В квартире

Комплект из кремня трута и кресала. Огниво: что это такое и как им пользоваться? Как приготовить трут из ткани

Комплект из кремня трута и кресала. Огниво: что это такое и как им пользоваться? Как приготовить трут из ткани

Сколько же галактик во Вселенной?

Слова поэта поражают: ведь в те времена знали только одну звездную систему. И как ни много звезд в нашей Галактике, но их количество все-таки ограничено — около 100 млрд. Лишь в начале прош-лого века астрономы поняли, что есть звездные миры, существующие неза-висимо от нашей системы-галактики, называемой Млечный Путь. Туман-ность Андромеды — типичный пример соседнего гигантского звездного дома. С открытием других звездных "остро-вов" мысль о бесконечности окружаю-щего нас мира получила существенную поддержку. Ведь если галактика в созвездии Андромеды похожа на на-шу, в которой расположена Солнечная система, то схожую природу имеют и множество других галактик, в кото-рых из-за их удаленности от нас уче-ные не могут рассмотреть отдельные звезды.

Сколько же галактик во Вселенной? Ответ на этот вопрос имеет громадное значение для судеб находящихся в ней цивилизаций. Если все галактики мож-но "пересчитать", то это означает, что и время жизни Вселенной должно быть ограничено.

Наш мир существует благодаря то-му, что в начале всего лежит превраще-ние водорода в гелий, происходящее внутри звезд. Этот процесс образно опи-сал Харри Мартинсон в миниатюре:

В изнанке времени возник

водород в неброском виде

и из атомов воздвиг

богу своему хитроумный дом.

И в этом мире мы с вами сейчас жи-вем! Постепенно звезда "...сжимается и стынет и плывет в те миры, где тускло носятся в пустыне, как луны, мертвые шары". Так Семен Кирсанов в стихот-ворении "Сожаление" пишет о судьбе звезды.

Каково же будущее того мира, где звезды, исчерпав запасы горючего, под-держивавшего их свечение на протяже-нии десятков миллиардов лет, либо превратятся в холодные объекты — бе-лые карлики, нейтронные звезды, либо станут черными дырами?

Конечно, можно подсчитать, что нашей Галактике, чтобы превратить-ся в кладбище звезд, понадобится сот-ня миллиардов лет. Астрономы уста-новили, что возраст Галактики состав-ляет около 12 млрд. лет. А что прои-зойдет с ней в следующий десяток миллиардов лет? Неужели человечес-тво окажется в поистине фантастичес-ком мире, в котором все звезды погас-ли? А жизнь сохранившихся цивили-заций будет поддерживаться теплом, извлекаемым неведомыми нам путя-ми, например, в космической жаров-не, где будут сгорать отжившие свое звезды.

Но есть ли во Вселенной такие про-цессы, которые приводили бы к возоб-новлению водорода? Если есть, то в Галактике должен иметь место "кру-говорот водорода". И тогда было бы весьма затруднительно указать время "кончины" подобной системы. Такая возможность позволит какой-нибудь развитой цивилизации путешество-вать от одной звезды к другой, еще не погасшей, обеспечивая себе практи-чески вечное существование. Ведь ес-ли в одной области галактики звезды умирают, то в другой — могут заго-раться новые. Такое рассуждение по-надобилось нам, чтобы обосновать переход ученых к рассмотрению свойств объектов, расположенных за предела-ми нашего звездного дома, причем иногда на столь огромных расстояни-ях, что луч света от них идет к нам миллиарды лет. Для сравнения вспом-ним: необходимо чуть больше 8 ми-нут, чтобы световой луч известил нас о том, что произошло на Солнце. Что-бы "определить судьбу" Вселенной, в том числе и нашей Галактики, следо-вало бы узнать о свойствах громадного мира галактик.

Сейчас ни один астроном с точнос-тью не скажет, сколько галактик мож-но наблюдать на небе современными средствами. В 1934 году американ-ский астроном Эдвин Хаббл подсчи-тал, что число звездных островов, ко-торые он смог бы "увидеть" с помощью крупнейшего тогда телескопа с диа-метром зеркала 2,5 м, составляет свы-ше 5 млн. Но с тех пор построены 6-м, несколько 8-м и два 10-м телескопа. В 6-м телескоп астрономы смогли бы наблюдать уже 1,4 млрд. галактик. Конечно, столько объектов ни один астроном не в состоянии увидеть. На помощь пришли подсчеты, сделанные в небольшом участке неба, которые за-тем были увеличены с учетом площади всей небесной сферы.

А вот космическому телескопу, названному в честь Э. Хаббла, до-ступны для просмотра уже около 50 000 млрд. галактик! Сравните эту цифру с количеством жителей на Земле — на каждого приходится око-ло 10 000 галактик! А в каждой га-лактике бывает до 100 млрд. звезд. Вот и верь после этого астрологам, ут-верждающим, что звезды на небе оп-ределяют судьбу каждого человека на Земле. Но хоть и велики приведенные цифры, но им все равно далеко до бесконечности.

Как разобраться в закономерностях, определяющих вид и суть столь огром-ного количества объектов? Конечно, такая задача была бы невообразимо трудной, а может, и неразрешимой, ес-ли бы все внегалактические объекты были различны. Природа оказалась не настолько коварной, чтобы завести астрофизиков в тупик. По образному выражению Вильяма Гершеля, "Лабо-ратория Природы", а именно так он назвал мир звезд и туманностей, есть "сад", в котором различные объекты находятся на разных стадиях разви-тия. К великому сожалению, астроно-мы до сих пор не могут с уверенностью сказать, какие объекты этого косми-ческого сада являются молодыми, а ка-кие — старыми. Но все-таки разделить все множество галактик на типы уче-ные смогли более 70 лет назад. И сде-лал это уже знакомый нам Э. Хаббл. Весной 1926 года идея ученого была опубликована в отчете Комиссии по ту-манностям Международного Астроно-мического Союза.

Оказалось, что 95 % всех звездных островов имеют симметричную форму. Лишь у трех из ста галактик трудно за-метить какую-либо структуру, и по этой причине они были названы непра-вильными.

Другой известный астрофизик Вальтер Бааде писал, что "система Хаббла настолько эффективна, что число исключений неправдоподобно мало". Схема Хаббла очень проста: га-лактики бывают сферическими, эл-липтическими, спиральными и непра-вильными. Вот только га-Схема, показывающая разнообразие форм галактик, была предложена Эдвином Хабблом. Она имеет вид "камертона": на "руко-ятке " изображены эллиптические галактики, на двух ответвлениях — спиральные галак-тики. В том месте, где ответвления соединя-ются с "рукояткой", находится чечевицеобразная галактика, которая обладает некото-рыми особенностями эллиптических и спи-ральных галактик.

Галактики делятся на два больших клас-са. У одних спирали выходят прямо из ядра, а у других — из перемычки, сое-диняющей спирали с ядром.

Такая теория объясняла существо-вание всех типов галактик. По этой схеме наша Галактика и туманность Андромеды, которые являются наибо-лее массивными из всех видимых в наблюдаемой части Вселенной (Мета-галактике), должны быть наиболее старыми. Процесс сжатия ускоряется с увеличением массы протогалактического облака. Но такой вывод вряд ли верен, поскольку почти все галактики имеют один и тот же возраст. Есть и другие аргументы против изложенного допущения. Например, почему у "очень старых" неправильных галак-тик астрономы обнаружили наиболь-шее количество газа, иногда до трети от массы самого объекта. Как же так, почему у старого объекта есть еще ве-щество, из которого могут образовы-ваться звезды?

А может быть, каждая из галактик проходит свой собственный путь разви-тия? И что же тогда со временем может получиться из туманности Андромеды или из нашей собственной Галактики? Но в природе всегда множество схожих объектов развивается определенными схожими путями. Какими же?

Большинство из нас знает астроно-мические объекты, заключенные внут-ри весьма ограниченного объема про-странства — звезды, планеты и их спут-ники, кометы, астероиды... Но Абдулла Арипов в стихотворении "Безбреж-ность" верно отметил:

Доказано, что нет пределов у Вселенной:

Над небом наших звезд —

Миры других небес.

Ни мыслью, ни мечтой,

Пусть самой дерзновенной,

Не в силах мы объять

Величье всех чудес.

О звездной природе галактик узнали после того, как К. Лундмарк наблюдал звезды на окраинах туманности М 33 в созвездии Треугольника. Через пять лет Э. Хаббл сделал то же и для туманности в Андромеде М 31. В настоящее время самый крупный телескоп способен за-фиксировать сотни миллиардов галаклактики делятся на два больших клас-са. У одних спирали выходят прямо из ядра, а у других — из перемычки, сое-диняющей спирали с ядром.

Ученые любят все выражать в про-центах, и во многих случаях это бывает оправдано, ведь за цифрами всегда кро-ется какая-нибудь особенность. Поло-вина галактик имеют спирали, а чет-верть из них видна на фотографиях в виде светлых пятен эллиптической формы. Бесформенных галактик всего 5 %. Пятая часть относится к линзо-образным, поскольку это — и не эл-липтические, и не спиральные галак-тики.

Цифры всегда скучны сами по себе, если не участвуют в описании какого-нибудь сюжета, который оказывается иногда весьма занимательным. Дейст-вительно, почему галактики отличают-ся друг от друга? Не становятся ли сферические галактики со временем спиральными, которые затем теряют свой узор и превращаются в неправиль-ные? Красоту схемы Хаббла признали все. Пользоваться ею стали на всех об-серваториях, поскольку, как казалось вначале, она вроде бы описывала прос-тую схему возникновения и жизни га-лактик.

Вообразите гигантское облако газа, из которого со временем образуется га-лактика с сотней миллиардов звезд. Гравитация будет сжимать облако, а вращение приведет к сплющиванию. Вот и получается, что если галактика вначале имела сферическую форму, то со временем она становилась все более сжатой. А как же появились спирали? Вспомните катание на карусели — кру-ге, вращающемся вокруг оси, проходя-щей через его центр. Удержаться на нем становится все труднее по мере уве-личения скорости его вращения. Так и вещество галактики — оно будет отры-ваться от экваториальной плоскости, и удаляясь от оси вращения, закручи-ваться в виде спиралей.

Такая теория объясняла существо-вание всех типов галактик…

…Расстояния до галактик невозможно определить методом параллаксов, так как они слишком далеки. Для этого ис-пользуют наблюдения цефеид, Новых и Сверхновых звезд, шаровых скопле-ний, облаков ионизированного водоро-да и др. В 1912 году В. Слайфер открыл красное смещение в спектрах галак-тик, которое в сравнении с расстоянием до них и позволило Э. Хабблу установить связь между ними.

Вид галактики связан с ее характе-ристиками: более яркие галактики яв-ляются и более массивными. Масса га-лактики определяется по кривой ско-ростей, то есть, зависимости скорости вращения от расстояния до центра га-лактики.

Кривые вращения показывают так-же, что в галактиках, возможно, есть значительное количество вещества, ко-торое не проявляет себя в излучении — так называемая "скрытая масса".

Массы же галактик могут быть весь-ма велики — до нескольких сотен мил-лиардов масс Солнца, причем, наиболее массивными оказываются эллиптичес-кие галактики.

Многие галактики входят в скопле-ния. Наша галактика входит в Мест-ную группу, насчитывающую свыше трех десятков галактик, в число кото-рых входит М 31, одна из самых мас-сивных в Метагалактике, а также око-ло двух десятков карликовых галактик и знаменитые Магеллановы облака — Большое и Малое — спутники Галакти-ки. Центр ближайшего сверхскопления галактик находится в созвездии Девы на расстоянии около 65 млн. световых лет. Оно содержит около 200 галактик высокой и средней светимости, в том числе и ярчайшую из них — "Сомбре-ро". Ученые считают, что наша Мес-тная система галактик входит в это сверхскопление.

Многие галактики являются источ-никами радиоизлучения. Среди них выделяются галактики умеренной мощности (N-галактики и сейфертовские галактики). Многие галактики ак-тивно излучают избыточное количество коротковолнового излучения. Считает-ся,чтоегоисточникамиявляются электроны, движущиеся в магнитных полях галактик.

Наиболее замечательными и наибо-лее удаленными от нас галактиками яв-ляются квазары — источники необы-чайно высокого излучения, природа ко-торого до сих пор не разгадана. Астро-номы уверены, что в центре квазаров расположена сверхмассивная черная дыра, взаимодействие которой с вещес-твом Галактики и является причиной мощного излучения.

Мы еще не раз вернемся к теме изу-чения галактик, поскольку она дейс-твительно неисчерпаема, и вопросов здесь гораздо больше, чем ответов.

Космический танец царства Галактик

Детальное исследование Вселенной показало, в каком фантастическом космическом балете участвует Зем-ля. Сначала она со скоростью 30 км/с увлекает нас за собой в ежегодное путешествие по орбите вокруг Солнца диамет-ром 17 световых минут (рис. А). Солнечная система совер-шает "кругосветное путешествие" вокруг центра Млечного Пути со скоростью 230 км/с (рис. В).

Млечный Путь диаметром 100 тысяч световых лет летит со скоростью 90 км/с к своей соседке Андромеде, при этом они являются частью Местной группы, которая простира-ется на миллионы световых лет (рис. С). В свою очередь, Местная группа галактик движется со скоростью, пример-но, 600 км/с, притягиваемая сверхскоплениями в созвез-диях Девы, Гидры и Центавра, ближайшее из которых от-стоит от нас на расстоянии более 65 млн. световых лет (рис. D). Упомянутые ближайшие сверхскопления находятся в гра-витационном взаимодействии с другими галактическими агломерациями.

Совокупности сверхскоплений образуют гигантские це-почки, протяженностью в сотни миллионов и миллиарды световых лет. Самое интересное то, что видимая нашим глазом материя (звезды и галактики) играет весьма незна-чительную роль в этом "Вселенском спектакле". В значи-тельно большей степени эти гигантские пространственные структуры формирует: а) — гравитационное поле невиди-мой "скрытой массы" или "темной материи", излучение которой не фиксируется нашими приборами, а также б) — антигравитационное воздействие "темной энергии", спо-собствующее расширению Метагалактики.

В глубинах Малого Магеланового облака

Несомненным украшением южного звездного неба на-шей планеты является Малое Магелланово облако (ММО) — спутник Млечного Пути. Оно находится от нас на расстоянии 210 000 световых лет в направлении созвездия Тукана. Объектом исследований космического телескопа им. Хаббла стала область звездообразования в ММО, получив-шая название NGC 346. Эта область, запечатленная на сним-ке, приведенном на следующей странице, имеет в поперечни-ке около 200 световых лет. При детальном исследовании уче-ные обнаружили здесь множество звездных эмбрионов, за-рождающихся в коллапсирующих газово-пылевых облаках. В этих зародышах еще не начались ядерные реакции. Наи-меньшие из них имеют массу, равную половине массы наше-го Солнца. Их общее количество равно, примерно, 2500. По оценкам астрономов, общее количество звезд в NGC 346 со-ставляет 70 000. Там обнаружено несколько возрастных групп звезд. Наиболее старые имеют возраст 4500 млрд. лет (ровесники нашего Солнца), а самые молодые образовались всего 5 млн. лет назад, когда человек на Земле осваивал прямохождение.

Галактики, не имеющие выраженной структуры, подоб-ные ММО, считаются строительными блоками, из которых на ранних стадиях развития Вселенной формировались большие галактики. Этот спутник Млечного Пути является "лаборато-рией" для исследования процессов рождения звезд. ММО об-разовалось значительно позже нашей Галактики, о чем гово-рит меньшее содержание тяжелых элементов в его звездах.

P . S . Протяжность временного потока

Окружающее нас космическое пространство – это не просто одинокие звезды, планеты, астероиды и кометы, сверкающие на ночном небосклоне. Космос представляет собой огромную систему, где все находится в тесном взаимодействии друг с другом. Планеты группируются вокруг звезд, которые в свою очередь собираются в скопление или в туманность. Эти образования могут быть представлены одиночными светилами, а могут и насчитывать сотни, тысячи звезд, формируя уже более масштабные вселенские образования – галактики. Наша звездная страна, галактика Млечный путь, является только малой частью бескрайней Вселенной, в которой помимо этого существуют и другие галактики.

Вселенная постоянно находится в движении. Любой объект в космосе входит в состав той или иной галактики. Следом за звездами перемещаются и галактики, каждая из которых имеет свои размеры, определенное место в плотном вселенском строю и свою траекторию движения.

Какова реальная структура Вселенной?

Долгое время научные представления человечества о космосе строились вокруг планет Солнечной системы, звезд и черных дыр, населяющих наш звездный дом – галактику Млечный путь. Любой другой галактический объект, обнаруживаемый в космосе с помощью телескопов, автоматически вносился в структуру нашего галактического пространства. Соответственно отсутствовали представления о том, что Млечный Путь — не единственное вселенское образование.

Ограниченные технические возможности не позволяли заглянуть дальше, за пределы Млечного Пути, где по устоявшемуся мнению начинается пустота. Только в 1920 году американский астрофизик Эдвин Хаббл сумел найти доказательства того, что Вселенная значительно больше и наряду с нашей галактикой в этом огромном и бескрайнем мире существуют другие, большие и маленькие галактики. Реальной границы Вселенной не существует. Одни объекты расположены к нам достаточно близко, всего несколько миллионов световых лет от Земли. Другие наоборот, расположены в дальнем углу Вселенной, пребывая вне зоны видимости.

Прошло почти сто лет и количество галактик сегодня уже оценивается в сотни тысяч. На этом фоне наш Млечный путь выглядит совсем не таким огромным, если не сказать, совсем крохотным. Сегодня уже обнаружены галактики, размеры которых трудно поддаются даже математическому анализу. К примеру, самая большая галактика во Вселенной IC 1101 имеет диаметр 6 миллионов световых лет и состоит из более 100 триллионов звезд. Этот галактический монстр находится на расстоянии более миллиарда световых лет от нашей планеты.

Структура такого огромного образования, каковым является Вселенная в глобальном масштабе, представлена пустотой и межзвездными образованиям — волокнами. Последние в свою очередь делятся на сверхскопления, межгалактические скопления и галактические группы. Самым малым звеном этого огромного механизма является галактика, представленная многочисленными звездными скоплениями — рукавами и газовыми туманностями. Предполагается, что Вселенная постоянно расширяется, заставляя тем самым двигаться галактики с огромной скоростью по направлению от центра Вселенной к периферии.

Если представить, что мы наблюдаем за космосом из нашей галактики Млечный Путь, которая якобы находится в центре мироздания, то крупномасштабная модель структуры Вселенной будет иметь следующий вид.

Темная материя — она же пустота, сверхскопления, скопления галактик и туманности — это все последствия Большого взрыва, который положил начало образованию Вселенной. В течение миллиарда лет происходит трансформация ее структуры, меняется форма галактик, так как одни звезды исчезают, поглощенные черными дырами, а другие наоборот, трансформируются в сверхновые, становясь новыми галактическими объектами. Миллиарды лет назад в расположение галактик было совсем другое, чем мы наблюдаем сейчас. Так или иначе, на фоне постоянных астрофизических процессов, происходящих в космосе, можно сделать определенные выводы о том, что наша Вселенная имеет не постоянную структуру. Все космические объекты находятся в постоянном движении, меняя свое положение, размеры и возраст.

На сегодняшний день благодаря телескопу Хаббл удалось обнаружить месторасположение наиболее близких к нам галактик, установить их размеры и определить местоположение относительного нашего мира. Стараниями астрономов, математиков и астрофизиков составлена карта Вселенной. Выявлены одиночные галактики, однако в большинстве своем, такие крупные вселенские объекты группируются по несколько десятков в группе. Средний размер галактик в такой группе составляет 1-3 млн. световых лет. Группа, к которой относится наш Млечный Путь, насчитывает 40 галактик. Помимо групп в межгалактическом пространстве имеется огромное количество карликовых галактик. Как правило, такие образования являются спутниками более крупных галактик, как наш Млечный путь, Треугольник или Андромеда.

До недавнего времени самой маленькой галактикой во Вселенной считалась карликовая галактика «Segue 2», находящаяся в 35 килопарсеках от нашей звезды. Однако в 2018 году японскими учеными-астрофизиками была выявлена еще меньшая по размеру галактика — Virgo I, которая является спутником Млечного Пути и находится на расстоянии 280 тыс. световых лет от Земли. Однако ученые считают, что это не предел. Высокая вероятность того, что существуют галактики куда более скромных размеров.

За группами галактик идут скопления, области космического пространства в которых существует до сотни галактик различных видов, форм и размеров. Скопления имеют колоссальные размеры. Как правило, диаметр такого вселенского образования составляет несколько мегапарсек.

Отличительной чертой структуры Вселенной является ее слабая изменчивость. Несмотря на громадные скорости, с которыми движутся галактики во Вселенной, все они остаются в составе одного скопления. Здесь действует принцип сохранения положение частиц в пространстве, на которые действует темная материя, образовавшаяся в результате большого взрыва. Предполагается, что находясь под воздействием этих пустот, заполненных темной материей, скопления и группы галактик продолжают миллиарды лет двигаться в одном направлении, соседствуя друг с другом.

Самые крупные образования во Вселенной — галактические сверхскопления, которые объединяют группы галактик. Самое известное сверхскопление — Великая Стена Клоуна, объект вселенского масштаба, растянувшийся в длину на 500 млн. световых лет. Толщина этого сверхскопления составляет 15 млн. световых лет.

В нынешних условиях космические аппараты и техника не позволяют нам рассмотреть Вселенную на всю ее глубину. Нам под силу обнаружить только сверхскопления, скопления и группы. Помимо этого наш космос имеет гигантские пустоты, пузыри темной материи.

Шаги на пути изучения Вселенной

Современная карта Вселенной позволяет нам не только определить свое местоположение в космосе. Сегодня, благодаря наличию мощных радиотелескопов и техническим возможностям телескопа Хаббл, человек сумел не только приблизительно подсчитать количество галактик во Вселенной, но и определить их типы и разновидности. Еще в 1845 году британский астроном Уильям Парсонс, с помощью телескопа исследуя облака газа, сумел выявить спиралевидную природу строения галактических объектов, акцентируя внимания на том, что в разных областях яркость звездных скоплений может быть большей или меньшей.

Сто лет назад Млечный Путь считался единственной известной галактикой, хотя математически было доказано наличие других межгалактических объектов. Свое название наш космический двор получил еще в глубокой древности. Древние астрономы глядя на мириады звезд на ночном небе, заметили характерную особенность их расположения. Основное скопление звезд было сосредоточено вдоль мнимой линии, напоминающей дорожку из разбрызганного молока. Галактика Млечный Путь, небесные светила другой хорошо знакомой галактики Андромеда являются самыми первыми вселенскими объектами, с которых началось изучение космического пространства.

Наш Млечный Путь имеет полный набор всех галактических объектов, который должна иметь нормальная галактика. Здесь присутствуют скопления и группы звезд, общее число которых примерно составляет 250-400 млрд. Имеются в нашей галактике облака газа, образующего рукава, присутствуют свои черные дыры и солнечные системы, подобные нашей.

Вместе с тем, Млечный Путь, как и Андромеда с Треугольником, являются только малой частью Вселенной, входящей в местную группу сверхскопления под названием Дева. Наша галактика имеет форму спирали, где основная масса звездных скоплений, облака газа и другие космические объекты двигаются вокруг центра. Диаметр внешней спирали составляет 100 тыс. световых лет. Млечный Путь — по космическим меркам не большая галактика, масса которой составляет 4,8х1011 Mʘ. В одном из рукавов Ориона Лебедя находится и наше Солнце . Расстояние от нашей звезды до центра Млечного Пути составляет 26 000 ± 1 400 св. лет.

Долгое время считалось, что одна из самых популярных среди астрономов туманность Андромеды является частью нашей галактики. Последующие исследования этой части космоса дали неопровержимые доказательства того, что Андромеда является самостоятельной галактикой, причем значительно крупнее, чем Млечный Путь. Полученные с помощью телескопов снимки показали, что Андромеда имеет собственное ядро. Здесь также присутствуют скопления звезд и имеются свои туманности, двигающиеся по спирали. Каждый раз астрономы пытались все глубже и глубже заглянуть внутрь Вселенной, исследуя обширные области космического пространства. Количество звезд в этом вселенском гиганте оценивается в 1 триллион.

Стараниями Эдвина Хаббла удалось установить примерное расстояние до Андромеды, которая никак не могла быть частью нашей галактики. Эта была первая галактика, которая подверглась такому пристальному изучению. Последующие годы дали новые открытия в области исследования межгалактического пространства. Более тщательно изучалась та часть галактики Млечный Путь, в которой находится наша Солнечная система. С середины XX века стало ясно, что помимо нашего Млечного Пути и хорошо известной Андромеды, в космосе имеется огромное количество других образований вселенского масштаба. Однако для порядка требовалось упорядочить космическое пространство. Если звезды, планеты и другие космические объекты поддавались классификации, то с галактиками дело обстояло сложнее. Сказывались огромные размеры исследуемых областей космического пространства, которые не только было трудно изучить визуально, но и оценить на уровне человеческой природы.

Типы галактик в соответствии с принятой классификацией

Хаббл первый решился на такой шаг, сделав в 1962 году попытку логическим путем классифицировать известные на тот момент галактики. Классификация осуществлялась на основании формы исследуемых объектов. В результате Хабблу удалось расставить все галактики по четырем группам:

  • наиболее распространенным типом являются спиральные галактики;
  • далее следуют эллиптические спиральные галактики;
  • с перемычкой (бар) галактики;
  • неправильные галактики.

Следует отметить, что наш Млечный Путь относится к типичным спиральным галактикам, однако есть одно «но». С недавнего времени выявлено наличие перемычки — бара, который присутствует в центральной части образования. Другими словами наша галактика берет свое начало не с галактического ядра, а вытекает из перемычки.

Традиционно спиральная галактика выглядит в форме диска спиралевидной плоской формы, в котором обязательно присутствует яркий центр – ядро галактики. Таких галактик больше всего во Вселенной и обозначаются они латинской буквой S. Помимо этого существуют разделение спиральных галактик на четыре подгруппы – So, Sa, Sb и Sc. Маленькие буквы обозначают наличие яркого ядра, отсутствие рукавов или наоборот, наличие плотных рукавов, охватывающих центральную часть галактики. В таких рукавах располагаются скопления звезд, группы звезд, в состав которых входит наша Солнечная система, прочие космические объекты.

Главной особенностью этого типа является медленное вращение вокруг центра. Млечный Путь совершает полный оборот вокруг своего центра за 250 млн. лет. Спирали, расположенные ближе к центру состоят в основном из скоплений старых звезд. Центр нашей галактики – это черная дыра, вокруг которой и происходит все основное движение. Протяженность пути по современным оценкам составляет по направлению к центру 1,5-25 тыс. световых лет. В процессе своего существования спиральные галактики могут сливаться с другими вселенскими образованиями меньших размеров. Свидетельством таких столкновений в более ранние периоды является наличие гало звезд и гало скоплений. Подобная теория лежит в основе теории образования спиральных галактик, которые стали результатом столкновения двух галактик, расположенных по соседству. Столкновение не могло пройти бесследно, придав общий вращательный импульс новому образованию. Рядом со спиральной галактикой находится карликовая галактика, одна, две или сразу несколько, являющиеся спутниками более крупного образования.

Близким по своей структуре и составу к спиральным галактикам являются эллиптические спиральные галактики. Это огромные, самые крупные вселенские объекты, включающие большое количество сверхскоплений, скоплений и групп звезд. В самых больших галактиках количество звезд превышает десятки триллионов. Основное отличие таких образований — сильно растянутая в пространстве форма. Спирали расположены в форме эллипса. Эллиптическая спиральная галактика М87 является одной из самых крупных во Вселенной.

С перемычкой галактики встречаются значительно реже. На них приходится примерно половины всех спиральных галактик. В отличие от спиральных образований, в таких галактиках начало берется из перемычки, называемой баром, вытекающей из двух самых ярких звезд, расположенных в центре. Ярким примером такого образования является наш Млечный Путь и галактика Большое Магелланово Облако. Ранее это образование относили к неправильным галактикам. Появление перемычки является на данный момент одной из основных областей исследования в современной астрофизике. По одной из версий, близко расположенная черная дыра высасывает и поглощает газ из соседних звезд.

Самые красивые галактики во Вселенной относятся к типу спиральных и неправильных галактик. Одной из самых красивых является галактика Водоворот, расположенная в небесном созвездии Гончие Псы. В данном случае отчетливо видны центр галактики и спирали, вращающиеся в одном направлении. Неправильные галактики представляют собой хаотически расположенные сверхскопления звезд, не имеющие четкой структуры. Ярким примером такого образования является галактика под номером NGC 4038, расположенная в созвездии Ворон. Здесь наряду с огромными газовыми облаками и туманностями можно увидеть полное отсутствие порядка в расположении космических объектов.

Выводы

Изучать Вселенную можно бесконечно. Каждый раз, с появлением новых технических средств, человек приоткрывает завесу космоса. Галактики являются самыми непостижимыми для человеческого разума объектами в космическом пространстве, как с психологической точки зрения, так и оглядываясь на науку.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

(Астрономия@Science_Newworld).

Совсем недавно, в 1920 годах, знаменитый астроном Эдвин хаббл сумел доказать, что наш млечный путь - это не единственная существующая галактика. Сегодня нам уже привычно, что космос заполнен тысячами и миллионами других галактик, на фоне которых наша выглядит совсем крохотной. Но сколько именно галактик во вселенной находится рядом с нами? Сегодня мы ответ на этот вопрос найдем.

От одной до бесконечности.

Звучит невероятно, но еще наши прадеды, даже самые ученые, считали наш млечный путь метагалактикой - объектом, покрывающим собой всю обозримую вселенную. Их заблуждение вполне логично объяснялось несовершенством телескопов того времени - даже лучшие из них видели галактики как расплывчатые пятна, из-за чего они поголовно именовались туманностями. Считалось, что из них со временем формируются звезды и планеты, как сформировалась когда-то наша солнечная система. Эту догадку подтвердило обнаружение первой планетарной туманности в 1796 году, в центре которой находилась звезда. Поэтому ученые считали, что все остальные туманные объекты на небе являются такими же облаками пыли и газа, звезды в которых еще не успели образоваться.

Первые шаги.

Естественно, прогресс не стоял на месте. Уже в 1845 году Уильям парсонс построил исполинский для тех времен телескоп "Левиафан", размер которого приближался к двум метрам. Желая доказать, что "Туманности" на самом деле состоят из звезд, он серьезно приблизил астрономию к современному понятию галактики. Ему удалось впервые заметить спиралевидную форму отдельных галактик, а также обнаружить в них перепады светимости, соответствующие особенно крупным и ярким звездным скоплениям.

Однако споры аж до XX века продлились. Хотя в прогрессивном ученом обществе уже было принято считать, что существует множество других галактик кроме млечного пути, официальной академической астрономии нужны были неопровержимые доказательства этого. Поэтому взоры телескопов со всего мира на ближайшую к нам большую галактику, раньше тоже принятой за туманность - галактику Андромеды.

В 1888 году Исааком Робертсом была сделана первая фотография Андромеды, а на протяжении 1900-1910 годов были получены дополнительные снимки. На них видны и яркое галактическое ядро, и даже отдельные скопления звезд. Но низкое разрешение снимков допускало погрешности. То, что было принято за звездные кластеры, могло быть и туманностями, и попросту несколькими звездами, "Слипшимися" в одну во время выдержки снимка. Но окончательно решения вопроса было не за горами.

Современная картина.

В 1924 году, пользуясь телескопом - рекордсменом начала столетия, Эдвину хабблу удалось более-менее точно оценить расстояние к галактике Андромеды. Оно оказалось настолько огромным, что полностью исключало принадлежность объекта к млечному пути (притом, что оценка хаббла была в три раза меньше современной. Еще астроном обнаружил в "Туманности" множество звезд, что явно подтверждало галактическую природу Андромеды. В 1925 году, вопреки критике коллег, хаббл представил результаты своей работы на конференции американского астрономического сообщества.

Это выступление дало начало новому периоду в истории астрономии - ученые "Переоткрывали" туманности, присваивая им звания галактик, и открывали новые. В этом им помогли наработки самого хаббла - например, открытие красного смещения. Число известных галактик росло с постройкой новых телескопов и запуском новых - например, начала широкого применения радиотелескопов после второй мировой.

Однако вплоть до 90-х годов XX века человечество оставалось в неведении о настоящем количестве окружающих нас галактик. Атмосфера земли препятствует даже самым большим телескопам получить точную картину - газовые оболочки искажают изображение и поглощают свет звезд, закрывая от нас горизонты вселенной. Но ученые сумели обойти эти ограничения, запустив космический телескоп "Хаббл", названный в честь уже знакомого вам астронома.

Благодаря этому телескопу люди впервые увидели яркие диски тех галактик, которые раньше казались мелкими туманностями. А там, где небо раньше казалось пустым, обнаружились миллиарды новых - и это не преувеличение. Однако дальнейшие исследования показали: даже тысячи миллиардов звезд, видимых "Хабблу" - это минимум десятая часть от их настоящего количества.

Финальный подсчет.

И все же, сколько именно галактик существует во вселенной? Сразу предупрежу, что считать придется нам вместе - такие вопросы обычно мало интересуют астрономов, так как лишены научной ценности. Да, они каталогизируют и отслеживают галактики - но лишь для более глобальных целей вроде изучения крупномасштабной структуры вселенной.

Однако найти точное число никто не берется. Во-первых, наш мир бесконечен, из-за чего ведение полного списка галактик проблематично и лишено практического смысла. Во-вторых, чтобы сосчитать даже те галактики, что находятся в пределах видимой вселенной, астроному не хватит всей жизни. Даже если он проживет 80 лет, считать галактики начнет с рождения, а на обнаружение и регистрацию каждой галактики будет тратить не больше секунды, астроном найдет всего лишь 2 триллиона объектов - куда меньше, чем существует галактик на самом деле.

Для определения примерного числа возьмем какое-то из высокоточных изучений космоса - например, "Ultra Deep Field" телескопа "хаббл" от 2004 года. На участке, равному 1/130 всей площади неба, телескоп сумел обнаружить 10 тысяч галактик. Учитывая то, что другие глубокие исследования того времени показывали схожую картину, мы можем усреднить результат. Следовательно, в пределах чувствительности "Хаббла" мы видим 130 миллиардов галактик со всей вселенной.

Однако это еще не все. После "Ultra Deep Field" было сделано множество других снимков, которые добавляли новые детали. Причем не только в видимом спектре света, которым оперирует "Хаббл", но и в инфракрасном и рентгеновском. Состоянием на 2014 год, в радиусе 14 миллиардов световых лет нам доступно 7 триллионов 375 миллиардов галактик.

Но это, опять-таки, минимальная оценка. Астрономы считают, что скопления пыли в межгалактическом пространстве отбирают у нас 90% наблюдаемых объектов - 7 триллионов легко превращается в 73 триллиона. Но и эта цифра устремится еще дальше к бесконечности, когда на орбиту солнца выйдет телескоп "Джеймс Уэбб". Этот аппарат за минуты достигнет туда, куда "Хаббл" пробирался днями, и проникнет еще дальше в глубины вселенной.

Наша Галактика – лишь одна из многих, а сколько их всего, не знает никто. Уже открыты более миллиарда . В каждой из них – многие миллионы звезд. Наиболее далекие из уже известных находятся в сотнях миллионов световых лет от землян, следовательно, изучая их, мы вглядываемся в самое отдаленное прошлое . Все галактики удаляются от нас и друг от друга, похоже, что Вселенная все еще расширяется и что ученые не зря пришли к выводу о большом взрыве как ее первоначале.

В науке слово «Вселенная» имеет особый смысл. Под ним понимается наибольший объем пространства вместе со всей материей и излучением, заключенными в нем, который может каким бы то ни было образом воздействовать на нас. Ученые Земли могут наблюдать только одну Вселенную, но никто не отрицает существование и других, только потому, что наши (далеко еще не совершенные) приборы не могут их установить.

Солнце – одна из миллиардов звезд. Есть звезды гораздо больше Солнца (гиганты), есть и меньше него (карлики), Солнце ближе по своим свойствам к карликовым звездам, чем к гигантам. Есть звезды горячие (они имеют бело-голубоватый цвет и температуру свыше 10000 градусов на поверхности, а некоторые до ста тысяч градусов), есть холодные звезды (они красные, температура поверхности около 3 тысяч градусов). Звезды находятся очень далеко от нас, до ближайшей звезды лететь со скоростью света (300000 км/с) целых 4 года, тогда как до Солнца можно долететь с такой скоростью за 8 минут.

Некоторые звезды образуют пары, тройки (двойные, тройные звезды) и группы (рассеянные звездные скопления). Существуют и шаровые звездные скопления, они содержат десятки и сотни звезд и имеют форму шара, с концентрацией звезд к центру. В рассеянных скоплениях собраны молодые звезды, а шаровые скопления очень древние, в них звезды старые. Возле некоторых звезд существуют планеты. Есть ли на них жизнь, а тем более цивилизации, пока не установлено. Но они вполне могут существовать.

Звезды образуют гигантские системы – Галактики. Галактика имеет центр (ядро), плоские спиральные рукава, в которых сосредоточено большинство звезд, и периферию, объемное облако из редких звезд. Звезды движутся в пространстве, они рождаются, живут и умирают. Такие звезды, как Солнце, живут примерно 10-15 миллиардов лет, и Солнце – звезда среднего возраста. Так что ему светить еще очень долго. Массивные и горячие звезды «сгорают» быстрее, и могут взрываться как «сверхновые» звезды, оставляя после себя очень маленькие и сверхплотные образования – белые карлики, нейтронные звезды или «черные дыры», в которых плотность материи столь высока, что никакие частицы не могут преодолеть силы тяготения и вырваться оттуда. Кроме звезд, в Галактике содержатся облака космической пыли и газа, образующие туманности. Плоскость Галактики, где максимальное число звезд, газа и пыли, видна на небе как Млечный Путь.

Существует еще много миллионов Галактик, состоящих из огромного числа звезд. Например, Магеллановы облака, Туманность Андромеды – это другие Галактики. Находятся они на невообразимо больших расстояниях от нас.

На нашем небе звезды кажутся неподвижными, так как они очень далеко от нас, и их движение становится заметным только по прошествии десятков и сотен тысяч лет.

Полезная информация

Галактика – гравитационно-связанная система из звёзд, межзвёздного газа, пыли и тёмной материи. Все объекты в составе галактик участвуют в движении относительно общего центра масс. Слово «галактика» происходит от греческого названия нашей Галактики. Ядро – крайне малая область в центре галактики. Когда речь заходит о ядрах галактик, то чаще всего говорят об активных ядрах галактик , где процессы нельзя объяснить свойствами сконцентрированных в них звёзд. На снимках галактик видно, что действительно одиноких галактик немного. Порядка 95 % галактик образуют группы галактик. Если среднее значение расстояния между галактиками не более чем на порядок больше их диаметра, то существенными становятся приливные воздействия галактик. На эти воздействия каждый компонент галактики в разных условиях откликается по-разному. Млечный Путь, называемый также просто Галактикой , является большой спиральной галактикой с перемычкой, диаметром около 30 килопарсек и толщиной 1000 световых

– это всепогодное средство для разведения огня методом высекания искр. По сути, любое магниевое огниво представляет собой плотно спрессованный кусок магния, как правило прямоугольной формы и с кремнем в комплекте.

Зачем нужно магнезиевое огниво?

Магниевое огниво используется для разведения огня и разжига костра. Это позволяет применять его практически в любых сферах, где требуется без использования подручных средств и инструментов (спичек, зажигалок и подобного прочего).

Из чего состоит магниевое огниво?

Как уже можно было догадаться, магниевое огниво практически целиком состоит из магния. Для тех, кто не знает, магний – это такой серебристый металл, открытый аж в 1695 году и ныне активно применяемый во многих сферах. Нас, в частности, интересует походно-военная: в ней магний очень ценится за свойство гореть ослепительно-белым пламенем с крайне высокой температурой горения.

Это позволяет применять его в военной технике – например, для изготовления осветительных патрон и сигнальных ракет, трассирующих пуль и снарядов, а также пиротехнических изделий: зажигательных бомб и светошумовых боеприпасов.

Для разжига огня, соответственно, используется именно это средство магния. Магниевые огнива, как правило, имеют две стороны: одну – мягкую (само ), другую – жесткую, со специальным ферроциевым стержнем для высечения искр (аналог кремня).

Другие названия магниевого огнива

В целом, на текущий момент два основных названия это магниевое огниво и магнезиевое огниво. Первый вариант более правильный, так как является стилистически корректным с точки зрения русского языка и склонения слова магний. Второй вариант — это американизм. В английском языке магний пишется как magnesium, следовательно и огниво — не магниевое, а магнезиевое.

Но в целом, устоявшегося названия нет. Каждый называет на свой вкус: где-то вообще называют магниевым бруском или огнивом из магния (или с магнием).

Принцип работы магниевого огнива

Принцип работы прост до топорности: нужно соскоблить кусочек брусочка с мягкой стороны, получив магниевую стружку, а затем — высечь искру и поджечь эту стружку.

Сугубо для справки: температура разгорания (воспламенения) дерева и иных твердых материалов – от 300 градусов по цельсию, а температура горения – около 700-800. У магния же – 2200 градусов.

Таким образом, за счет того, что температура горения магния почти в 5-10 раз выше, чем у обычных твердых веществ, воспламенившаяся магнезиевая стружка подожжет практически любой трут или иной материал для растопки.

Область применения магниевого огнива

Основными сферами применения магниевого огниво является туризм, альпинизм, спелеология и выживание. За счет того, что магний практически нечувствителен к температурным режимам и влажности, он представляет собой прекрасного компаньона ненадежным спичкам и способной невовремя закончиться зажигалке.

Наиболее это актуально в дикой природе или в подземье (пещерах). Даже если пойдет дождь или вы случайно свалитесь в водоем, вымокнув до нитки, магниевый брусок останется дееспособным, чего не скажешь о других средствах для розжига.

Такая же ситуация и в холодную погоду:

Или, например, на сильном ветру – пламя спичек и зажигалку будет попросту сдувать или тушить, не давая заняться огню. Магнезиевое огниво этого недостака лишено, так как стружка от искры разгорается мгновенно, без возможности задуть или потушить (что, впрочем, требует определенной сноровки).

Преимущества магниевого огнива

Основным преимуществами магниевого огнива являются его всепогодность, высокая температура горения и безопасность при деформировании. Про первые два пункта мы уже уточняли выше, а вот третий следует рассмотреть поподробнее.

В отличии от сухого горючего, которое может раскрошиться или осыпаться, магниевый брусок всегда остается цельным и твердым. Роняйте его, кидайте на самый низ рюкзака и долбите о скалы, садитесь на него, наступайте – гореть от этого хуже не станет. Условно говоря, его можно даже кусать – если не жалко зубы, конечно. Со спичками такого не повторишь – быстро превратятся в нерабочую щепу.

В то же время, магниевое огниво нельзя пролить или расплескать, как жидкое горючее, спирт или бензин с керосином. Более того – оно в разы экологичнее и куда менее огнеопасно. До тех пор, пока оно остается в твердом виде (бруске, а не стружке), пожарная безопасность на высоте – оно не загорится от любой случайной искры, чего не скажешь о жидком топливе.

Как использовать магниевое огниво

Использовать магниевое огниво достаточно просто — нужно лишь иметь под рукой острый предмет и что-то, способное высекать искры. Если под рукой есть нож — все элементарно, если нет — придется помучаться.
Для начала следует настругать немного «опилок» (магниевой стружки), и сгрести все это в кучу. Стружка должна быть как можно тоньше и меньше, чтобы легче воспламенялась. Затем следует поджечь получившуюся кучу любым возможным способом — кремнем, спичками и т.д.. Руки, по возможности, следует держать на небольшом расстоянии, а не вплотную — магний быстро вспыхивает и разгорается так горячо, что способен проплавить даже автомобильные шины (резиновые покрышки).

Виды магниевого огнива

Магниевое огниво бывает разных видов – как в виде круглых стержней:

Так и кирпичей — брусков прямоугольной форме:

Брусок может быть как простым, так и гибридным, совмещенных с кремнем или кресалом для высечения искр. Как правило, чаще всего в продаже встречается гибридный вариант – он наиболее универсален и не требует дополнительных инструментов для разведения костра.

Внешне он представляет собой все тот же брусок, в бок которого вплавлен (впрессован) ферроциевый стержень (кремень для высечения искр), а в угол, в просверленное отверстие, на цепочке или шнурке вставлен специальный скребок для нарезки стружки.

На некоторых скребках делают дополнительные инструменты: открывашку для пивных бутылок, отверстие для откручивания шестигранных гаек или насечку линейки для измерения расстояния.


На шнурок иногда навешивают свисток, либо рыболовную леску.

Как выбрать магниевое огниво?

Основным критерием при выборе магниевого огнива является его чистота, или же процент содержания магния в составе бруска. Чем он выше – тем ярче и горячее будет гореть стружка. Как правило, самые качественные магниевые огнива производятся в США – в них процент магния может доходить вплоть до 99%.

Китайские бруски обычно похуже – они более дешевые и имеют менее качественный состав. Как правило, для экономии хитрые китайцы разбавляют чистый магний алюминиевой стружкой, что снижает надежность такого бруска и ухудшает его ТТХ.

В принципе, отличие не такое большое. Не сказать уж прям, что китайское магнезиевое огниво будет сильно хуже гореть – но вот подвести в трудную минуту может. Одно дело, если вы обычный турист и хотите разжечь костер на привале, белым днем при отсутствии ветра. И совсем другое – если вы спелеолог, и в темноте пытаетесь трясущимися от холода руками высечь искру из промокшего насквозь бруска. В таком случае лучше доплатить за американское качество и надежность.

Где купить магниевое огниво?

Купить магниевое огниво можно в магазине Сурв24, в категории .