В квартире

Формула расчета тепловой нагрузки на отопление здания. Расчет гкал на отопление

Формула расчета тепловой нагрузки на отопление здания. Расчет гкал на отопление

Вопрос о расчете размера платы за отопление является очень важным, так как суммы по данной коммунальной услуге потребители получают зачастую довольно внушительные, в то же время не имея никакого понятия, каким образом производился расчет.

С 2012 года, когда вступило в силу Постановление Правительства РФ от 06 мая 2011 №354 «О предоставлении коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов» порядок расчета размера платы за отопление претерпел ряд изменений.

Несколько раз менялись методики расчета, появлялось отопление, предоставленное на общедомовые нужды, которое рассчитывалось отдельно от отопления, предоставленного в жилых помещениях (квартирах) и нежилых помещениях, но затем, в 2013 году отопление вновь стали рассчитывать как единую коммунальную услугу без разделения платы.

Расчет размера платы за отопление менялся с 2017 года, и в 2019 году порядок расчета вновь изменился, появились новые формулы расчета размера платы за отопление, в которых разобраться обычному потребителю не так уж и просто.

Итак, давайте разбираться по порядку.

Для того чтобы рассчитать размер платы за отопление по своей квартире и выбрать нужную формулу расчета необходимо, в первую очередь знать:

1. Имеется ли на Вашем доме централизованная система теплоснабжения?

Это означает поступает ли тепловая энергия на нужды отопления в Ваш многоквартирный дом уже в готовом виде с использованием централизованных систем или тепловая энергия для Вашего дома производится самостоятельно с использованием оборудования, входящего в состав общего имущества собственников помещений в многоквартирном доме.

2. Оборудован ли Ваш многоквартирный дом общедомовым (коллективным) прибором учета и имеются ли индивидуальные приборы учета тепловой энергии в жилых и нежилых помещениях Вашего дома?

Наличие или отсутствие общедомового (коллективного) прибора учета на доме и индивидуальных приборов учета в помещениях Вашего дома существенно влияет на способ расчета размера платы за отопление.

3. Каким способом Вам производится начисление платы за отопление – в течение отопительного периода либо равномерно в течение календарного года?

Способ оплаты за коммунальную услугу по отоплению принимается органами государственной власти субъектов Российской Федерации. То есть в различных регионах нашей страны плата за отопление может начисляться по разному - в течение всего года или только в отопительный период, когда услуга фактически предоставляется.

4. Имеются ли в Вашем доме помещения, в которых отсутствуют приборы отопления (радиаторы, батареи), или которые имеют собственные источники тепловой энергии?

Именно с 2019 года в связи с судебными решениями, процессы по которым проходили в 2018 году, в расчете стали участвовать помещения, в которых отсутствуют приборы отопления (радиаторы, батареи), что предусмотрено технической документацией на дом, или жилые и нежилые помещения, переустройство которых, предусматривающее установку индивидуальных источников тепловой энергии, осуществлено в соответствии с требованиями к переустройству, установленными действующим на момент проведения такого переустройства законодательством Российской Федерации. Напомним, что ранее методики расчета размера платы за отопление не предусматривали для таких помещений отдельного расчета, поэтому начисление платы осуществлялось на общих основаниях.

Для того чтобы информация по расчету размера платы за отопление была более понятна, мы рассмотрим каждый способ начисления платы отдельно, с применением той или иной формулы расчета на конкретном примере.

При выборе варианта расчета необходимо обращать внимание на все составляющие, которые определяют методику расчета .

Ниже представлены различные варианты расчета с учетом отдельных факторов, которые и определяют выбор расчета размера платы за отопление:

Расчет №1: Размер платы за отопление в жилом/нежилом помещении в течение отопительного периода .

Расчет №2: Размер платы за отопление в жилом/нежилом помещении , ОДПУ на многоквартирном доме отсутствует , расчет размера платы осуществляется в течение календарного года (12 месяцев).
Ознакомиться с порядком и примером расчета →

Расчет №3: Размер платы за отопление в жилом/нежилом помещении , на многоквартирном доме установлен ОДПУ , индивидуальные приборы учета во всех жилых/нежилых помещениях отсутствуют .

Метод теплового расчета являет собой определение площади поверхности каждого отдельного отопительного прибора, который отдает в помещение тепло. Расчет тепловой энергии на отопление в данном случае учитывает максимальный уровень температуры теплоносителя, который предназначен для тех отопительных элементов, для которых и проводится теплотехнический расчет системы отопления. То есть, в случае если теплоноситель – вода, то берется средняя ее температура в отопительной системе. При этом учитывается расход теплоносителя. Точно также, в случае если теплоносителем является пар, то расчет тепла на отопление использует значение высшей температуры пара при определенном уровне давления в отопительном приборе.

Методика расчета

Чтобы осуществить расчет теплоэнергии на отопление, необходимо взять показатели теплопотребности отдельного помещения. При этом из данных следует вычесть теплоотдачу теплопровода, который расположен в данном помещении.

Площадь поверхности, отдающей тепло, будет зависеть от нескольких факторов – прежде всего, от типа используемого прибора, от принципа соединения его с трубами и от того, как именно он располагается в помещении. При этом следует отметить, что все эти параметры влияют также на плотность потока тепла, исходящего от прибора.

Расчет отопительных приборов системы отопления – теплоотдачу отопительного прибора Q можно определить по следующей формуле:

Q пр = q пр* A p .

Однако воспользоваться ею можно только в том случае, если известен показатель поверхностной плотности теплового прибора q пр (Вт/м 2).

Отсюда же можно вычислить и расчетную площадь А р. При этом важно понимать, что расчетная площадь любого отопительного прибора не зависит от типа теплоносителя.

А р = Q np /q np ,

в которой Q np – уровень требуемой для определенного помещения теплоотдачи прибора.

Тепловой расчет отопления учитывает, что для определения теплоотдачи прибора для определенного помещения используется формула:

Q пp = Q п - µ тр *Q тр

при этом показатель Q п – это теплопотребность комнаты, Q тр – суммарная теплоотдача всех элементов отопительной системы, расположенной в комнате. Расчет тепловой нагрузки на отопление подразумевает, что сюда относится не только радиатор, но и трубы, которые к нему подведены, и транзитный теплопровод (если есть). В данной формуле µ тр – коэффициент поправки, который предусматривает частичную теплоотдачу системы, рассчитанную на поддержание постоянной температуры в помещении. При этом размер поправки может колебаться в зависимости от того, как именно прокладывались трубы отопительной системы в помещении. В частности – при открытом методе – 0,9; в борозде стены – 0,5; вмурованные в бетонную стену – 1,8.

Расчет необходимой мощности отопления, то есть – суммарная теплоотдача (Q тр - Вт) всех элементов отопительной системы определяется при помощи следующей формулы:

Q тр = µk тр *µ*d н *l*(t г - t в)

В ней k тр – показатель коэффициента теплоотдачи определенного отрезка трубопровода, расположенного в помещении, d н - наружный диаметр трубы, l – длинна отрезка. Показатели t г и t в показывают температуру теплоносителя и воздуха в помещении.

Формула Q тр = q в *l в + q г *l г используется для определения уровня теплоотдачи теплопровода, присутствующего в помещении. Для определения показателей следует обратиться к специальной справочной литературе. В ней можно найти определение тепловой мощности системы отопления – определение теплоотдачи вертикально (q в) и горизонтально (q г) проложенного в помещении теплопровода. Найденные данным показывают теплоотдачу 1м трубы.

Перед тем, как рассчитать гкал на отопление, на протяжении многих лет вычисления, производимые по формуле A p = Q np /q np и измерения теплоотдающих поверхностей отопительной системы, проводились с использованием условной единицы – эквивалентных квадратных метрах. При этом экм был условно равен поверхности прибора отопления с теплоотдачей 435 ккал/ч (506 Вт). Расчет гкал на отопление предполагает, что при этом разность температур теплоносителя и воздуха (t г - t в) в помещении составляла 64,5°С, а относительный расход воды в системе равнялся показателю G отн = l,0.

Расчет тепловых нагрузок на отопление подразумевает, что при этом гладкотрубные и панельные отопительные приборы, которые имели большую теплоотдачу, чем эталонные радиаторы времен СССР, имели площадь экм, которая значительно отличалась от показателя их физической площади. Соответственно, площадь экм менее эффективных отопительных приборов была значительно ниже, чем их площадь физическая.

Впрочем, такой двойственный замер площади приборов отопления в 1984 году было упрощено, и экм отменили. Таким образом, с того момента площадь отопительного прибора измерялась только в м 2 .

После того, как будет просчитана необходимая для помещения площадь отопительного прибора и расчет тепловой мощности системы отопления, можно приступать к подбору необходимого радиатора по каталогу отопительных элементов.

При этом получается, что чаще всего площадь приобретаемого элемента получается несколько больше той, которая была получена путем вычислений. Это довольно легко объяснить – ведь подобная поправка учитывается заранее посредством введения в формулы повышающего коэффициента µ 1 .

Сегодня весьма распространены секционные радиаторы. Их длина напрямую зависит от количества используемых секций. Для того чтобы произвести расчет количества тепла на отопление – то есть, высчитать оптимальное количество секций для определенного помещения, используется формула:

N = (A p /a 1)(µ 4 / µ 3)

В ней а 1 – это площадь одной секции радиатора, выбранного для установки в помещении. Измеряется в м 2 . µ 4 –коэффициент поправки который вносится на способ установки отопительного радиатора. µ 3 – коэффициент поправки, который указывает реальное количество секций в радиаторе (µ 3 - 1,0 при условии, что А р = 2,0 м 2). Для стандартных радиаторов типа М-140 данный параметр определяется по формуле:

µ 3 =0,97+0,06/А р

При тепловых испытаниях используются стандартные радиаторы, состоящие в среднем, из 7-8 секций. То есть, определенный нами расчет расхода тепла на отопление – то есть, коэффициент теплопередачи, является реальным только для радиаторов именно такого размера.

Следует отметить, что при применении радиаторов с меньшим количеством секций наблюдается незначительное увеличение уровня теплоотдачи.

Это связано с тем, что в крайних секциях тепловой поток несколько более активен. Кроме того, открытые торцы радиатора способствуют большей теплоотдаче в воздух помещения. В случае если количество секций больше – наблюдается ослабление тока в крайних секциях. Соответственно, для достижения необходимого уровня теплоотдачи наиболее рациональным является незначительное увеличение длины радиатора за счет добавления секций, что не повлияет на мощность системы отопления.

Для тех радиаторов, площадь одной секции в которых составляет 0,25 м 2 , существует формула для определения коэффициента µ 3:

µ 3 = 0,92 + 0,16 /А р

Но следует учитывать, что крайне редко при использовании данной формулы получается целое число секций. Чаще всего искомое количество оказывается дробным. Расчет нагревательных приборов системы отопления предполагает, что для получения более точного результата допустимо незначительное (не более чем на 5%) снижение коэффициента А р. Такое действие приводит к ограничению уровня отклонения температурного показателя в помещении. Когда произведен расчет тепла на отопление помещения, после получения результата устанавливается радиатор с максимально близким к полученному значению количеством секций.

Расчет мощности отопления по площади предполагает, что определенные условия на установку радиаторов накладывает и архитектура дома.

В частности, если имеется внешняя ниша под окном, то длина радиатора должна быть менее длины ниши – не менее чем на 0,4 м. Такое условие действительно лишь при прямой подводке трубы к радиатору. В случае если применена подводка с уткой, разница длины ниши и радиатора должна составлять минимум 0,6 м. При этом лишние секции следует выделить как отдельный радиатор.

Для отдельных моделей радиаторов формула расчета тепла на отопление – то есть, определения длины, не применяется, поскольку данный параметр заранее определен производителем. Это в полной мере относится к радиаторам типа РСВ или РСГ. Однако нередки случаи, когда для увеличения площади прибора отопления данного типа используется просто параллельная установка двух панелей рядом.

Если панельный радиатор определен как единственный допустимый для данного помещения, то для определения количества необходимых радиаторов используется:

N = A p / a 1 .

При этом площадь радиатора – известный параметр. В случае если будет установлено два параллельных блока радиаторов, показатель А р увеличивают, определяя сниженный коэффициент теплопередачи.

В случае использования конвекторов с кожухом расчет мощности отопления учитывает, что их длина также определяется исключительно существующим модельным рядом. В частности, напольный конвектор «Ритм» представлен в двух моделях с длиной кожуха 1 м и 1,5 м. Настенные конвекторы также могут незначительно отличатся друг от друга.

В случае применения конвектора без кожуха существует формула, помогающая определить количество элементов прибора, после чего можно реализовать расчет мощности системы отопления:

N = A p / (n*a 1)

Здесь n – количество рядов и ярусов элементов, которые и составляют площадь конвектора. При этом a 1 – площадь одной трубы или элемента. При этом при определении расчетной площади конвектора необходимо учитывать не только количество его элементов, но и метод их соединения.

В случае применения в отопительной системе гладкотрубного прибора продолжительность его греющей трубы вычисляется следующим образом:

l = А р *µ 4 / (n*a 1)

µ 4 - это коэффициент поправки, который вносится при наличии декоративного укрытия трубы; n – количество рядов или ярусов греющих труб; а 1 – параметр, характеризующий площадь одного метра горизонтальной трубы при определенном заранее диаметре.

Для получения более точного (а не дробного числа), допускается незначительное (не более чем на 0,1 м 2 или же 5%) снижение показателя А.

Пример №1

Необходимо определить правильное количество секций для радиатора М140-А, который будет установлен в помещении, расположенном на верхнем этаже. При этом стена наружная, под подоконником ниша отсутствует. А расстояние от него до радиатора составляет всего 4 см. Высота помещения 2,7 м. Q n =1410 Вт, а t в =18 °С. Условия подключения радиатора: подсоединения к однотрубному стояку проточно-регулируемого типа (D y 20, кран КРТ с подводкой 0,4 м); разводка отопительной системы верхняя, t г = 105°С, а расход теплоносителя по стояку составляет G ст = 300 кг/ч. Разница температуры теплоносителя подающего стояка и рассматриваемого составляет 2°С.

Определяем средний показатель температуры в радиаторе:

t ср = (105 - 2) - 0,5х1410х1,06х1,02х3,6 / (4,187х300) = 100,8 °С.

Опираясь на полученные данные, вычисляем плотность теплового потока:

t ср = 100,8 - 18 = 82,8 °С

При этом следует отметить, что произошло незначительное изменение уровня расхода воды (360 до 300 кг/ч). Данный параметр практически никак не влияет на q np .

Q пр =650(82,8/70)1+0,3=809Вт/м2.

Далее определяем уровень теплоотдачи горизонтально (1г = 0,8 м) и вертикально (1в = 2,7 - 0,5 = 2,2 м) расположенных труб. Для этого следует воспользоваться формулой Q тр =q в хl в + q г хl г.

Получаем:

Q тр = 93х2,2 + 115х0,8 = 296 Вт.

Рассчитываем площадь требуемого радиатора по формуле A p = Q np /q np и Q пp = Q п - µ тр хQ тр:

А р =(1410-0,9х296)/809=1,41м 2 .

Рассчитываем необходимое количество секций радиатора М140-А, учитывая, что площадь одной секции составляет 0,254 м 2:

м 2 (µ4=1,05, µ 3 = 0,97 + 0,06 / 1,41= 1,01, воспользуемся формулой µ 3 = 0,97 + 0,06 / А р и определяем:

N=(1,41/0,254)х(1,05/1,01)=5,8.
То есть, расчет потребления тепла на отопление показал, что в помещении для достижения максимально комфортной температуры следует установить радиатор, состоящий из 6 секций.

Пример №2

Необходимо определить марку открытого настенного конвектора с кожухом КН-20к «Универсал-20», который устанавливается на однотрубный стояк проточного типа. Кран возле устанавливаемого прибора отсутствует.

Определяет среднюю температуру воды в конвекторе:

tcp = (105 - 2) - 0,5х1410х1,04х1,02х3,6 / (4,187х300) = 100,9 °С.

В конвекторах «Универсал-20» плотность теплового потока равна 357 Вт/м 2 .имеющиеся данные: µt cp =100,9-18=82,9°С, Gnp=300кг/ч. По формуле q пр =q ном (µ t ср /70) 1+n (G пр /360) p пересчитываем данные:

q np = 357(82,9 / 70)1+0,3(300 / 360)0,07 = 439 Вт/м 2 .

Определяем уровень теплоотдачи горизонтальных (1 г -=0,8 м) и вертикальных (l в =2,7 м) труб (с учетом D y 20) используя формулу Q тр = q в хl в +q г хl г. Получаем:

Q тр = 93х2,7 + 115х0,8 = 343 Вт.

Воспользовавшись формулой A p = Q np /q np и Q пp = Q п - µ тр хQ тр, определяем расчетную площадь конвектора:

А р =(1410 - 0,9х343) / 439 = 2,51 м 2 .

То есть, к установке принят конвектор «Универсал-20» длина кожуха которого составляет 0,845 м (модель КН 230-0,918, площадь которой 2,57м 2).

Пример №3

Для системы парового отопления необходимо определить количество и длину чугунных ребристых труб при условии, что установка открытого типа и производится в два яруса. При этом избыточное давление пара составляет 0,02 Мпа.

Дополнительные характеристики: t нac = 104,25 °С, t в =15 °С, Q п = 6500 Вт, Q тр = 350 Вт.

Воспользовавшись формулой µ t н = t нас - t в, определим разность температур:

µ t н = 104,25- 15 = 89,25 °С.

Определяем плотность теплового потока, воспользовавшись известным коэффициентом передачи данного типа труб в случае, когда они устанавливаются параллельно одна над другой - к=5,8 Вт/(м2-°С). Получаем:

q np = k np х µ t н = 5,8-89,25 = 518 Вт/м 2 .

Формула A p = Q np /q np помогает определить необходимую площадь прибора:

А р = (6500 - 0,9х350) / 518 = 11,9м 2 .

Чтоб определить количество необходимых труб, N = A p / (nхa 1). При этом следует воспользоваться такими данными: длина одной тубы – 1,5 м, площадь нагревательной поверхности – 3м 2 .

Вычисляем: N= 11,9/(2х3,0) = 2 шт.

То есть, в каждом ярусе необходимо установить по две трубы длиной 1,5 м. каждая. При этом вычислим общую площадь данного отопительного прибора: А = 3,0х*2х2 = 12,0 м 2 .

Что собой представляет такая измерительная единица, как гигакалория? Какое отношение она имеет к традиционным киловатт-часам, в которых исчисляется тепловая энергия? Какой информацией необходимо обладать, чтобы правильно произвести расчет Гкал на отопление? В конце концов, какую формулу необходимо использовать во время расчета? Об этом, а также о многом другом пойдет речь в сегодняшней статье.

Что собой представляет Гкал?

Начать следует со смежного определения. Под калорией подразумевается определенное количество энергии, которое требуется для нагрева одного грамма воды до одного градуса по Цельсию (в условиях атмосферного давления, разумеется). И ввиду того, что с точки зрения расходов на отопление, скажем, дома, одна калория – это мизерная величина, то для расчетов в большинстве случаев применяются гигакалории (или сокращенно Гкал), соответствующие одному миллиарду калорий. С этим определились, движемся дальше.

Применение данной величины регламентируется соответствующим документом Министерства топлива и энергетики, изданным еще в 1995-м году.

Обратите внимание! В среднем норматив потребления в России на один квадратный метр равен 0,0342 Гкал за месяц. Безусловно, эта цифра может меняться для разных регионов, поскольку все зависит от климатических условий.

Итак, что же собой представляет гигакалория, если «трансформировать» ее в более привычные для нас величины? Смотрите сами.

1. Одна гигакалория равна примерно 1 162,2 киловатт-часам.

2. Одной гигакалории энергии хватит для нагрева тысячи тонн воды до +1°С.

Для чего все это нужно?

Проблему следует рассмотреть с двух точек зрения – с точки зрения многоквартирных домов и частных. Начнем с первых.

Многоквартирные здания

Здесь ничего сложного нет: гигакалории применяются в тепловых расчетах. И если знать, какое количество тепловой энергии остается в доме, то можно предъявить потребителю конкретный счет. Приведем небольшое сравнение: если централизованное отопление будет функционировать в отсутствие счетчика, то платить приходится по площади обогреваемого помещения. Если же есть тепловой счетчик, это уже само по себе разводку подразумевает горизонтального типа (либо коллекторную, либо последовательную): в квартиру заводят два стояка (для «обратки» и подачи), а уже внутриквартирная система (точнее, е конфигурация) определяется жильцами. Подобного рода схема применяются в новостройках, благодаря чему люди регулируют расход тепловой энергии, делая выбор между экономией и комфортом.

Выясним, каким образом осуществляется данная регулировка.

1. Монтаж общего термостата на магистрали «обратки». В таком случае расход рабочей жидкости определяется температурой внутри квартиры: если она будет снижаться, то расход, соответственно, увеличится, а если повышаться – снизится.

2. Дросселирование радиаторов отопления. Благодаря дросселю проходимость отопительного прибора ограничивается, температура снижается, а значит, сокращается расход тепловой энергии.

Частные дома

Продолжаем говорить про расчет Гкал на отопление. Владельцы загородных домов интересуются, прежде всего, стоимостью гигакалории тепловой энергии, полученной от того или иного вида топлива. В этом может помочь приведенная ниже таблица.

Таблица. Сравнение стоимости 1 Гкал (с учетом транспортных расходов)

* — цены примерные, так как тарифы могут отличаться в зависимости от региона, более того, они еще и постоянно растут.

Тепловые счетчики

А теперь выясним, какая информация нужна для того, чтобы рассчитать отопление. Легко догадаться, что это за информация.

1. Температура рабочей жидкости на выходе/входе конкретного участка магистрали.

2. Расход рабочей жидкости, которая проходит через приборы отопления.

Расход определяется посредством применения устройств теплового учета, то есть счетчиков. Такие могут быть двух типов, ознакомимся с ними.

Крыльчатые счетчики

Такие приборы предназначаются не только для отопительных систем, но и для горячего водоснабжения. Единственным их отличием от тех счетчиков, которые применяются для холодной воды, является материал, из которого выполняется крыльчатка – в данном случае он более устойчив к повышенным температурам.

Что касается механизма работы, то он практически тот же:

  • из-за циркуляции рабочей жидкости крыльчатка начинает вращаться;
  • вращение крыльчатки передается учетному механизму;
  • передача осуществляется без непосредственного взаимодействия, а при помощи перманентного магнита.

Невзирая на то, что конструкция таких счетчиков предельно проста, порог срабатывания у них достаточно низкий, более того, имеет место и надежная защита от искажения показаний: малейшие попытки торможения крыльчатки посредством наружного магнитного поля пресекаются благодаря антимагнитному экрану.

Приборы с регистратором перепадов

Такие приборы функционируют на основе закона Бернулли, утверждающего, что скорость движения потока газа либо жидкости обратно пропорциональна его статическому движению. Но каким образом это гидродинамическое свойство применимо к расчетам расхода рабочей жидкости? Очень просто – нужно всего лишь преградить ей путь посредством подпорной шайбы. При этом скорость падения давления на этой шайбе будет обратно пропорциональной скорости движущегося потока. И если давление будет регистрироваться сразу двумя датчиками, то можно с легкостью определять расход, причем в режиме реального времени.

Обратите внимание! Конструкция счетчика подразумевает наличие электроники. Преимущественное большинство таких современных моделей предоставляет не только сухую информацию (температура рабочей жидкости, ее расход), но и определяет фактическое использование тепловой энергии. Модуль управления здесь оснащен портом для подключения к ПК и может настраиваться вручную.

У многих читателей наверняка появится закономерный вопрос: а как быть, если речь идет не о закрытой отопительной системе, а об открытой, в которой возможен отбор для горячего водоснабжения? Как в таком случае совершать расчет Гкал на отопление? Ответ вполне очевиден: здесь датчики напора (равно как и подпорные шайбы) ставятся одновременно и на подачу, и на «обратку». И разница в расходе рабочей жидкости будет свидетельствовать о том количестве нагретой воды, которая была использована для бытовых нужд.

Как проводить расчеты потребляемой тепловой энергии?

Если тепловой счетчик по тем или иным причинам отсутствует, то для расчета тепловой энергии необходимо использовать следующую формулу:

Vх(Т1-Т2)/1000=Q

Рассмотрим, что значат эти условные обозначения.

1. V обозначает количество потребляемой горячей воды, которое может исчисляться либо кубическими метрами, либо же тоннами.

2. Т1 – это температурный показатель самой горячей воды (традиционно измеряется в привычных градусах по Цельсию). В данном случае предпочтительнее использовать именно ту температуру, которая наблюдается при определенном рабочем давлении. К слову, у показателя даже имеется специальное название – это энтальпия. А вот если нужный датчик отсутствует, то в качестве основы можно взять тот температурный режим, который предельно близок к этой энтальпии. В большинстве случаев усредненный показатель составляет примерно 60-65 градусов.

3. Т2 в приведенной выше формуле также обозначает температуру, но уже холодной воды. По причине того, что проникнуть в магистраль с холодной водой – дело достаточно трудное, в качестве этого значения применяются постоянные величины, способные изменяться в зависимости от климатических условий на улице. Так, зимой, когда сезон отопления в самом разгаре, данный показатель составляет 5 градусов, а в летнее время, при отключенном отоплении, 15 градусов.

4. Что же касается 1000, то это стандартный коэффициент, используемый в формуле для того, чтобы получить результат уже в гигакалориях. Получится точнее, чем если бы использовались калори.

5. Наконец, Q – это общее количество тепловой энергии.

Как видим, ничего сложного здесь нет, поэтому движемся дальше. Если отопительный контур закрытого типа (а это более удобно с эксплуатационной точки зрения), то расчеты необходимо производить несколько по-другому. Формула, которую следует использовать для здания с закрытой отопительной системой, должна выглядеть уже следующим образом:

((V1х(Т1-Т)-(V2х(Т2-Т))=Q

Теперь, соответственно, к расшифровке.

1. V1 обозначает расход рабочей жидкости в трубопроводе подачи (в качестве источника тепловой энергии, что характерно, может выступать не только вода, но и пар).

2. V2 – это расход рабочей жидкости в трубопроводе «обратки».

3. Т – это показатель температуры холодной жидкости.

4. Т1 – температура воды в подающем трубопроводе.

5. Т2 – температурный показатель, который наблюдается на выходе.

6. И, наконец, Q – это все то же количество тепловой энергии.

Также стоит отметить, что расчет Гкал на отопление в данном случае от нескольких обозначений:

  • тепловая энергия, которая поступила в систему (измеряется калориями);
  • температурный показатель во время отвода рабочей жидкости по трубопроводу «обратки».

Другие способы определения количества тепла

Добавим, что также существуют и другие способы, при помощи которых можно рассчитать объем тепла, которое поступает в систему отопления. В данном случае формула не только несколько отличается от приведенных ниже, но и имеет несколько вариаций.

((V1х(Т1-Т2)+(V1- V2)х(Т2-Т1))/1000=Q

((V2х(Т1-Т2)+(V1- V2)х(Т1-Т)/1000=Q

Что же касается значений переменных, то они здесь те же, что и в предыдущем пункте данной статьи. На основании всего этого можно сделать уверенный вывод, что рассчитать тепло на отопление вполне можно своим силами. Однако при этом не стоит забывать о консультации со специализированными организациями, которые ответственны за обеспечение жилья теплом, так как их методы и принципы произведения расчетов могут отличаться, причем существенно, а процедура может состоять из другого комплекса мер.

Если же вы намереваетесь обустроить систему «теплого пола», то подготовьтесь к тому, что процесс расчета будет более сложным, поскольку здесь учитываются не только особенности контура отопления, но и характеристик электрической сети, которая, собственно, и будет подогревать пол. Более того, организации, которые занимаются установкой подобного рода оборудования, также будут другими.

Обратите внимание! Люди нередко сталкиваются с проблемой, когда калории следует переводить в киловатты, что объясняется использованием во многих специализированных пособиях единицы измерения, которая в международной системе называется «Си».

В таких случаях необходимо помнить, что коэффициент, благодаря которому килокалории будут переведены в киловатты, равен 850. Если же говорить более простым языком, то один киловатт – это 850 килокалорий. Данный вариант расчета более просто, чем приведенные выше, так как определить значение в гигакалориях можно за несколько секунд, поскольку Гкал, как уже отмечалось ранее, это миллион калорий.

Дабы избежать возможных ошибок, не стоит забывать и о том, что практически все современные тепловые счетчики работают с некоторой погрешностью, пусть и в пределах допустимого. Такую погрешность также можно рассчитать собственноручно, для чего необходимо использовать следующую формулу:

(V1- V2)/(V1+ V2)х100=E

Традиционно, теперь выясняем, что же обозначает каждое из этих переменных значений.

1. V1 – это расход рабочей жидкости в трубопроводе подачи.

2. V2 – аналогичный показатель, но уже в трубопроводе «обратки».

3. 100 – это число, посредством которого значение переводится в проценты.

4. Наконец, Е – это погрешность учетного устройства.

Согласно эксплуатационным требованиям и нормам, предельно допустимая погрешность не должна превышать 2 процентов, хотя в большинстве счетчиков она составляет где-то 1 процент.

В итоге отметим, что правильно произведенный расчет Гкал на отопление позволяет значительно сэкономить средства, затрачиваемые на обогрев помещения. На первый взгляд, процедура эта достаточно сложна, но – и вы в этом убедились лично – при наличии хорошей инструкции ничего трудного в ней нет.

Видео – Как рассчитать отопление в частном доме

Тепловая нагрузка на отопление - это количество тепловой энергии, необходимое для достижения комфортной температуры в помещении. Существует также понятие максимальной почасовой нагрузки, которое следует понимать как наибольшее количество энергии, которое может понадобиться в отдельные часы при неблагоприятных условиях. Чтобы понять, какие условия можно считать неблагоприятными, необходимо разобраться с факторами, от которых зависит тепловая нагрузка.

Потребность здания в тепле

В разных строениях потребуется неодинаковое количество тепловой энергии, чтобы человек чувствовал себя комфортно.

Среди факторов, влияющих на потребность в тепле, можно выделить следующие:


Распределение приборов

Если речь идет о водяном отоплении, максимальная мощность источника тепловой энергии должна равняться сумме мощностей всех источников тепла в здании.

Распределение приборов по помещениям дома зависит от следующих обстоятельств:

  1. Площадь помещения, уровень потолка.
  2. Положение комнаты в строении. Помещения в торцевой части по углах отличаются повышенными теплопотерями.
  3. Расстояние до источника тепла.
  4. Оптимальная температура (с точки зрения жильцов). На температуру помещения, помимо прочих факторов, влияет перемещение воздушных потоков внутри жилья.
  1. Жилые помещения в глубине строения - 20 градусов.
  2. Жилые помещения в угловых и торцевых частях здания - 22 градуса.
  3. Кухня - 18 градусов. В кухонном помещении температура выше, так как в ней присутствуют дополнительные источники тепла (электрическая плита, холодильник и т.д.).
  4. Ванная комната и туалет - 25 градусов.

Если в доме обустроено воздушное отопление, объем потока тепла, поступающий в комнату, зависит от пропускной возможности воздушного рукава. Регулируется поток ручной настройкой вентиляционных решеток, а контролируется - термометром.

Дом может обогреваться распределенными источниками тепловой энергии: электро- или газовые конвекторы, теплые полы на электричестве, масляные батареи, ИК-обогреватели, кондиционеры. В этом случае нужные температуры определяются настройкой термостата. В этом случае нужно предусмотреть такую мощность оборудования, которой бы хватало при максимальном уровне тепловых потерь.

Методики расчета

Расчет тепловой нагрузки на отопление можно произвести на примере конкретного помещения. Пусть в данном случае это будет сруб из 25-сантиметрового бурса с чердачным помещение и полом из древесины. Размеры здания: 12×12×3. В стенах имеется 10 окон и пара дверей. Дом расположен в местности, для которой характерны очень низкие температуры зимой (до 30 градусов мороза).

Расчеты можно произвести тремя способами, о которых пойдет речь ниже.

Первый вариант расчета

Согласно существующим нормам СНиП, на 10 квадратных метров нужен 1 кВт мощности. Данный показатель корректируется с учетом климатических коэффициентов:

  • южные регионы - 0,7-0,9;
  • центральные регионы - 1,2-1,3;
  • Дальний Восток и Крайний Север - 1,5-2,0.

Вначале определяем площадь дома: 12×12=144 квадратных метра. В таком случае базовый показатель тепловой нагрузке равен: 144/10=14,4 кВт. Полученный результат умножаем на климатическую поправку (будем использовать коэффициент 1,5): 14,4×1,5=21,6 кВт. Столько мощности нужно, чтобы в доме была комфортная температура.

Второй вариант расчета

Способ, приведенный выше, страдает значительными погрешностями:

  1. Не учтена высота потолков, а ведь обогревать нужно не квадратные метры, а объем.
  2. Через оконные и дверные проемы теряется больше тепла, чем через стены.
  3. Не учтен тип здания - многоквартирное это здание, где за стенами, потолком и полом обогреваемые квартиры содей или это частный дом, где за стенами только холодный воздух.

Корректируем расчет:

  1. В качестве базового применим следующий показатель - 40 Вт на кубический метр.
  2. Для каждой двери предусмотрим по 200 Вт, а для окон - по 100 Вт.
  3. Для квартир в угловых и торцевых частях дома используем коэффициент 1,3. Если речь идет о самом высоком или самом низком этаже многоквартирного здания, используем коэффициент 1,3, а для частного строения - 1,5.
  4. Также снова применим климатический коэффициент.

Таблица климатического коэффициента

Производим расчет:

  1. Высчитываем объем помещения: 12×12×3=432 квадратных метра.
  2. Базовый показатель мощности равняется 432×40=17280 Вт.
  3. В доме есть десяток окон и пара дверей. Таким образом: 17280+(10×100)+(2×200)=18680Вт.
  4. Если речь идет о частном доме: 18680×1,5=28020 Вт.
  5. Учитываем климатический коэффициент: 28020×1,5=42030 Вт.

Итак, исходя из второго вычисления видно, что разница с первым способом расчета практически двукратная. При этом нужно понимать, что подобная мощность нужна только во время самых низких температур. Иными словами, пиковую мощность можно обеспечить дополнительными источниками обогрева, например, резервным обогревателем.

Третий вариант расчета

Есть еще более точный способ подсчета, в котором учитываются теплопотери.

Схема потери тепла в процентах

Формула для расчета такова: Q=DT/R, где:

  • Q - потери тепла на квадратный метр ограждающей конструкции;
  • DT - дельта между наружной и внутренней температурами;
  • R - уровень сопротивления при передаче тепла.

Обратите внимание! Порядка 40% тепла уходит в вентиляционную систему.

Чтобы упростить подсчеты, примем усредненный коэффициент (1,4) потерь тепла через ограждающие элементы. Осталось определить параметры термического сопротивления из справочной литературы. Ниже приведена таблица для наиболее часто применяемых конструкционных решений:

  • стена в 3 кирпича - уровень сопротивления составляет 0,592 на кв. м×С/Вт;
  • стена в 2 кирпича - 0,406;
  • стена в 1 кирпич - 0,188;
  • сруб из 25-сантиметрового бруса - 0,805;
  • сруб из 12-сантиметрового бруса - 0,353;
  • каркасный материал с утеплением минватой - 0,702;
  • пол из древесины - 1,84;
  • потолок или чердак - 1,45;
  • деревянная двойная дверь - 0,22.

  1. Температурная дельта - 50 градусов (20 градусов тепла в помещении и 30 градусов мороза на улице).
  2. Потери тепла на квадратный метр пола: 50/1,84 (данные для пола из древесины)=27,17 Вт. Потери по всей площади пола: 27,17×144=3912 Вт.
  3. Теплопотери через потолок: (50/1,45)×144=4965 Вт.
  4. Рассчитываем площадь четырех стен: (12×3)×4=144 кв. м. Так как стены изготовлены из 25-сантиметрового бруса, R равняется 0,805. Тепловые потери: (50/0,805)×144=8944 Вт.
  5. Складываем полученные результаты: 3912+4965+8944=17821. Полученное число - общие теплопотери дома без учета особенностей потерь через окна и двери.
  6. Прибавляем 40% вентиляционных потерь: 17821×1,4=24,949. Таким образом, понадобится котел на 25 кВт.

Выводы

Даже самый продвинутый из перечисленных способов не учитывает всего спектра потерь тепла. Поэтому рекомендуется покупать котел с некоторым запасом мощности. В связи с этим приведем несколько фактов по особенностям КПД разных котлов:

  1. Газовое котельное оборудование работают с очень стабильным КПД, а конденсационные и соляровые котлы переходят на экономичный режим при небольшой нагрузке.
  2. Электрокотлы имеют 100% коэффициент полезного действия.
  3. Не допускается работа в режиме ниже номинальной мощности для твердотопливных котельных аппаратов.

Твердотопливные котлы регулируются ограничителем поступления воздуха в топочную камеру, однако при недостаточном уровне кислорода не происходит полного выгорания топлива. Это приводит к образованию большого количества золы и снижению КПД. Исправить положение можно при помощи теплового аккумулятора. Бак с теплоизоляцией устанавливается между трубами подачи и обратки, размыкая их. Таким образом, создается малый контур (котел - буферный бак) и большой контур (бак - отопительные приборы).

Схема функционирует следующим образом:

  1. После закладки топлива оборудование работает на номинальной мощности. Благодаря естественной или принудительной циркуляции, происходит передача тепла в буфер. После сгорания топлива, циркуляция в малом контуре прекращается.
  2. В течение последующих часов тепловой носитель циркулирует по большому контуру. Буфер медленно передает тепло батареям или теплому полу.

Увеличенная мощность потребует дополнительных затрат. При этом запас мощности оборудования дает важный положительный результат: интервал между загрузками топлива значительно увеличивается.