В квартире

Очистка дыма после копчения на производстве. Очистка отработанного дыма после копчения

Очистка дыма после копчения на производстве. Очистка отработанного дыма после копчения

На рисунке 2.2. приведена установка для очистки дымовых газов, работающая на основе инерционного и абсорбционного методов.

Очистка дымовых газов в скруббере Вентури осуществляется следующим образом: резервуар установки заполняется питьевой водой, затем включается вентилятор и дымовые газы поступают в трубу Вентури, где скорость их движения возрастает до максимального значения. Одновременно в трубу Вентури через форсунку подается вода. За счет распыления воды в форсунке и пульсацией высокоскоростного дымового потока вода тонко распыляется. Поверхность контакта воды и частиц дыма увеличивается, следовательно, интенсифицируется и процесс сорбции. Затем дымоводяной поток проходит через диффузор, где уменьшается скорость его движения, вследствие чего увеличивается продолжительность контакта воды и дыма.

В центробежном завихрителе капли воды отделяются от потока дыма, так как обладают большей инерцией и не успевают за изменениями движения потока.

Капли улавливаются поверхностью воды. Дымовой поток из завихрителя тангенциально подается в циклон, капельки воды отбрасываются к стенкам циклона и смываются пленкой воды из кольцевого водопровода, а очищенные дымовые выбросы поступают в атмосферу.

По мере насыщения коптильными компонентами рециркулирующая вода сливается в емкость, очищается от смолистых соединений и может использоваться как коптильный препарат.

Рисунок 2.2 – Установка для получения коптильного препарата «ВНИРО»:

1 – насос рециркуляции; 2 – электромагнитный клапан; 3,9,15,17,23,25 – вентили; 4 – расходомер общего расхода воды; 5 – резервуар воды; 6 – расходомер рециркуляционной воды; 7 – центробежный завихритель; 8 – циклон; 10 – кольцевой водопровод; 11 – диффузор; 12 – труба Вентури; 13 – горловина; 14 – конфузор; 16 – форсунка; 18 – шибер; 19 – мерная трубка; 20 – сигнализатор верхнего уровня воды; 21 – сигнализатор нижнего уровня воды; 22 – вентилятор высокого давления; 24 – фильтр рециркуляционной воды.

В дымогенераторе Н10-ИДГ очистка дымовых газов осуществляется водоинерционным способом (рис.2.3).

Рис 2.3. Водоинерционное устройство дымогенератора Н10-ИДГ:

1- крышка; 2-вытяжная труба; 3-лоток для слива воды; 4-колено; 5- перегородка; 6-ограничительная стенка; 7-дымововой патрубок; 8-корпус; 9-водяной патрубок.

Дым с большой скоростью выходит из патрубка 7, ударяется о поверхность воды, тяжёлые частицы оседают в воду, а дым вследствие столкновений с ограничительной стенкой делает поворот на 90 градусов и через колено 6 опять направляется на поверхность воды, которая частично улавливает тяжёлые фракции. Очищенный дым через патрубок 2 поступает в коптильную камеру. Периодически вода, насыщенная смолистыми веществами, сажей и другими загрязнениями, заменяется.

На рис.2.4 приведена скрубберная установка для очистки дымовых выбросов коптильных камер. Работа установки осуществляется следующим образом. Дым поступает в осадительную 2, в которой от дыма отделяются тяжёлые смолы и зола. Отделение происходит инерционным способом. Затем дым поступает в скруббер 3.

В скруббере 3 через насадку 4 из колец Рашига навстречу дыму движется вода, которая падаётся через форсунки 5.

Рис.2.4.Устройство для получения водного раствора дыма: 1-коллектор;2-осадочная камера;3-скруббер; 4-насадка; 5- форсунки; 6-вентилятор; 7-раствор дыма; 8-резервуар; 9-фильтр; 10-насос; 11-охладитель;12-сборник.

Вода в установке циркулирует по следующей схеме: бак 12, насос 10, насадка 4, бак 12. Температура воды поддерживается в пределах 50 С 0 . После насыщения коптильными компонентами водный раствор фильтруется через целлюлозную пульпу. Очищенный водный раствор можно использовать как коптильный препарат.

Всесоюзным научно-исследовательским институтом океанографии и рыбного хозяйства (ВНИРО) разработан ряд установок, которые можно использовать как для очистки вредных выбросов, так и для получения коптильного препарата (рис. 2.5- 2.7).

Рис 2.5.Устройство для получения коптильного препарата.

1,3,6- заслонки; 2-дымогенератор; 4-фильтр;5-сорбер; 7-вентилятор.

Рис.2.6. Установка для очистки дымовоздушной смеси. 1-переходник; 2-крышка;3- дымоводы; 4,8-вентиляторы; 5- предфильтр; 6,7- сорберы; 9-бак для приготовления раствора; 10-насос.

Отличительной особенностью установок является наличие подвижной насадки из резиновых шариков, выполненных из кислостойкой резины, диаметром 15- 20 мм и плотностью 1 г/см 3 (рис 2.5-2.6). В установке Э01-3090 шарики выполнены из полиэтилена. ВНИРО рекомендует скорость дымовоздушной смеси 7,5±0,1 м/с при соотношении объёмов подвижной насадки и водного слоя 0,5: 0,1.

В установке для очистки дымовоздушной смеси (рис.2.6) используются два сорбера с шариковыми насадками. В качестве абсорбентов в первом сорбере применяется вода, а во втором – раствор химически активного вещества.

Рис.2.7.Установка Э01-3090 для очистки дымовых выбросов

1- насадка; 2-решётка; 3-абсорбер; 4-ороситель; 5-тройник с заслонкой; 6,7-каплеуловители; 8-труба выброса очищенного дыма в атмосферу; 9-заслонка; 10-вентилятор; 11- сливной патрубок; 12-труба слива конденсата в канализацию.

Производительность установки 6000 м 3 /ч, установленная мощность 27,5 кВт, максимальное гидравлическое сопротивление 8,2 кПа (820 мм вод. ст.), температура очищенного дыма 90 0 С. Ёмкость по воде 1,2 м 3 , разовый расход соды 6 кг, преманганата калия до 20 кг, хлорной извести – 12 кг. Габаритные размеры 6000×5600×2600 мм, занимаемая площадь 36,6 м 2 .

Установка Э01-3090 (рис.2.7) состоит из двух автономных сорберов барабанного типа. В сорберах на перфорированных решётках располагается слой полиэтиленовых шариков. Слой шариков заливается водой на высоту 350-400 мм. При прохождении через слой воды и насадки образуется так называемый «кипящий слой», в результате усиливается массобмен между дымом и водой.

Производительность установки 10800-15000 м 3 /ч, расход воды 5 м 3 /ч, расход пара при давлении 200 кПа (2 кгс/см 2) – 80кг/ч, расход электроэнергии 28 кВт∙ч, масса 4500кг.

Если вода отводится постоянно, то степень очистки дымовых выбросов по смолистым веществам возрастает до 50,5%, по бензапирену – до64,5%.

Высокая степень очистки достигается, если абсорбат непрерывно сливается в канализацию. В этом случае его надо нейтрализовать, то есть произвести дополнительную химическую очистку. При рецеркуляции абсорбата в течении 5 часов степень очистки по бензапирену уменьшается до 22%, а по смолистым веществам до 18,6%, т.е. очистка производится не эффективно, если коптильный препарат получают на установке Э01-3090.

На Московском рыбокомплексе применяется установка фирмы Flakt (Дания) с очисткой дымовых выбросов методом химической абсорбции. Установка состоит из трех ступеней. На первой ступени из потока дыма промывочной жидкостью (NaOH) улавливаются крупные частицы дыма. Промывочная жидкость разбрызгивается душирующими устройствами, насыщается твердыми частицами, фильтруется и вновь направляется к душирующим устройствам.

На второй ступени также циркулирует промывочная жидкость, в результате гидроокись натрия гидролизует сложные эфиры, преобразует фенолы и органические кислоты в легкорастворимые феноляты и натриевые соли. После определенного цикла работы промывочная жидкость нейтрализуется 98%-й серной кислотой до требуемого значения рН, после чего выводится в канализационную сеть.

Производительность установки 80000 м 3 /ч, расход воды 2-4 м 3 /, 20%-го NaOH 20-30 л/ч, 98%-й H 2 SO 4 1-2 л/ч, температура дыма – до 60 0 С. Габаритные размеры 14000×3000×3700 мм.

На рис. 2.8 представлена принципиальная схема очистки на основе трехступенчатого скруббера башенного типа фирмы Flakt.

На первой ступени на дымовые газы воздействуют соляной кислотой, при этом происходит абсорбция из дыма соединений азота (аммиак, амины). На второй ступени из дыма гипохлоридом натрия абсорбируют и окисляют соединения серы (сернистый водород и меркаптаны), альдегиды, кетоны, жирные кислоты.

Рис. 2.8. Технологическая схема трехступенчатой установки

для очистки выбросов фирмы Flakt

На третьей ступени каустиком (NaOH) из дыма выводятся избыточный хлор и остатки кислотных соединений.

На рис. 2.9 представлен скруббер Geiloote. Скруббер состоит из 4 реакционных камер, в которых находятся слои орошаемой насадки. После каждой реакционной камеры располагаются слои неорошаемой насадки, которые выполняют роль каплеуловителей, тем самым достигается более полное использование промывочной жидкости в каждой камере и исключается унос промывочной жидкости с дымовыми газами.

Первая камера предназначена для удаления твердых частиц.

Во второй камере происходит ионизация дымовых частиц, поэтому очистка здесь происходит с абсорбцией, и электростатическим осаждением. После прохождения зоны высокого напряжения заряженные частицы дыма осаждаются на поверхности насадки или каплеотделителя в результате притяжения заряженных частиц к нейтральной поверхности под действием электродвижущей силы самоиндукции или самоударения с жидкостью или твердой поверхностью.

В третьей камере происходит кислотная промывка серной кислотой. При этом из дыма удаляются щелочные компоненты (амины).

В четвертой камере на дым воздействуют едким натром, в результате из него удаляются кислотные компоненты.

Производительность установки 40000 м 3 /ч, расход 20 % - го NaOCl (в пересчете на активный хлор с массовой концентрацией 150 г/л) 1,4 кг/ч, напряжение электростатического поля 20 – 30 кВт, установленная мощность 10 кВт.

На рис. 2.10 приведена конструкция установки для очистки дыма, принцип действия которой основан на абсорбции с последующим досжиганием. Такие установки выпускает фирма Stork-Duke.

Рис. 2.9 Скруббер перекрестного потока фирмы Geiloote:

1 – первая ступень очистки; 2 – ионизационная ступень; 3 – третья ступень очистки; 4 – четвертая ступень очистки; 5, 6, 7 – смотровые окна; 8, 9, 10 – системы рециркуляции абсорбента; 11 – вентилятор.

Установка состоит из скруббера с промывочной жидкостью и печи, которая работает на газе или на мазуте. Печь может очищаться рекуператором.

Установки для досжигания применяются также промышленностью. В основном применяют термокаталитические устройства. В этих устройствах на каталитической пленке происходит окисление углеводородов и оксида углерода до углекислого газа. В качестве катализаторов применяют алюмоплатиновий, железохромовий, меднохромовий.

Следует отметить, что каталитическая активность различных органических соединений неодинакова. Поэтому степень очистки этих соединений разная. В установках термокаталитического действия обычно окисляется 75 – 97 % органических веществ.

На рис. 2.11 приведена принципиальная схема установки для каталитического досжигания. Если при термическом досжигании нейтрализация органических веществ происходит при темепратуре 700 – 800 0 С, то при каталитическом досжигании нейтрализация происходит при более низких температурах (до 550 0 С).

Установка для каталитического досжигания испытывалась на Ялтинском рыбокомбинате (рис. 2.12).

Катализаторная корзина 6 установки выполнялась с различными катализаторами: алюминоплатиновыми контактами АП-56 (0,56 % платины на окиси алюминия); ШПК -2 (0,2 % платины на шариковом носителе ШК-2); М-2 (хромоникелевая спираль с активной пленкой, содержащей тысячные доли платины).

Активность контактов АП-56 и ШПК-2 при температурах 350 – 450 0 С и объемных скоростях дымовоздушной смеси 5000 – 10000 м 3 /ч снижается из-за отложений на поверхности углеродистых соединений.

Полная очистка дымовых газов достигается при использовании катализаторов М-2, если температура катализации составляет 500 0 С, а дымовоздушная смесь движется с объемной скоростью 15000 м 3 /ч.

Рис. 2.10. Комбинированная очистная установка фирмы Stork-Duke:

1 – отвод промывной жидкости; 2 – подача воздуха; 3 – подача газа; 4 – скруббер; 5 – подача промывной жидкости; 6 – каплеуловитель; 7 – вентилятор; 8 – подача воздуха к печи; 9 – рекуператор; 10 – дымовая труба; 11 – подача воздуха в рекуператор; 12 – печь сжигания; 13 – горелка.

Рисунок 2.11 - Принципиальная схема установки для каталитического досжигания: 1 – мазутная или газовая горелка; 2 – теплоизоляция; 3 – катализатор ячеистого типа; 4 – температурный датчик за катализатором; 5 – температурный датчик перед катализатором; 6 – огнезащитная труба.

Рисунок 2.12 - Установка каталитического досжигания дымовых выбросов:

1 – вентилятор подачи дыма; 2 – вентилятор подачи воздуха; 3 – горелки; 4 – реактор; 5 – воздушный коллектор; 6 – катализаторная корзина; 7 – дымовая труба; 8 – дымосос; 9 – котел-утилизатор.

Для дезодорации дымовых газов специалистами НИИОГАЗа рекомендуются катализаторы НИИОГАЗ-17Д. Температура катализации должна составлять 350-380 0 С, а объемная скорость газового потока – 15000 – 20000 м 3 /ч.

В промышленности применяются также так называемые ионизирующие скрубберы, в которых очистка дымовых газов происходит с использованием электростатического поля высокого напряжения (рис. 2.13).

В зоне электростатического заряжения частиц 1 происходит ионизация частиц дыма. Для ионизации обычно используют орошаемые электродные пластины шириной 200 – 300 мм. Мелкие заряженные частицы попадают в слои контактных наполнителей (например, типа Tellerette). В контактных наполнителях мелкие частицы вследствие самоиндукции обратного заряда притягиваются и осаждаются промывной жидкостью. Вредные газы и газы со специфическими запахами абсорбируются промывной жидкостью, вступают с ней в реакцию и превращаются в нейтральные соединения.

Рисунок 2.13 – Принципиальная схема ионизирующего скруббера:

1 – зона электростатического заряжения частиц; 2 – распылительная форсунка; 3 – наполнители типа Tellerette; 4 – насос; 5 – поддон для сбора промывной жидкости.

Учеными Московского института народного хозяйства им. Г.В. Плеханова было разработано устройство для получения коптильной жидкости из дымовых газов (рис.2.14.)

В ионизационной камере 1 происходит отделение сажи, осаждение сравнительно крупных смол; дымовые частицы приобретают электрические заряды. В осадительную камеру 2 форсункой 3, подключенной к отрицательному полюсу источника напряжения, вводят мелкодиспергированную воду. Водный раствор до насыщения коптильными компонентами циркулирует по следующей схеме: приемник 5, насос 4, форсунка 3, сорбционная камера 2, приемник 5.

Рисунок 2.14 Устройство для изготовления коптильной жидкости использованием электростатического поля:

1 – ионизационная камера; 2 – сорбционная камера; 3 – форсунка; 4 – насос; 5 – приемник.

Устройство можно использовать для получения коптильного препарата и очистки дымовых газов.

Показатели скрубберов различных типов приведены в таблице 2.4.

Таблица 2.4

Как видно из табл. 2.4, степень очистки дымовых газов с применением ионизирующих скрубберов (IWS) довольно высока.

Мясо – традиционное блюдо на наших столах. Его можно приготовить разными способами, однако большой популярностью пользуется такой вариант термической обработки, как копчение, а устройство – дымогенератор для копчения. Процедура позволяет не просто изготовить из скоропортящегося продукта блюдо длительного хранения, она дает возможность получить особый вкус, аромат, несравнимый ни с какими других способом обработки. И пусть на рынке бытовой техники появляется все больше различных приспособлений, по-прежнему в цене копчение своими руками.

Примечание: Особая роль в процедуре отводится дыму, он придает блюду не только превосходный вкус, но и особый аромат. И пусть многие начинают пользоваться готовыми приборами, хватает людей, заинтересованных в применении самодельных устройств.

Это и хороший способ сэкономить, и прекрасная возможность получить дополнительное удовольствие от возможности что-то сделать самому. Ведь, немного потрудившись, можно сделать генератор своими руками.

Копчение – достаточно длительный процесс, который требует еще и определенных навыков. Должны выполняться определенные условия:

  • минимальная температура поступающего дыма;
  • обработка должна быть длительной – от нескольких часов до нескольких дней;
  • можно использовать опилки из плодовых, но не хвойных пород деревьев;
  • продукты должны быть обработаны – очищены, вымыты, посолены, просушены.

Учитывая навыки готовящего, понимание тонкостей процедуры, определяется результат. Имеет значение и прибор, особенно если изготовлен дымогенератор своими руками. Для него наиболее важное – верное расположение всех элементов, поступление дыма низкой температуры. Все это в комплексе дает возможность надеяться, что получится очень вкусно и презентабельно.


Самодельная с дымогенератором
  • ольха;
  • вишня;
  • яблоня;
  • груша;

Благодаря различным ароматическим качествам получаются разными по вкусовым особенностям блюда. Достаточно сделать дымогенератор для копчения своими руками, чтобы начать управлять процессом.

О дыме

Дым является натуральным антисептиком, который ценится коптильщиками. Ведь после такой обработки в продукте еще долго не образуется вредоносная микрофлора. Словом, увеличивается срок хранения, блюдо получает особые вкусовые качества. Дымом можно обрабатывать дичь, мясо, рыбу.


Дым, вырабатываемый дымогенератором

Благодаря генератору можно получить дым с необходимыми характеристиками. Его нагнетание осуществляется за счет работы вентилятора или перепада температур. Немаловажную роль играют и опилки.

Обслуживание

Процедура заключается в подаче опилок, а также последующей очистке емкости от истлевших элементов. Если используется дымогенератор для холодного копчения, изготовленный своими руками, то наверняка процедуру придется выполнять самому. Однако если применяется готовый вариант, вполне возможна автоматизация процесса. На больших производствах задействуется оператор для мониторинга.

Преимущества готовых вариантов

Сделать генератор самому – задача непростая. Для этого нужны определенные навыки, материалы, время. Поэтому многие не решаются пойти на такой шаг, а покупают готовый электрический дымогенератор. Такие устройства очень популярны, поскольку обладают такими достоинствами:

  • высокая производительность;
  • малый расход электроэнергии, который сравним с уровнем потребления включенной лампы накаливания;
  • в термокамере осуществляется очищение дыма, в результате чего смолистые вещества оседают на стенках, а затем удаляются;
  • обеспечивается полное сгорание опилок;
  • удобство обслуживания;
  • высокая надежность устройства.

Все это обеспечивает востребованность приборов и высокую результативность процедуры. Далее рассмотрим несколько моделей готовых вариантов.


Original Bradley Smoker

Bradley Smoker – специализированный изготовитель устройств для создания копченой продукции. Отличительные особенности производимых приборов – современный дизайн, высокая надежность. Устройства сохраняют природность вкуса. Для обеспечения процесса дымом используются брикеты, подача которых организована автоматически.


Дымогенератор Original Bradley Smoker

ШАУРМЕЙКЕР

Это устройство обеспечивает не только автоматическую подачу брикетов из лиственных пород древесины, но и электронное управление. Мощности такого прибора достаточно для организации процесса на малом предприятии.


Дымогенератор с компрессором и опилками разных пород

Weber-Stephen

Этот американский прибор больше подойдет для частного использования. Топливо для такого устройства – уголь. Поэтому его можно применять в качестве гриля. Многие модели производителя используются для промышленности. Поэтому в частных владениях такие устройства используются довольно редко.


Дымогенератор марки Weber Stephen

Как используется?

Покупной вариант дымогенератора используется так. Загружаются продукты в шкаф, который закрывается. В бункер следует засыпать опилки (около 70% бункера). Камеру копчения нужно заполнить продуктами. Во время копчения требуется контроль интенсивности выхода дыма из шкафа.


Примечание: Длительность процесса определяется продуктом. Например, для сала или скумбрии потребуются сутки, для мойвы – 8 часов. Мясо птицы потребует более длительной обработки.

Очень важно при эксплуатации регулярно мыть кожух. После очистки его можно использовать повторно. Также стоит учесть еще несколько рекомендаций:

  • для ускорения процесса копчения внутрь прибора необходимо установить электрический ТЭН, чтобы обеспечить нагрев опилок;
  • вкус блюда определяется типом выбранной древесины;
  • к опилкам можно добавить немного виноградной лозы, что обеспечит оригинальный приятный вкус;
  • сухая погода оптимальна для проведения процедуры;
  • температуру копчения необходимо поддерживать на уровне 30–35 градусов.

Безопасность

Устройство дымогенератора имеет свои особенности, поэтому необходимо соблюдать правила безопасности:

  • прибор устанавливается на прочную, пожаробезопасную поверхность;
  • лучше всего использовать металлический корпус, имеющий слой жаростойкой краски;
  • электропроводка должна быть удалена от источника воздействия высокой температуры;
  • на случай непредвиденных обстоятельств управляющий блок должен быть обеспечен элементом автоотключения.

Дымогенератор простой конструкции для коптильни

Следуя этим правилам, можно предотвратить не только поломку оборудования, но и травмы, и другие неприятности со здоровьем.

Создание

Разберемся, как делаются дымогенераторы для холодного копчения своими руками, насколько такое устройство можно сделать самому.

Как правило, конструкция включает в себя такие элементы:

  • источник;
  • система дымового охлаждения;
  • топливо;
  • система подачи дыма в камеру копчения.

Источником образования тепла может быть:

  • уголь;
  • щепа, опилки;
  • дрова;
  • электроэнергия.

Коптильня с дымогенератором, выполненная своими руками

Самое оптимальное устройство дымогенератора – то, которое подразумевает использование опилок.

Вариант применения дымогенератора

Холодный дым

Обычно включает в себя:

  • выкладка ямки для топки;
  • под землей прокладывается ;
  • фильтр обеспечивает чистоту продуктов, защищенность от сажи;
  • установка самой коптильни.

Процесс копчения с применением дымогенератора

Однако процесс может сопровождать один недостаток – повышенная температура, что исключает проведение холодного копчения. Для этого нужно сделать следующее:

  1. Следует увеличить длину дымохода, что позволит дыму остывать.
  2. Проточная вода может помочь охлаждению дыма. Поэтому потребуется модернизация конструкции.

Сборка электрического генератора для коптильни собирается своими руками достаточно легко, если пользоваться чертежами и схемами. Электроплитка является нагревательным элементом, а охлаждение дыма обеспечивается длиной трубы.


Если есть желание сделать дровяную коптильню, собрать ее еще проще. Устройство такого дымогенератора основывается на печи-буржуйке. Протяженность и количество изгибов трубы определяют температуру дыма. Она ниже, чем выше показатели.


Дымогенератор для коптильни в активном действии

Размер камеры для копчения определяется тем, сколько продуктов планируется обрабатывать за 1 раз. Если процедура будет выполняться раз в год, тогда можно взять обычное ведро, изготовленное из металла, имеющее крышку. Внизу просверливается отверстия, диаметр которого должен совпадать с трубкой генератора подачи дыма. В крышке нужно сделать отверстие для отвода дыма.


Самодельная коптильня с дымогенератором

Устройство дымогенератора может включать в себя различные элементы: раму, вентилятор, барабан, термокамеру, электрический привод.

Как видим, прибор вполне можно сделать самому, достаточно проявить терпение, настойчивость и выделить некоторое время. Тогда обязательно все получится!

Вариант исполнения коптильни с дымогенератором

Копчение продуктов практикуется человечеством с давних времен. Это обусловлено тем, что так можно законсервировать скоропортящиеся продукты, которые приобретают замечательные вкусовые качества. Люди за последние несколько веков далеко шагнули вперед в плане применяемых технологий, но так же продолжают коптить мясо и рыбу. Самую главную роль в копчении играет дым древесины плодовых деревьев. Именно он дает неповторимый аромат готовому продукту. Не стоит переживать по поводу приобретения коптильни, так как дымогенератор для копчения своими руками соорудить довольно просто. Существует множество конструкций, доступных для повторения даже неопытным в таких делах людям.

Виды и технологии копчения

Существует два вида разного по и горячее. Различаются они температурой, при которой проходит процесс приготовления продукта. Если при может достигать 95 0 С, то при холодном она не должна быть выше 35 0 С.

Горячее копчение

Способ заключается в том, что продукты помещаются в емкость, где они проходят обработку горячим дымом, запекаются и коптятся одновременно. Процесс довольно быстрый, занимает, как правило, несколько часов, а на выходе получается необыкновенно нежная, ароматная и вкусная продукция. При этом подобные продукты не могут храниться долго, всего пару дней в холодильнике.

Изготовление приспособления для копчения

Как сделать дымогенератор для способом? Да очень просто. В данном случае дымогенератор и камера для копчения могут быть совмещены. Потому что охлаждение дыма не требуется. Подойдет металлическое ведро с крышкой, большая кастрюля или бочка. На дно насыпаются опилки или щепки, и коптильня ставится на огонь или электрическую плиту.

Происходит одновременно дымовое выделение и нагрев сырья. При хорошей герметизации коптильни, или когда используют водяной замок, процесс копчения не требует особого контроля. Достаточно лишь подобрать температурный режим, при котором продукты не будут гореть.

Холодное копчение

Этот способ подразумевает как более тщательную подготовку сырья, так и более длительную обработку его дымом. Обусловлено это применением охлажденного дыма, температура которого не должна превышать 35 0 С. Продукты перед закладкой в коптильню необходимо хорошо просолить, а после еще и подсушить. Применение мокрого сырья при холодном копчении недопустимо, потому что дым будет растворяться во влаге, и процесс приготовления будет идти намного дольше.

Нюансы при копчении

Процесс холодного копчения гораздо более многогранен. Здесь очень много нюансов, оговорок и очень многое зависит от мастерства «повара». Любую из технологических операций можно воспроизвести по-разному, и каждый раз будет получаться результат, отличный от предыдущего.

Даже дымогенератор, своими руками для копчения изготовленный, может существенно повлиять на вкусовые качества продуктов. Разные конструкции дым производят с разной интенсивностью, соответственно, и копчение будет проходить по-разному. Как и на заре человечества, самое главное в копчении - это дым. Именно ему продукты обязаны золотисто-коричневой корочкой и неповторимым вкусом. Рассмотрим этот компонент немного подробнее.

Как получить дым

Сам дым, как говорилось выше, получается из щепок или опилок некоторых пород древесины. Как правило, это плодовые деревья: вишня, яблоня, груша. Но можно применять для этого и ольху, и иву. Дымогенератор для холодного копчения справится с любым материалом. От того, какой дым выбран, зависят вкус, запах, цвет получаемых копченостей. Здесь каждый решает для себя, какую древесину выбрать, и, как правило, останавливается на чем-то одном.

Конструкции дымогенераторов

Самодельные дымогенераторы для копчения разнообразны по конструкции, но все они очень просты для повторения. Делятся они на две большие группы в зависимости от того, какой источник нагрева используется: электричество или открытый огонь. Самый простой дымогенератор для копчения, своими руками сделанный, - это небольшой металлический ящик с выводом, на который надевается для отвода дыма. В него помещаются опилки, и он ставится на открытый огонь. При воздействии высокой температуры щепки начинают медленно тлеть без доступа кислорода. При всей простоте такими видами приспособлений довольно сложно пользоваться. Поскольку процесс копчения может занимать несколько суток, а бывает - и несколько недель, довольно сложно контролировать выделение дыма, в том числе и его непрерывную подачу.

Такие конструкции не позволяют оперативно добавлять опилки и контролировать температуру дыма в коптильне. Избавлен от этого недостатка дымогенератор для холодного копчения, имеющий электрический элемент. В этом случае можно контролировать и температуру поступающего дыма, и процесс поджога опилок - для этого служит электронный блок управления. Конструктивно это все тот же небольшой ящик с выводом для трубы, но внутри имеющий спираль или тэн от электроплиты. Через определенное время (как правило, это пара часов) тэн нагревается, и опилки начинают тлеть, выделяя при этом дым. Встречаются дымогенераторы, изготовленные по принципу муфеля. При этом на наматывается спираль из нихрома. Каждый новый виток изолируется стеклотканью, и вся эта конструкция закрывается сверху жестью. Подобное решение позволяет с легкостью очень быстро нагревать опилки до температуры, при которой они начинают тлеть.

Муфель также сохраняет температуру некоторое время, позволяя дыму выделяться после выключения нагрева. В саму коптильню при этом может быть встроен термодатчик, который будет отключать тэн при достижении максимальной температуры 35 градусов. Подобная конструкция не требует постоянного присутствия человека для контроля над процессом, достаточно просто иногда добавлять опилки в самодельный дымогенератор для копчения. Это самые совершенные приборы для получения дыма. Если планируется постоянное использование коптильни, то такие дымогенераторы - лучший выбор.

Как охладить дым

После того как дым получен, его необходимо охладить до требуемой температуры. Это можно сделать разными способами, самый популярный из которых - укладывание дымохода в резервуаре с холодной водой. Обычно в этом случае используется дымогенератор для копчения, своими руками сделанный для открытого огня. Также дымоход можно закапывать в землю, которая тоже способна очень хорошо охлаждать дым. Встречаются конструкции, где дымоход представлен траншеей в земле, накрытой сверху, чтобы дым не выходил.

Проходя по такому ходу, он остывает, и копчение проходит в нормальном холодном режиме. Такой способ охлаждения дыма используют в походных условиях, где найти гофрированную трубу и емкость большого объема для воды представляет большую трудность. Дымогенератор для копчения (своими руками собранный) с электрическим нагревательным элементом, как правило, в охлаждении дыма не нуждается. Термодатчик способен отключать нагрев по достижении критической температуры, поддерживая процесс копчения и не перегревая сырье.


    Учёные Института ядерной физики и Института цитологии и генетики СО РАН предложили использовать создаваемые в институте промышленные ускорители для обеззараживания сточных вод свиноферм и птицефабрик.
    Промышленные ускорители - ускорители заряженных частиц, применяемые в промышленности. Институт ядерной физики СО РАН в течение 40 лет производит ускорители частиц двух типов: электростатические и высокочастотные импульсивные. За это время собрано более 220 установок. Их можно применять в различных областях: для обеззараживания медицинской одежды, для придания новых свойств материалам, рентгеновской дефектоскопии, получения металлических нанопорошков и т.п.
    Заместитель директора ИЯФ Геннадий Кулипанов рассказал, как можно применять ускорители для очистки сточных вод Кудряшовской свинофермы.
    «Известно, что от Кудряшовского свинокомлекса исходит колоссальный запах, он также сбрасывает стоки в Обь и загрязняет подземные воды. Совместно с ИЦИГом мы разработали комплексный метод обеззараживания сточных вод, при котором используется растение водный гиацинт, которое фильтрует воду, и все твёрдые фракции поглощает на себя, затем срезается, облучается и используется как удобрение. Воду можно использовать по второму кругу», - рассказал Кулипанов.
    Он пояснил, что похожую технологию можно использовать для очистки отходов птицефабрик.
    Кулипанов сообщил, что проект требует вложений и не получил поддержку на уровне области, однако его отправили на рассмотрение в министерство сельского хозяйства России.
    Учёный рассказал, что с помощью ускорителей частиц в 1980-х годах удалось решить экологическую проблему в Воронеже.
    «Воды Воронежа очистили от органики, которая появилась из-за работы завода синтетического каучука. Из-за несовершенства технологий переработки, отходы просто закачали под землю, и они просочились. Это была первая в мире подобная технология - воду выкачивали из-под земли, облучали на ускорителе и закачивали обратно. С 1984 по 1988 годы пятно загрязнения уменьшилось, пески промывали несколько раз», - сказал Кулипанов.
    Он добавил, что такой ускоритель мощностью 500 киловатт у института купили корейцы для очистки стоков химических комбинатов.
    Напомним, с помощью промышленных ускорителей можно особым образом «спекать» белки, что позволило новосибирским учёным создать уникальное лекарство для лечения тромбов.
    Источник: sib.fm


    АПХ «Мираторг» запустил биокомплекс глубокой очистки стоков на свинокомплексе «Курасовский» (Ивнянский район Белгородской области) стоимостью 7 млн рублей и производственной мощностью 360 кубометров в сутки, сообщили в пресс-службе компании.
    По словам гендиректора свинокомплексов компании в Ивнянском районе Алексея Юдина, основная функция данной установки – разделение твердых частиц животноводческих стоков с жидкостью. Он пояснил, что такие меры позволят не только снизить сроки хранения стоков в лагунах, но и «увеличить эффективность биологической очистки», а также минимизировать влияние на окружающую среду, в первую очередь «с точки зрения распространения неприятного запаха».
    Напомним, что свинокомплекс «Курасовcкий» был запущен в конце января 2004 года. Строительство биокомплекса по разделению жидкой и твердой фракций животноводческих стоков было начато осенью 2013 года. Сегодня комплекс работает на полную мощность.
    «Мираторг» – вертикально интегрированный холдинг, который включает в себя две зерновые компании, три элеватора, четыре комбикормовых завода, 23 автоматизированных свинокомплекса в Белгородской и Курской областях, высокотехнологичное предприятие по убою и первичной обработке мяса, завод по производству полуфабрикатов, логистическую компанию, дистрибьюторские центры в крупных городах России. Производственная мощность мясоперерабатывающего завода в Белгородской области составляет 3 млн голов в год.

Технологические свойства коптильного дыма в значи­тельной мере предопределяются его химическим составом. Химический состав дыма зависит от многих факторов, среди которых наибо­лее существенными являются: температура дымообразования; способ генерации; вид древесины - влажность древесины; размер час­тиц древесины; доступ воздуха в зону дымообразования; транспортировка дыма.

Для разложения древесины и образования дыма необходимо тепло. В практике коптильных производств тепло для генерации дыма получают либо за счет сго­рания части используемой древе­сины, либо за счет подвода извне.

Был исследован процесс пиро­лиза древесины на лабораторном устройстве и представлен в виде так называемого "дымового тер­мометра" (рис. 52).


Рис. 52. Дымовой термометр

При увеличении температу­ры древесины до 120 °С в верхних слоях опилок наблюдалось образование капелек конденсирующей воды. При достижении температуры порядка 185 °С окраска опилок изменялась и наблюдался едва различимый "тонкий" туман. По оценке исследователей, этот туман обладал резким запахом, но едва ли мог называться дымом. Впервые настоящий дым появлялся в интервале температур 220-300 °С.

Отмеченное дымообразование продолжалось до температуры 500 °С, и опилки полностью обугливались. В зоне горения образование дыма не наблюдалось.

Здесь наблюдалось горение древесного угля, утратившего способ­ность выделять газ. Дым появлялся рядом с зоной горения в еще не го­рящей, но достаточно разогретой древесине.

Многочисленные исследования влияния температуры пиролиза дре­весины на химический состав дыма позволили заключить, что макси­мальный выход таких химических веществ, как фенолы, кислоты и кар­бонильные соединения, приходится на температуры 550-650 °С.

При более высоких температурах генерирования, так же как и при более низких, содержание фенолов, кислот и карбонильных соединений в дыме заметно сокращается.

Заданную (оптимальную для данных условий) температуру при по­лучении тепла для разложения древесины за счет горения обеспечивают, как правило, путем изменения подачи воздуха в зону горения. С увели­чением подачи воздуха температура в зоне пиролиза древесины возра­жает, и наоборот, ограничение подачи воздуха приводит к снижению температуры.

Проще и точнее регулируется температура получения дыма, а значит, и его химический состав при использовании для разогрева внешнего источника тепла. В этом случае температура поддерживается и регулируется приборами автоматики.

Примерами, когда тепло, необходимое для пиролиза, вырабатывает­ся не в результате сгорания древесного угля, а подается снаружи, могут служить нагрев перегретым паром или с применением теплоты трения. На практике нашли применение два подобных дымогенератора, а именно фрикционный и паровой. Фрикционный работает при температуре пиро­лиза около 380 °С, паровой - от 320 до 380 °С. Образование дыма проис­ходит при применении одного и другого способов в нижнем диапазоне температур, необходимых для пиролиза лигнина. При этих температурах лигнин является источником для образования ароматизирующих состав­ляющих дыма, например фенолов, и распадается полностью.



Многолетней практикой производства копченой рыбопродукции предпочтение при генерировании дыма отдано древесине лиственных пород деревьев. Готовая продукция при обработке в дыме из этой дре­весины имеет высокие качественные показатели, в частности приятный вкус и аромат копчености. Данный факт, несомненно, связан с химиче­ским составом применяемого дыма, его кондиционностью.

Установлено, что в дыме, образуемом при сжигании древесины из лиственных пород дерева (дуб, бук), содержание летучих кислот значи­тельно выше, чем в дыме, генерируемом из хвойной древесины.

Существует различие в структуре лигнина в древесине мягких и твердых пород. Основными компонентами фенольных соединений в коптильном дыме из мягкой древесины является гваякол, из твердой древесины - смесь гваяколов, сирингола и его парасоставляющих производных. Отсюда и значительные различия в ароматизирующем эффекте этих двух типов дыма.

В дыме из хвойных пород древесины (ель, сосна) отмечено высокое содержание смолистых веществ и карбонильных соединений. Продук­ция, обработанная этим дымом, имеет, как правило, интенсивную окрас­ку поверхности и выраженный смолистый аромат.

Экспериментальные работы с применением аэрозольного фильтра и каскадного импактора показали, что массовая концентрация коптильно­го дыма, генерируемого из опилок березы, в три раза меньше массовой концентрации коптильного дыма, генерируемого из опилок бука.

Было высказано предположение, что если дым из опилок бука более концентрированный по дисперсной фазе, то топлива из бука для коп­чения одного и того же количества рыбы потребуется значительно мень­ше, чем из березы.

На практике при выработке копченой рыбопродукции в качестве топлива для получения дыма используют отходы деревообрабатываю­щих предприятий. Это в большинстве случаев смесь опилок из различной древесины, чаще лиственных пород.

Влажность топлива (опилок)

Проводились исследования о влиянии влажности материала (опи­лок) на процесс дымообразования. В экспериментах рассматривались опилки с влажностью 0, 10, 20, 30, 40, 50% и температуры дымообразо­вания 300, 500 и 700 °С. Фиксировалось время начала образования и продолжительность выделения дыма при сжигании исследуемых опилок с различной влажностью и после охлаждения массы остатка сгоревшей древесины. Установлено, что при температурах 500 и 700 °С идет полное разложение древесины и при этом масса образуемого древесного угля для этих температур практически одинакова.

В обоих случаях около 75 % массы сухой древесины превращается в дым. В то же время при температуре 300 °С отмечено неполное дымообразование.

При последующем прогреве в течение 1 - 2 ч масса древесного угля уменьшалась, но не достигала тех остаточных 25 %, которые наблюдались при температуре 500 и 700 °С. По проведенной работе был сделан ряд заключений. Во-первых, вода затягивает начало процесса дымообразования, но это никак не отражается на общем количестве дыма, образуемого при достаточно высоких температурах. Во-вторых, выпаренная из опилок вода вытесняет частично кислород из зоны горения, в результате температура костра понижается и образуется больше дыма. К тому же для испарения воды из опилок требуется дополнительное тепло, что также ведет к снижению температуры в зоне дымообразования. В третьих, понижение температуры пиролиза в период развития дыма отражается на химическом составе дыма и, как следствие, на его сенсорных свойствах. В-четвертых, повышенное содержание влаги в опилках приводит к значительному увлажнению дыма, к снижению его влагоемкости.

При изучении влияния влажности топлива на дисперсный состав коп­тильного дыма было отмечено, что массовая концентрация дыма при дан­ной его температуре уменьшается с увеличением относительной влаж­ности опилок.

Воздух, поступающий при образовании дыма в зону горения, имеет важное значение, так как в некоторой степени влияет на химический состав дыма. По мере увеличения доступа воздуха в определенный пе­риод наблюдается увеличение содержания фенолов. Концентрация фено­лов, кислот и карбонильных соединений увеличивается с возрастанием доли разложившейся древесины и количества подведенного воздуха. При большом количестве поступающего воздуха генерируемый коптиль­ный дым содержит повышенное количество смол и содержание фенолов в нем уменьшается.

На большинстве современных коптильных предприятий дым для обработки рыбы получают в специальных устройствах - дымогенераторах, отстоящих, как правило, от коптильных установок на некотором расстоянии. В этих случаях централизованная подача дыма к камерам копчения осуществляется по дымоводам. Транспортировка дыма отра­жается на его химическом составе; при этом степень возникающих из­менений зависит от расстояния генерирующего устройства до коптиль­ной камеры; изменений в сечении дымоводов; изменения температуры дыма. При транспортировке дыма, сопровождающейся понижением тем­пературы, наблюдается изменение соотношения между содержанием коп­тильных компонентов в дисперсной фазе и дисперсионной среде. Основ­ная часть химических соединений сосредоточивается в дисперсной фазе.

В процессе перемещения дыма наблюдаются коагуляция частиц и осаждение последних на стенках воздуховодов, также в воздуховодах осаждается значительная часть смолистых веществ. В результате общее содержание коптильных компонентов в дыме сокращается.

Поскольку химические соединения распределены между дисперсной фазой и дисперсионной средой, важное значение имеет вопрос о том, где их находится больше и какая из вышеуказанных фаз дыма играет решающую роль при копчении.

Увеличение относительной влажности при той же температуре приводит к увеличению количества фенольных соединений в дисперсной фазе, а при относительной влажности порядка 90 % практически все фенолы сосредоточиваются в ней. Повышение температуры рабочей среды спо­собствует перераспределению фенолов между фазами - часть фенольных соединений из дисперсной фазы переходит в паровую. Однако даже при максимально допустимых температурах процесса холодного копчения (30-34 °С) содержание фенолов в паровой фазе с относительной влажностью 20 % не превышало 50-55 % от общего их содержания в коптильной среде.

Таким образом, установлено, что при холодном копчении фенольные компоненты дыма в основном находятся в дисперсной (капельно-жидкой) фазе. Отчасти это объясняется тем, что температура кипения фенольных соединений находится в диапазоне 182-260 °С.

В условиях горячего копчения при температурах рабочей среды от 80 до 140 °Скартина меняется. Исследования модельных парообразных сред, регенерируемых из коптильных продуктов, показали, что основная масса коптильных компонентов дыма в нижнем интервале температур находится в паровой фазе. При увеличении температур от 120 до 140 °С в дисперсной фазе суммарное количество фенолов, кислот и карбонильных соединений уменьшается от 10 до 25 % в зависимости от вида используемого препарата, его химического состава.

Отрицательные факторы дымового копчения и пути их устранения. Под действием отдельных составляющих дыма, в частности карбонильных соединений, уменьшается содержание аминокислот в продукте и прежде всего лизина, в результате снижается пищевая ценность изделия.

Среди карбонильных соединений дыма доминирует формальдегид. Свободный формальдегид является одной из возможных причин обра­зования раковых опухолей. Тем не менее было доказано, что человече­ский организм представляет систему, достаточно защищенную от воздействия этого вещества, и содержание его в продуктах питания допустимое до 50 мг на 1 кг.

Основное внимание специалистов при изучении вопросов, связанные с дымовым копчением, сосредоточено на изыскании способов, уменьшающих попадание вредных химических соединений в обрабатываемую продукцию. В этой области исследователями достигнуты определенные положительные результаты. Так, продукты с пониженным содержанием ПАУ получали при использовании в процессе копчения дыма, генерированного при строго определенных условиях пиролиза и окисления летучих продуктов термического распада. В результате многочисленных исследований достоверно доказано, что наименьшее количество поли циклических ароматических углеводородов содержит дым, выработанный при температурах 300-400 о С.

Бензпирен сосредоточен главным образом в дисперсной фазе дыма, содержащей тяжелые смолы. Отделение дисперсной фазы и использо­вание для копчения исключительно паровой среды позволили сущест­венно уменьшить попадание бензпирена в продукт.

В значительной мере снижается концентрация ПАУ в копченых пи­щевых изделиях при обработке охлажденным или профильтрованный технологическим дымом. Исследования состава коптильных сред подтвердил, что охлаждение способствует конденсации высококипящих канцерогенных составляющих дыма, а также коагуляции и осаждению крупных частиц дисперсной фазы, содержащих бензпирен.

Фильтрация относится к наиболее простым и распространенным спо­собам частичной очистки дыма от нежелательных соединений, основанных на удалении из дымовоздушной смеси частиц больших размеров. Так, одним из предлагаемых способов уменьшения ПАУ является применение электростатического воздушного фильтра, содержащего ионизирующую секцию. В патентных описаниях встречаются также рекомендации по снижению ПАУ в дыме применением циклона. Используют­ся в этих целях и фильтры для механического удаления из дыма смолистых веществ, но размещение такого фильтра на пути следования дыма создает дополнительные потери тепла при горячем копчении и способ­ствует возрастанию расхода древесного топлива.

Сенсорная оценка копченых продуктов, приготовленных с примене­нием обычного дыма, по сравнению с продуктами, обработанными очищенным при помощи фильтрации дымом, показала, что они близки по качеству, однако продукты, выкопченные профильтрованным дымом, были окрашены менее интенсивно. Удаление части дисперсной фазы при фильтрации приводит к уменьшению содержания всех коптильных ком­понентов, в том числе ароматических и цветообразующих.

Продукция пародымового копчения характеризуется низкой кон­центрацией канцерогенных соединений, однако она существенно отли­чается по своим органолептическим данным от соответственных продуктов дымового копчения, в частности по интенсивности окраски и выра­зительности аромата, которые при дымовом копчении выражены сильнее.

В большинстве агрегатов для генерации дыма предусматриваются системы частичной очистки дыма от нежелательных составляющих. Примером достаточно эффективного способа очистки дыма может служить устройство так называемого водоинерционного типа, предложен­ное ЦПКТБ "Азчеррыба" (рис. 53).

Благодаря инерции и эффективному контакту с водой тяжелые частицы дыма (сажа, зола, смола) остаются в ней. Проточная вода уносит частицы сажи и золы, а смола оседает на дно устройства и периодически удаляется через люк в специальную тару.

Перечисленные выше способы и приемы, способствующие снижению концентрации полициклических ароматических углеводородов в копче­ных продуктах, не приводят к ощутимому уменьшению нитрозоаминов, так как один из основных источников их образования в продукте, за­кись азота, находится в паровой фазе дыма, не претерпевающей замет­ных изменений в процессе его очистки в коптильных установках.



Не менее важной проблемой, связанной с использованием дыма при копчении, является охрана окружающей среды от загрязняющих атмосферу дымовых выбросов, содержащих большое количество органиче­ских веществ.

Рис. 53. Очистительное устройство дымогенератора Н-10-ИД2Г-1;

1 - выход очищенного дыма; 2 - штуцер для подсоединения к водопроводной сети; 3 - дно устройства; 4 - центральная труба; 5 - круговая стенка; 6 - пере­городка, разделяющая устройство на два отсека; 7 - сливной лоток; 8 - люк; 9 - коленообразный патрубок

Количество выбрасываемых в атмосферу органических соединений достигает при холодном копчении 2 г/м 3 , а при горячем копчении 10 г/м 3 .

В настоящее время для очистки дымовых и газовых выбросов про­мышленных предприятий применяют способы адсорбции, абсорбции, высокотемпературного и каталитического сжигания, жидкофазного окисления, электростатического осаждения и комбинированные ме­тоды.

С целью предупреждения загрязнения окружающего воздуха выбро­сами коптильных производств чаще всего применяют и рекомендуют применять такие способы, как осаждение дисперсной фазы выбросов в электростатическом поле высокого напряжения, каталитического и высокотемпературного сжигания.

Существенное значение при оценке эффективности того или иного способа очистки является помимо стоимости устройств и их надежности в работе возможность возникновения побочных явлений, эксплуатацион­ные расходы.

Дожигание дымовых выбросов является наиболее эффективным способом обезвреживания, при котором достигается высокая степень очистки от токсичных веществ. Процесс может проходить при темпера туре около 500 °С (каталитическое дожигание) или 750 °С (термическое дожигание), в результате образуются водяной пар и углекислота. В ка­честве топлива в устройствах дожига используют обычный мазут или газ. Следует учитывать, что при использовании мазута в качестве топ­лива образуется двуокись серы. Если установки применяются для сжига­ния дыма сравнительно небольшой густоты (плотности), то количество образовавшейся двуокиси серы может быть выше, чем количество сжи­гаемого органического углерода. К тому же в настоящее время приме­нение этих методов очистки становится экономически невыгодным из-за высокого потребления энергии (топлива) устройствами дожига.

Метод становится экономичным, если для дожига использовать топки действующих тепловых агрегатов, например котлов. Однако тер­мическое обезвреживание затрудняется наличием в отбрасываемых га­зах смоляных веществ. Скопление смолы нарушает аэродинамику дымоходов, работу регулировочных и горелочных устройств.

На рис. 54 показана установка термического обезвреживания коп­тильных выбросов, содержащих смолу. Дымовые выбросы от коптиль­ных печей 1 и системы вытяжной вентиляции 2 проходят через емкость предварительного отделения смолы 3, уменьшая отклонение смолы в вентиляторе 4. Газоход 5 служит одновременно и конденсатором и прокладывается с учетом в сторону смолосборника 10. Затем дымовые газы подаются дутьевым вентилятором 6 в воздушный тракт газомазут­ной горелки 7, устроенной в топке котла. Отделенная смола периодиче­ски подогревается змеевиком 9 для снижения вязкости мазута, который насосом 8 подается в жидкостный тракт газомазутной горелки для сжигания по аналогии с жидким топливом.

Рис. 54. Установка термического обезвреживания отработанных газов:

I - коптильная печь; 2 - всасывающие каналы системы вытяжной вентиляции; 3 - вместимость предварительного отделения смолы; 4 - вентилятор; 5 - газо­ход; б - вентилятор подачи газов к горелке; 7 - газомазутная горелка; 8 - мазутный насос; 9 - система подогрева смолы; 10 - смолосборник

Рис. 55. Циркуляционная система коптильной установки "Атмос-2000":

1 - коптильная камера; 2 - душевая система; 3 - выход отработанного воз­духа; 4 и 15 - клапаны регулирования температуры и влажности рабочей среды; 5 - вентилятор циркуляции рабочей среды; 6 - воздуховод подачи воздуха в ды-могенератор; 7 - дымогенератор; 8 - подача воздуха в зону горения дымогене ратора; 9 - дроссельная заслонка; 10 - подача воздуха в обход зоны горения опи­лок; 11 - электрический поджиг опилок; 12 - подача дыма в камеру; 13 - сток конденсата; 14 - система подогрева рабочей среды

Уменьшению загрязнения окружающей среды способствует также более полное использование дыма в коптильной установке за счет его рециркуляции и создания замкнутых (циркуляционных) систем. При­мером практического применения замкнутой системы может служить установка "Атмос-2000" (рис. 55). При данной системе организации про­цесса копчения большая часть воздуха, необходимого для протекания химических реакций во время тления опилок, забирается из рабочей среды коптильной камеры. Благодаря этому количество отработанного дыма при осуществлении обычного копчения сокращается на 1/10.