в условиях природных экосистем. В процессе стихийного одомашнивания и образования высокопродуктивных и высококачественных форм растений система ихнего иммунитета была ослаблена. В тех случаях, когда селекция осуществляется без внимания к иммунитету, ослабление последнего имеет место и в наше время.

Важнейшая задача селекции, генетики, молекулярной биологии и — поиск путей сочетания высокой продуктивности и других хозяйственно ценных свойств растений с признаками их иммунитета. Желательно, чтобы основа иммунитета была полигенной.

Наиболее просто вопрос решается, когда с популяции существуещего сорта возможно выделить растения, которые отличаются высокой иммунной устойчивостью к одному конкретному патогену. Для такого выделения могут быть использованны разные методы отбора и аналитические методы, которые учитывают гетерозисность популяции сорта.

При составлении селекционных программ очень важным является тип опыления популяции растений (перекрестное, самоопыление или популяция относится к промежуточной группе). Селекционная работа на иммунитет к патогену должна вестись с учетом следующих факторов: в популяции растений первой группы единицей анализа является отдельное растение, другой — популяции (сорт или линия).

Традиционные методы селекции в создании генотипов, устойчивых к болезням и вредителям

Отбор. Как в общем в природе, так и в селекционной деятельности человека, отбор является основной процесса получения новых форм (образования видов и разновидов, создание пород, сортов). Отбор наиболее эффективный при работе с культурами самоопылителями, а также растениями, которые размножаются вегетативно (клоновый отбор).

В селекции на устойчивость, отбор результативно используется и сам по себе (есть основным методом при работе с некротрофными патогенами), и как составляющая селекционного процесса, без которой вообще невозможно обойтись при любых методах селекции. В практичной селекции на устойчивость используют два вида отбора: массовый и индивидуальный.

Массовый отбор является древнейшим методом селекции, благодаря ему были созданы сорта так называемой народной селекции, и до сих пор является ценным исходным материалом для современной селекционеров. Это вид отбора, при котором из исходной популяции в поле отбирают большое количество растений, соответствующие требованиям к будущему сорту, оценивая сразу комплекс признаков (в том числе и устойчивость к определенным болезням). Урожай всех отобранных растений объединяют и высевают в следующем году в виде одного участка. Результат массового отбора — это потомство общей массы лучших отобранных по определенному признаку (признакам) растений.

Основными преимуществами массового отбора является его простота и возможность быстро улучшить большое количество материала. К недостаткам можно отнести то, что отобранный массовым отбором материал невозможно проверить с потомством и определить его генетическую ценность, а следовательно, выделить из популяции сорта или гибрида ценные в селекционном отношении формы и использовать их для дальнейшей работы.

Индивидуальный подбор (педигри) — один из самых эффективных современных методов селекции на устойчивость. Гибридизация, искусственный мутагенез, биотехнология и генная инженерия является прежде поставщиками материала для индивидуального отбора — следующий этап селекционной работы, выделяет из предоставленного материала самое ценное.

Суть метода заключается в том, что из исходной популяции отбирают отдельные устойчивые растения, потомство каждой из которых в дальнейшем размножают и изучают отдельно.

Как индивидуальный, так и массовый отбор можут быть одноразовым и многоразовым.

Одноразовый отбор преимущественно применяется в селекции самоопыляющихся культур. Одноразовый индивидуальный отбор предусматривает последовательное изучение во всех звеньях селекционного процесса отобранный один раз по определенному признаку растения. Одноразовый массовый отбор чаще и наиболее эффективно используют для оздоровления сорта в семеноводческой практике. Поэтому его еще называют оздоравливающим.

Многократные отборы более пригодны и результативны в селекции перекрестно-опылительных культур, эффективность их определяется прежде всего степенью гетерозиготности исходного материала. Путем многократного массового отбора поддерживается устойчивость к некротрофам — возбудителей таких и как фузариоз, серая и белая гнили и др.. С применением этого метода были созданы высокоустойчивые к и .

Гибридизация. В настоящее время одним из наиболее используемых методов в селекции на устойчивость является гибридизация — скрещивание между собой генотипов с различными наследственными способностями и получения гибридов, в которых сочетаются свойства родительских форм.

В селекции на устойчивость к болезням гибридизация целесообразна и эффективна в том случае, если хотя бы одна родительская форма является носителем наследственных факторов, способных обеспечить генетическую защиту будущего сорта или гибрида от потенциально опасных штаммов и рас возбудителя.

Как уже отмечалось ранее, такие наследственные факторы (эффективные гены устойчивости) были сформированы в центрах родственной эволюции растений-хозяев и их патогенов. Многие из них уже переданы культурным растениям от их дикорастущих сородичей с помощью отдаленной гибридизации. Теперь они известны как гены устойчивости культурных растений.

Но неоспоримым фактом является то, что на сегодняшний день большинство этих генов широко использованы в селекции и преимущественно потеряли эффективность, преодоленные в результате изменчивости патогенов. Поэтому внутривидовая гибридизация (между растениями одного вида) при создании устойчивых к болезням сортов или гибридов в ряде случаев является малоперспективным. Для получения позитивных результатов селекционер, вовлекая в скрещивания те или иные родительские формы, должен быть уверен в высокой эффективности их генов устойчивости к популяции возбудителя болезни в месте будущего выращивания сорта (гибрида).

На этом фоне все большее значение в селекции на устойчивость приобретает отдаленная гибридизация (между растениями из разных ботанических таксонов). Ведь наиболее выраженным иммунитетом характеризуются растения дикорастущих и примитивных видов. Геномы дикорастущих сородичей культурных растений были и остаются основным природным источником генов устойчивости, в том числе и комплексного иммунитета. Скрещивание культурных растений существующих сортов с дикорастущими видами обычно позволяет повышать иммуногенетические свойства. И если раньше использование отдаленной гибридизации было не слишком популярным из-за сложностей, связанных с несбалансированностью геномов родительских форм, сцеплением устойчивости с нежелательными в хозяйственном отношении признаками, то в настоящее время разработаны методы, позволяющие разрешить проблемные вопросы.

Отдаленная гибридизация дает возможность передать от дикорастущих растений культурным экологическую пластичность, устойчивость к неблагоприятным факторам внешней среды, к болезням и другие ценные свойства и качества. На основе отдаленной гибридизации созданы сорта и новые формы зерновых, овощных, технических и других культур. Например, источником генов иммунитета пшеницы к , и является эндемической для Закавказья Triticum dicoccoides Korn .

Как свидетельствует мировая практика, очень результативным видом гибридизации в селекции самоопыляющихся культур на устойчивость является обратные скрещивания (беккроссы) , когда гибрид скрещивают с одной из родительских форм. Этот метод называют еще методом «ремонта» сортов, поскольку он позволяет улучшить определенный сорт по тому или иному отсутствующего у него признака (в частности, устойчивостью к определенной болезни). Но следует иметь в виду, что применение этого метода не позволяет превысить производительность сорта, который «ремонтируется» (а согласно требованиям Государственной службы по охране прав на сорта растений Украины сорт не может быть зарегистрированным, если он по производительности не превышает стандарт).

Как правило, при беккросированни сорт-донор устойчивости к болезни используют в качестве материнской формы, а неустойчивый, но высокопродуктивный сорт (реципиент по признаку устойчивости) — как родительскую форму. В результате их скрещивания получают гибриды, которые повторно скрещивают с родительской формой (беккросируют). Обязательным условием является то, что материнские формы для каждого следующего беккросса подбирают из устойчивых гибридных растений предыдущего скрещивания, обнаруженных на инфекционном фоне. Потомства подбирают по фенотипу сорта-реципиента. Беккроссы проводят до тех пор, пока генотип и фенотип реципиента почти полностью восстановится, одновременно приобретя устойчивости к болезни, характерной для донора.

Повышение эффективности селекции растений на иммунитет к вредителям может быть достигнуто при использовании предварительно созданных так называемых синтетиков иммунитета (известных, например, для кукурузы). Упомянутые синтетики создаются на основе скрещивания 8-10 иммунных линий, характеризующихся различной экологической пластичностью и составом факторов иммунитета. Многие из синтетиков являются хорошими источниками для создания иммунных линий при дальнейшем выводе простых и двойных межлинейных гибридов.

Мутагенез. В отличии от методов гибридизации достаточно трудоемкие и требуют много лет работы для достижения конечного результата, экспериментальный (искусственный) мутагенез позволяет за короткий период усилить изменчивость растений и получить такие мутации по устойчивости, которые не встречаются в природе.

В основу метода экспериментального (искусственного) мутагенеза положено направленное действие на растения различных физических и химических мутагенов (ионизирующего, ультрафиолетового, лазерного излучения, химических веществ), в результате чего в растительных организмах возникают мутации генные (изменения молекулярной структуры гена), хромосомные (изменения в структурах хромосом) или геномные (изменения в наборах хромосом).

Наиболее ценные в селекционном плане генные мутации, что, в отличии от хромосомных, не приводят к стерильности пыльцы, бесплодию или неконстантности мутантных линий. Генные мутации устойчивости чаще всего связаны или с заменой основания в определенном участке ДНК хромосомы, или ее потерей, добавлением, перемещением. Вследствие этого происходит изменение генетического кода и, соответственно, изменение в физиолого-биохимических механизмах клетки, что приводит к ингибированию роста, развития и размножения патогена.

Метод искусственного мутагенеза в селекции на устойчивость к болезням применяется во многих странах, но его нельзя считать основным методом получения устойчивых форм растений. Наиболее эффективно этот метод используется при работе на устойчивость с культурами, которые размножаются вегетативно, поскольку размножение их семенами влечет за собой сложное расщепление в потомстве из-за высокой степени гетерозиготности.

Селекция - это эволюция, управляемая человеком

Н. И. Вавилов

Селекция -- наука о методах создания и улучшения пород животных, сортов растений, штаммов микроорганизмов с целью увеличения их продуктивности, повышения устойчивости к болезням, вредителям, приспособления к местным условиям и другое. Селекцией называют также отрасль сельского хозяйства, занимающуюся выведением новых сортов и гибридов сельскохозяйственных культур и пород животных. Основными методами селекции являются отбор и гибридизация, а также мутагенез (образующий метод в селекции высших растений и микроорганизмов, который позволяет искусственно получать мутации с целью увеличения продуктивности), полиплоидия (кратное увеличение диплоидного или гаплоидного набора хромосом, вызванное мутацией), клеточная (совокупность методов конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции) и генная инженерия (наука, создающая новые комбинации генов в молекуле ДНК). Как правило, эти методы комбинируют. В зависимости от способа размножения вида применяют массовый или индивидуальный отбор. Скрещивание разных сортов растений и пород животных - основа повышения генетического разнообразия потомства

Методы селекции растений

Основные методы селекции растений в частности -- отбор и гибридизация. Для перекрестно-опыляемых растений применяют массовый отбор особей с желаемыми свойствами. В противном случае невозможно получить материал для дальнейшего скрещивания. Если же желательно получение чистой линии -- то есть генетически однородного сорта, то применяют индивидуальный отбор, при котором путем самоопыления получают потомство от одной единственной особи с желательными признаками.

Для закрепления полезных наследственных свойств необходимо повысить гомозиготность нового сорта. Иногда для этого применяют самоопыление перекрестно-опыляемых растений. При этом могут фенотипически проявиться неблагоприятные воздействия рецессивных генов. Основная причина этого -- переход многих генов в гомозиготное состояние. У любого организма в генотипе постепенно накапливаются неблагоприятные мутантные гены. Они чаще всего рецессивны, и фенотипически не проявляются. Но при самоопылении они переходят в гомозиготное состояние, и возникает неблагоприятное наследственное изменение. В природе у самоопыляемых растений рецессивные мутантные гены быстро переходят в гомозиготное состояние, и такие растения погибают.

Несмотря на неблагоприятные последствия самоопыления, его часто применяют у перекрестно-опыляемых растений для получения гомозиготных ("чистых") линий с нужными признаками. Это приводит к снижению урожайности. Однако затем проводят перекрестное опыление между разными самоопыляющимися линиями и в результате в ряде случаев получают высокоурожайные гибриды, обладающие нужными селекционеру свойствами. Это метод межлинейной гибридизации, при котором часто наблюдается эффект гетерозиса (гетерозис - мощное развитие гибридов, полученных при скрещивании "чистых" линий, одна из которых гомозиготная по доминантным, другая - по рецессивным генам): гибриды первого поколения обладают высокой урожайностью и устойчивостью к неблагоприятным воздействиям. Гетерозис характерен для гибридов первого поколения, которые получаются при скрещивании не только разных линий, но и разных сортов и даже видов. Основная причина гетерозиса заключается в устранении в гибридах вредного проявления накопившихся рецессивных генов. Другая причина -- объединение в гибридах доминантных генов родительских особей и взаимное усиление их эффектов.

В селекции растений широко применяется экспериментальная полиплоидия, так как полиплоиды отличаются быстрым ростом, крупными размерами и высокой урожайностью. Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления, в результате чего удвоившиеся хромосомы не могут разойтись, оставаясь в одном ядре.

При создании новых сортов при помощи искусственного мутагенеза исследователи используют закон гомологических рядов Н. И. Вавилова. Организм, получивший в результате мутации новые свойства, называют мутантом. Большинство мутантов имеет сниженную жизнеспособность и отсеивается в процессе естественного отбора. Для эволюции или селекции новых пород и сортов необходимы те редкие особи, которые имеют благоприятные или нейтральные мутации.

Таблица 54. Основные методы селекции (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Методы Селекция животных Селекция растений
Подбор родительских пар По хозяйственно ценным признакам и по экстерьеру (совокупности фенотипических признаков) По месту их происхождения (географически удаленных) или генетически отдаленных (неродственных)
Гибридизация: а) неродственная (аутбридинг) Скрещивание отдаленных пород, отличающихся контрастными признаками, для получения гетерозиготных популяций и проявления гетерозиса. Получается бесплодное потомство Внутривидовое, межвидовое, межродовое скрещивание, ведущее к гетерозису, для получения гетерозиготных популяций, а также высокой продуктивности
б) близкородственная (инбридинг) Скрещивание между близкими родственниками для получения гомозиготных (чистых) линий с желательными признаками Самоопыление у перекрестноопыляющихся растений путем искусственного воздействия для получения гомозиготных (чистых) линий
Отбор: а) массовый Не применяется Применяется в отношении перекрестноопыляющихся растений
б) индивидуальный Применяется жесткий индивидуальный отбор по хозяйственно ценным признакам, выносливости, экстерьеру Применяется в отношении самоопыляющихся растений, выделяются чистые линии – потомство одной самоопыляющейся особи
Метод испытания производителей по потомству Используют метод искусственного осеменения от лучших самцов-производителей, качества которых проверяют по многочисленному потомству Не применяется
Экспериментальное получение полиплоидов Не применяется Применяется в генетике и селекции для получения более продуктивных, урожайных форм

В селекции растений широко применяют гибридизацию и отбор – массовый (без учета генотипа) и индивидуальный. В растениеводстве по отношению к перекрестноопыляющимся растениям нередко применяется массовый отбор. При таком отборе в посеве сохраняют растения только с желательными качествами. При повторном посеве снова отбирают растения с определенными признаками. Индивидуальный отбор сводится к выделению отдельных особей и получению от них потомства. Индивидуальный отбор приводит к выделению чистой линии – группы генетически однородных (гомозиготных) организмов. Путем отбора были выведены многие ценные сорта культурных растений. Для внесения в генофонд создаваемого сорта растений или породы животных ценных генов и получения оптимальных комбинаций признаков применяют гибридизацию с последующим отбором. При скрещивании разных пород животных или сортов растений, а также при межвидовых скрещиваниях в первом поколении гибридов повышается жизнеспособность и наблюдается мощное развитие. Это явление получило название гибридной силы, или гетерозиса. Оно объясняется переходом многих генов в гетерозиготное состояние и взаимодействием благоприятных доминантных генов. При последующих скрещиваниях гибридов между собой гетерозис затухает вследствие выщепления гомозигот.

Используют также полиплоидию, благодаря которой выведены высокоурожайные полиплоидные сорта сахарной свеклы, хлопчатника, гречихи и др. Таким путем Г. Д. Карпеченко (1935) получил межвидовой капустно-редечный гибрид. Каждая из исходных форм имела в половых клетках по 9 хромосом. В этом случае клетки полученного от них гибрида имели 18 хромосом. Но некоторые яйцеклетки и пыльцевые зерна содержали все 18 хромосом (диплоиды), а при их скрещивании создано растение с 36 хромосомами, которое оказалось плодовитым. Так была доказана возможность использования полиплоида для преодоления нескрещиваемости и бесплодия при отдаленной гибридизации.

Один из приемов селекции – выведение чистых линий путем многократного принудительного самоопыления растений: потомство такого растения становится гомози-готным по всем генам; в дальнейшем скрещивают особи двух чистых линий, что резко повышает урожайность гибридов первого поколения, их жизнестойкость. Это явление называется гетерозисом. Однако в последующих поколениях гетерозис снижается, урожайность уменьшается, и поэтому в практике используют только гибриды первого поколения.

Методами скрещивания и индивидуального отбора П. П. Лукьяненко были выведены высокопродуктивные кубанские сорта пшеницы: Безостая 1, Аврора, Кавказ; В. Н. Ремесло на Украине получил сорт Мироновская 808, а затем более урожайные сорта Юбилейная 50, Харьковская 63 и др. В. С. Пустовойт со своими сотрудниками этими методами создал на Кубани сорт подсолнечника, содержащий до 50–52% масла в семенах.

Преодоление бесплодия межвидовых гибридов. Впервые это удалось осуществить в. начале 20-х годов советскому генетику Г. Д. Карпеченко при скрещивании редьки и капусты. Это вновь созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки занимали как бы промежуточное положение и состояли из двух половинок, из которых одна напоминала стручок капусты, другая – редьки.

Искусственный мутагенез. Естественные мутации сопровождающиеся появлением полезных для человека признаков, возникают очень редко. На их поиски приходится затрачивать много сил и времени. Частота мутаций резко повышается при воздействии мутагенов. К ним относятся некоторые химические вещества а также ультрафиолетовое и рентгеновское излучения. Эти воздействия нарушают строение молекул ДНК и служат причиной резкого возрастания частоты мутаций. Наряду с вредными мутациями нередко обнаруживаются и полезные, которые используются учеными в селекционной работе. Путём воздействия мутагенами в растениеводстве получают и полиплоидные растения, отличающиеся более крупными размерами, высокой урожайностью и более активным синтезом органических веществ. Радиационным облучением с последующим отбором созданы ценные сорта гороха, фасоли, томатов.

Особое место в практике улучшения плодово-ягодных культур занимает селекционная работа И. В. Мичурина. Большое значение он придавал подбору родительских пар для скрещивания. При этом он не использовал местные дикорастущие сорта (так как они обладали стойкой наследственностью, и гибрид обычно уклонялся в сторону дикого родителя), а брал растения из других, отдаленных географических мест и скрещивал их друг с другом. Подобными методами вывели такие ценные сорта, как груша Бере зимняя Мичурина (от скрещивания южного сорта груши Бере Рояль и дикой уссурийской груши) и яблоня Бельфлер-китайка (родители: американский сорт Бельфлер желтый и китайская яблоня родом из Сибири).

Важным звеном в работе Мичурина было целенаправленное воспитание гибридных сеянцев: в определенный период их развития создавались условия для доминирования признаков одного из родителей и подавления признаков другого, т. е. эффективное управление доминированием признаков (разные приемы обработки почвы, внесение удобрений, прививки в крону другого растения и т. п.). Использовался и метод ментора – воспитание на подвое. В качестве привоя он брал как молодое растение, так и почки от зрелого плодоносящего дерева. Этим методом удалось придать желаемую окраску плодам гибрида вишни с черешней под названием «Краса севера». Мичурин применял также отдаленную гибридизацию. Им получен своеобразный гибрид вишни и черемухи – церападус, а также гибрид терна и сливы, яблони и груши, персика и абрикоса. Все мичуринские сорта поддерживают путем вегетативного размножения.

Таблица. Методы селекционно-генетической работы И. В. Мичурина (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Методы Сущность метода Примеры
Биологически отдаленная гибридизация: а) межвидовая Скрещивание представителей разных видов для получения сортов с нужными свойствами Вишня владимирская X черешня Винклера белая = вишня Краса севера (хороший вкус, зимостойкость)
б) межродовая Скрещивание представителей разных родов для получения новых растений Вишня Х черемуха = Церападус
Географически отдаленная гибридизация Скрещивание представителей контрастных природных зон и географически отдаленных регионов с целью привить гибриду нужные качества (вкусовые, устойчивости) Груша дикая уссурийская Х Бере рояль (Франция)=Бере зимняя Мичурина
Отбор Многократный, жесткий: по размерам, форме, зимостойкости, иммунным свойствам, качеству, вкусу, цвету плодов и их лежкости Продвинуто на север много сортов яблонь с хорошими вкусовыми качествами и высокой урожайностью
Метод ментора Воспитание в гибридном сеянце желательных качеств (усиление доминирования), для чего сеянец прививается на растение-воспитатель, от которого эти качества хотят получить. Чём ментор старше, мощнее, длительнее действует, тем его влияние сильнее Яблоня Китайка (под вой)X гибрид (Китайка Х Кандиль-синап) = Кандиль-синап (морозостойкий) Бельфлер-китайка (гибрид-подвой) X Китайка (привой) = Бельфлер-китайка (лежкий позднеспелый сорт)
Метод посредника При отдаленной гибридизации для преодоления нескрещиваемости использование дикого вида в качестве посредника Дикий монгольский миндаль Х дикий персик Давида = миндаль Посредник Культурный персик X миндаль Посредник = гибридный персик (продвинут на север)
Воздействие условиями среды При воспитании молодых гибридов обращалось внимание на метод хранения семян, характер и степень питания, воздействие низкими температурами, бедной питанием почвой, частыми пересадками Закаливание гибридного сеянца. Отбор наиболее выносливых растений
Смешение пыльцы Для преодоления межвидовой нескрещиваемости (несовместимости) Смешивалась пыльца материнского растения с пыльцой отцовского, своя пыльца раздражала рыльце, и оно воспринимало чужую пыльцу

Селекция животных отличается от таковой у растений: животные дают мало потомков, у них позднее наступает половозрелость, они не размножаются вегетативно и у них отсутствует самооплодотворение. Однако и в селекции животных используют гибридизацию и отбор, как массовый, так и индивидуальный. Учитывают признаки экстерьера родительских пар, родословную производителей, проверяют чистоту породы. Путем близкородственного скрещивания (инбридинга) получают чистые линии, когда все или большинство генов переходят в гомозиготное состояние.

Создавая белую степную украинскую породу свиней, акад. М. Ф. Иванов в качестве исходных форм для скрещивания брал высокопродуктивного английского хряка и неприхотливую к условиям содержания плодовитую украинскую свинью (матку). Затем он провел возвратное скрещивание полученных гибридов с тем же хряком. Так был выведен хряк Асканий I превосходного телосложения (масса 479 кг), которого затем он скрещивал с сестрами, с дочерьми, внучками. Параллельно этой инбридной линии были получены другие аналогичные линии. Несмотря на то что в пределах каждой инбридной линии возникли особи с пониженной жизнеспособностью и другими нежелательными признаками, большинство генов было переведено в гомозиготное состояние. Дальнейшим скрещиванием между собой двух чистых линий с последующим многократным индивидуальным отбором была получена порода степной белой украинской свиньи, сочетающая высокую продуктивность, плодовитость и устойчивость.

Гибриды первого поколения, полученные от скрещивания особей двух инбредных линий, как правило, характеризуются выраженным гетерозисом. Этим широко пользуются в животноводстве для получения хозяйственно ценных форм.

Скрещивание неродственных особей называется аутбридингом. Его осуществляют между особями разных пород одного вида животных и даже в пределах различных родов и видов, т. е. при отдаленной гибридизации. Этим путем получены бесплодный гибрид осла и лошади – мул, гибрид одногорбого и двугорбого верблюда, гибрид яка и крупного рогатого скота (самцы у них бесплодные, а самки плодовиты). Эти гибриды характеризуются гетерозисом, т. е. повышенной жизненностью, обладают долголетием и большей выносливостью по сравнению с родителями.

Особенности селекции растений

С самого начала осознанной деятельности человек стремился отобрать для своего использования те растения, которые отвечали потребностями человека. Это касалось различных качеств растений. Для одних целей требовались определенные вкусовые качества, для других – определенный внешний вид растения, для третьих – устойчивость к неблагоприятным факторам внешней среды. Для того, чтобы получить растения с желаемыми качествами, возникла такая отрасль научно-практической деятельности, как селекция.

Определение 1

Селекция – это совокупность способов деятельности человека, направленных на создание новых и улучшения существующих разновидностей живых организмов (сортов растений, пород животных и штаммов микроорганизмов).

Особенность селекции растений заключается в том, что на протяжении года происходит вегетация и созревание плодов. Одно растение может дать большое количество семян. Это означает, что при организации опытной работы можно в течении года получить результаты в большом количестве, которые легко отобрать по фенотипу и обработать статистически.

Общая характеристика методов селекции растений

Как известно, основными методами селекции являются гибридизация и искусственный отбор . Эти методы применяются одновременно и взаимно дополняют друг друга.

Гибридизация дает возможность получить организмы с определенным генотипом, а искусственный отбор позволяет отобрать организмы с определенными внешними признаками (фенотипом) и продолжить работу по их закреплению.

Кроме того в селекции растений применяется метод прививок . Это позволяет искусственно объединить части разных растений для дальнейшей селекционной работы.

Эффективность селекционной работы зависит от разнообразия исходного материала. В селекции растений эту проблему удается решить. Используя различные формы гибридизации в сочетании с искусственным мутагенезом. Благодаря применению последнего и дальнейшему отбору среди мутантных форм были созданы сотни новых сортов пшеницы, ржи, ячменя и других культурных растений. Теперь познакомимся с методами селекции растений подробнее.

Гибридизация

В селекции растений используются различные формы гибридизации: внутривидовое (близкородственное и неродственное) и межвидовое скрещивание .

  • Близкородственным считается такое скрещивание , когда скрещиваемые особи имеют общих близких предков. Этот метод позволяет получить чистые линии растений с высоким процентом гомозиготности по большинству признаков.
  • Неродственное скрещивание проводится между растениями одного вида, но не имеющими общих предков. Оно позволяет сочетать в гибридах различные качества одного и того же вида.
  • Межвидовое скрещивание проводится между растениями, принадлежащими к разным видам.

Но довольно часто межвидовые гибриды стерильны. Причина заключается в количестве хромосом в кариотипе организмов. Но современная наука научилась преодолевать стерильность межвидовых гибридов. Например, И. В. Мичурин применял метод посредника. Чтобы преодолеть нескрещиваемость двух видов растений, он брал третье растение, скрещивал его с первым, а полученный гибрид скрещивал со вторым растением.

Полиплоидия

Определение 2

Полиплоидия – это явление увеличения количества хромосом в ядре клеток растения.

Достигается это различными способами. Если удвоение хромосом не сопровождается делением клетки, то мы можем получить диплоидную половую клетку, а затем – триплоидный гибрид. Еще есть способы получения явления полиплоидии – слияние соматических клеток или их ядер; образование гамет с нередуцированным числом хромосом вследствие нарушения мейоза.

Ученый-генетик Г. Д. Карпеченко применял методику воздействия на веретено деления различными мутагенами (химическими веществами, ионизирующим излучением, критическими температурами) с целью получения гамет с диплоидным набором хромосом и получением тетраплоидного гибрида.

Применяют и мутации, приводящие к кратному уменьшению числа хромосом. Это позволяет быстро получать формы растений, гомозиготные по большинству генов.

Метод прививок

Один из классических методов селекции растений заключается в искусственном объединении частей разных растений. На растущее растение (подвой) прививают часть (почку, побег) другого растения. Часть прививаемого растения называется привой. Прививка не является настоящей гибридизацией. Она приводит только лишь к ненаследуемым изменениям фенотипа объединенного растения, не изменяя генотип исходных форм. Но прививки способствуют сближению биохимических и физиологических процессов объединенных растений. Целью применения данного метода является усиление желаемых изменений фенотипа в результате сочетания свойств привоя и подвоя (например, морозоустойчивость северного подвоя и вкусовые качества южных сортов привоя или устойчивость подвоя против болезней). Кроме того в результате прививок могут проявляться новые качества, которые можно использовать в дальнейшей селекционной работе.

Некоторые сорта культурных растений при их размножении семенами быстро возвращаются к фенотипам предковых форм – «дичают». Поэтому единственным способом поддержания таких сортов является или вегетативное размножение, или их прививка к дичку.