В квартире

Как паять smd компоненты. Установка и пайка SMD элементов

Как паять smd компоненты. Установка и пайка SMD элементов

Завалялся у меня тороидальный трансформатор на 30 ватт, с выходным напряжением 20 вольт. Решил сделать на его основе приличиное зарядное устройство и вот что получилось. Максимальный ток зарядки получился 1А, но его легко можно увеличить, если поставить более мощный источник напряжения - трансформатор на 100 ватт и более. Принципиальная схема в своей основе имеет ШИМ-генератор - микросхему-таймер NE555 (КР1006ВИ1), импульсы с которой поступают на затвор полевого транзистора, коммутирующего нагрузку - аккумулятор. Другой мощный транзистор отключает АКБ при аварийных ситуациях.

Схема выгодно отличается от других тем, что имеет простую и надёжную защиту от короткого замыкания выходных щупов и переполюсовки, при этом отключает заряд и включает светодиод. Так как светодиод немного подсвечивал, (тот который защита) он у меня оказался на 1.8 вольт, я решил что бы не мучится, не подбирать под разные светодиоды, поставить подстроечник.

Сделал по быстрому, просто взял и объединил две платы - генератор и защита. Зарядное устройство собрано и успешно проверено - работает великолепно! Для наглядности, снабдил зарядку ампер- и вольтметром, чтобы отслеживать процесс заряда в любой момент.

В схему можно ставить любой N-канальный полевой транзистор на нужный ток. Аккумулятор, подключаемый к ЗУ, может быть никель-кадмиевый, свинцовый гелевый, никель металл-гидридный или литий ионный. Однако в последнем случае учтите, что на нём не должен быть контроллер (как в АКБ от мобильного телефона), так как заряд происходит импульсами большого напряжения. С другой стороны такой метод заряда приветствуется, ведь эти импульсы разрушают окисел, покрывающий внутренние пластины аккумулятора, производя десульфатацию. В общем получилась простая, надёжная и функциональная схема зарядки, под многие виды аккумуляторов.

Разработка импульсных питающих устройств на основе инверторов позволяет создавать недорогие зарядные устройства с небольшим весом и габаритами. Двухтактные импульсные преобразователи критичны к несимметричному намагничиванию магнитопровода и возникновению сквозных токов. В полумостовом же инверторе с насыщающимся трансформатором отсутствует постоянная составляющая тока первичной обмотки, а напряжение на закрытых транзисторах не превышает напряжения сети.

В схеме инвертора происходит тройное преобразование:

  • выпрямление напряжения сети, т.е. получение постоянного высокого напряжения;
  • преобразование постоянного высокого напряжения в импульсное
  • высокочастотное и его трансформация в низковольтное;
  • преобразование высокочастотного напряжения в постоянное низковольтное, т.е. его выпрямление и стабилизация.

Предлагаемое устройство (рис.1) предназначено для зарядки автомобильных и других мощных аккумуляторов.

Генератор прямоугольных импульсов выполнен на аналоговом интегральном таймере DA1 серии 555 Внутренняя структура таймера содержит два компаратора, входы которых соединены с выводами 2 и 6, RS-триггер с входом (выводом 4) сброса в нулевое состояние, выходной усилитель для повышения нагрузочной способности, ключевой транзистор с коллектором, подключенным к выводу 7, вход управления (вывод 5 от делителя напряжения питания).

Для работы микросхемы в режиме автогенератора входы 2 и 6 внутренних компараторов DA1 соединены вместе. Заряд внешнего конденсатора С1 продолжается при повышении напряжения на нем до уровня 2/3 Uпит, а высокий уровень на выходе 3 DA1 при этом сменяется низким.

При падении напряжения на конденсаторе С1 до уровня 1/3 Uпит за счет разряда через внутренний транзистор микросхемы на выходе 3 DA1 вновь устанавливается высокий уровень.

Процессы заряда и разряда времязадающего конденсатора С1 происходят циклически. Заряд С1 происходит через диод VD1, R2 и включенную (левую по схеме) часть переменного резистора R1, разряд - через VD2, R2, R4 и правую часть R1. Такая схема позволяет с помощью R1 регулировать скважность импульсов (отношение длительности к периоду). Частота генератора при этом остается постоянной, а изменяется ширина (длительность) импульсов. За счет этого устанавливается нужное выходное напряжение на клеммах. ХТ1, ХТ2. Светодиодный индикатор HL1 позволяет визуально контролировать наличие высокого уровня на выходе 3 DA1.

Импульс положительной полярности с выхода 3 DA1 через ограничительный резистор R4 поступает на базу транзистора VT1 и открывает его. В результате, транзисторы VT2 и VT3 переключаются в противоположные состояния проводимости (VT2закрывается, а VT3 открывается). По окончании импульса и смене высокого уровня на выводе 3 DA1 на нулевой VT1закрывается, соответственно, закрывается VT3 и открывается VT2.

В точке соединения эмиттера VT2 и коллектора VT3 (на первичной обмотке импульсного трансформатора Т1) формируется прямоугольный импульс.

Резисторы R11, R12 и форсирующие конденсаторы С4, С5 в базовых цепях транзисторов VT2, VT3 снижают сквозной ток и выводят транзисторы из насыщения в момент переключения, уменьшая потери в цепях управления и нагрев транзисторов. Для открывания транзистора VT1 с некоторой задержкой и быстрого закрывания, что положительно сказывается на переключении выходных транзисторов, разрядный транзистор таймера (вывод 7) DA1 подключен к базе VT1.

Демпфирующие диоды VD5, VD6, включенные параллельно транзисторам VT2, VT3, защищают их от импульсов обратного напряжения. В некоторых транзисторах они уже установлены в корпусе, но в паспортных данных это не всегда отражено. Во время закрытого состояния ключей энергия, накопленная в трансформаторе Т1, передается в нагрузку и через демпферные диоды частично возвращается в источник питания.

Разделительный конденсатор С8 устраняет протекание через первичную обмотку трансформатора Т1 постоянной составляющей тока при разных характеристиках транзисторов VT2, VT3 и конденсаторов фильтра С9, С10. Демпферная цепочка С7-R16 устраняет выбросы обратного напряжения, возникающие в момент переключения тока в обмотках Т1. Дроссель L1 уменьшает динамические потери в коммутирующих транзисторах, сужая спектр генерируемых колебаний. Конденсаторы фильтра С9, С10 с выравнивающими резисторами R18, R19 создают искусственную среднюю точку для трансформатора инвертора.

Питание генератора импульсов выполнено по бестрансформаторной схеме через параметрический стабилизатор R6-R10-VD3.

Сетевое напряжение проходит через фильтр С12-Т2-С11. Ограничение тока заряда конденсаторов фильтра С9, С10 при включении устройства производит термистор RT1. Его высокое сопротивление в "холодном" состоянии переходит в низкое по мере разогрева токами заряда конденсаторов фильтра. Варистор RU1 шунтирует выбросы напряжения, поступающие при работе преобразователя в сеть.

Высокочастотные диоды VD7, VD8 выпрямляют напряжение с вторичной обмотки Т1, и на конденсаторе фильтра С6 получается постоянное напряжение, поступающее в нагрузку через амперметр РА1 с внутренним шунтом на 10 А. С помощью светодиодаHL2 осуществляется визуальный контроль наличия напряжения. Защита инвертора от короткого замыкания выполнена на предохранителе FU1. Заряжаемый аккумулятор подключается к клеммам ХТ1 и ХТ2 в соответствующей полярности проводом сечением 2...4 мм2.

Для поддержания заданного выходного напряжения в схему введена цепь обратной связи. Напряжение с делителя R14-R15,пропорциональное выходному, через ограничительный резистор R13 поступает на светодиод оптрона VU1. Стабилитрон VD4 ограничивает превышение напряжения на светодиоде. Фототранзистор оптрона подключен к входу управления (выводу 5) таймера DA1.

При увеличении выходного напряжения, например, из-за роста сопротивления нагрузки, увеличивается ток через светодиод VU1, фототранзистор оптрона открывается сильнее и шунтирует вход управления таймера. Напряжение на входе верхнего компаратора DA1 падает, он переключает внутренний триггер при меньшем напряжении на конденсаторе С1, т.е. длительность импульса DA1 уменьшается. Соответственно снижается выходное напряжение, и наоборот. Температурную зависимость выходного напряжения устройства можно компенсировать, заменив R15 терморезистором и закрепив его через прокладку на радиаторе транзисторов.

Детали и конструкция. Высокочастотный трансформатор Т1 типа ЕRL-35R320 или АР-450-1Т1 применен без переделки от компьютерного блока питания АТ/АТХ. Примерное число витков первичной обмотки - 38...46, провод 0,8 мм. Вторичная обмотка имеет 2x7,5 витков и выполнена жгутом 4x0,31 мм. Дроссель L1 используется от фильтра вторичного напряжения блока питания компьютера. Сердечник - ферритовый, размерами 10x26x10 мм. Число витков - 15...25, провод 0,6...0,8 мм. Дроссель Т2 -двухобмоточный, типа 15-Е000-0148 или фильтр НР1-Р16 на ток 1,6 А (индуктивность - 2x6 мГн).

В качестве таймера DA1 можно использовать отечественную микросхему КР1006ВИ1 или импортные микросхемы-аналоги, основные параметры которых приведены в табл.1. Для замены силовых транзисторов VT2, VT3 подойдут типы, указанные в табл.2.

Элементы устройства размещены на двух печатных платах, чертежи которых представлены на рис.2 и 3.

Транзисторы VT2, VT3 необходимо установить на радиатор через прокладки и изолированные шпильки. Собранные печатные платы монтируются в подходящем корпусе на стойках, амперметр устанавливается в вырезанном отверстии, рядом приклеиваются светодиоды HL1, HL2 и закрепляются регулятор тока R1,выключатель SA1 и предохранители FU1, FU2.

Перед первым включением устройства вместо сетевого предохранителя подключается лампочка от холодильника (220 Вх15 Вт), а вместо нагрузки - автомобильная лампочка (12 Вх55 Вт). Слабый накал лампочки холодильника указывает на рабочее состояние схемы. Через несколько секунд работы после отключения от сети проверяется нагрев транзисторов. Если температура нормальная, резистором R14 при среднем положении движка R1 устанавливается выходное напряжение (под нагрузкой) 13,8 В. При повороте движка R1 яркость автомобильной лампочки должна изменяться.

При недостаточном охлаждении транзисторов и диодов выпрямителя на корпусе зарядного устройства дополнительно устанавливается вентилятор. Но лучше использовать корпус от устаревшего блока питания компьютера со штатным вентилятором.