В квартире

Фольга в производстве печатных плат. Общие сведения, история, технологии

Фольга в производстве печатных плат. Общие сведения, история, технологии

Наша компания изготавливает печатные платы из высококачественных импортных материалов, начиная от типового FR4 и заканчивая СВЧ-материалами и полиимидом. В данном разделе мы определяем основные термины и понятия, применяемые в области проектирования и изготовления печатных плат. Раздел повествует о совсем простых вещах, знакомых каждому инженеру-конструктору. Однако и тут есть ряд нюансов, которые многие разработчики не всегда принимают во внимание.

*** Дополнительную информацию можно получить,

Конструкция многослойных печатных плат
Рассмотрим типовую конструкцию многослойной платы (рис. 1). В первом, наиболее распространенном, варианте внутренние слои платы формируются из двустороннего ламинированного медью стеклотекстолита, который называют «ядро». Наружные слои выполняются из медной фольги, спрессованной с внутренними слоями при помощи связующего — смолистого материала, называемого «препрег». После прессования при высокой температуре образуется «пирог» многослойной печатной платы, в котором далее сверлятся и металлизируются отверстия. Менее распространен второй вариант, когда внешние слои формируются из «ядер», скрепляемых препрегом. Это упрощенное описание, на основе данных вариантов существует множество других конструкций. Однако основной принцип состоит в том, что в качестве связующего материала между слоями выступает препрег. Очевидно, что не может быть ситуации, когда соседствуют два двусторонних «ядра» без прокладки из препрега, но структура фольга-препрег-фольга- препрег… и т. д. возможна, и часто используется в платах со сложными сочетаниями глухих и скрытых отверстий.


Глухие и скрытые отверстия
Термин «глухие отверстия» означает переходы, связывающие внешний слой с ближайшими внутренними слоями и не имеющие выхода на второй внешний слой. Он происходит от английского слова blind, и является аналогичным термину «слепые отверстия». Скрытые, или погребенные (от английского buried), отверстия выполнены во внутренних слоях и не имеют выхода наружу. Простейшие варианты глухих и скрытых отверстий показаны на рис. 2. Их применение оправдано в случае очень плотной разводки или для плат, очень насыщенных планарными компонентами с обеих сторон. Наличие этих отверстий приводит к удорожанию стоимости платы от полутора до нескольких раз, но во многих случаях, особенно при трассировке микросхем в корпусе BGA с маленьким шагом, без них не обойтись. Есть различные способы формирования таких переходных отверстий, они более подробно раскрываются в разделе , а пока рассмотрим более подробно материалы, из которых конструируется многослойная плата.

Таблица 1. Виды и параметры материалов, применяемых для многослойных печатных плат
Вид Состав Tg Dk Стоимость
FR4 Слоистый эпоксидный материал из стекловолокна > 130°C 4.7 1 (базовая)
FR4 High Tg, FR5 Материал со сшитой сеткой, повышенная термостойкость (RoHS-совместимый) > 160°C 4,6 1,2…1,4
RCC Эпоксидный материал без стеклянной тканой основы > 130°C 4,0 1,3…1,5
PD Полиимидная смола с арамидной основой 260°C 3,5-4,6 5…6,5
PTFE Политетрафлуор-этилен со стеклом или керамикой (СВЧ) 240-280°C 2,2-10,2 32…70

Tg — температура стеклования (разрушения структуры)
Dk — диэлектрическая постоянная

Базовые диэлектрики для печатных плат
Основные виды и параметры материалов, применяемых для изготовления МПП, приведены в таблице 1. Типовые конструкции печатных плат основаны на применении стандартного стеклотекстолита типа FR4, с рабочей температурой, как правило, от -50 до +110 °C, температурой стеклования (разрушения) Tg около 135 °C. Диэлектрическая постоянная Dk у него может быть от 3,8 до 4,5, в зависимости от поставщика и вида материала. При повышенных требованиях к термостойкости или при монтаже плат в печи по бессвинцовой технологии (t до 260 °C) применяется высокотемпературный FR4 High Tg или FR5. При требованиях к постоянной работе на высоких температурах или при резких перепадах температур применяется полиимид. Кроме того, полиимид используют для изготовления плат повышенной надежности, для военных применений, а также в случаях, когда требуется повышенная электрическая прочность. Для плат с СВЧ-цепями (более 2 ГГц) применяются отдельные слои СВЧ-материала, или плата целиком делается из СВЧ-материала (рис. 3). Наиболее известные поставщики специальных материалов — фирмы Rogers, Arlon, Taconic, Dupont. Стоимость этих материалов выше, чем FR4, и условно показана в последнем столбце таблицы 1 относительно стоимости FR4. Примеры плат с разными видами диэлектрика показаны на рис. 4, 5.

Толщина материала
Знание доступных толщин материалов важно инженеру не только для формирования общей толщины платы. При проектировании МПП разработчики сталкиваются с такими задачами, как:
- расчет волнового сопротивления проводников на плате;
- расчет величины межслойной высоковольтной изоляции;
- выбор структуры глухих и скрытых отверстий.
Доступные варианты и толщины различных материалов приведены в таблицах 2-6. Следует учитывать, что допуск на толщину материала обычно составляет до ±10%, поэтому и допуск на толщину готовой многослойной платы не может быть менее ±10%.

Таблица 2. Двусторонние «ядра» FR4 для внутренних слоев печатной платы

Толщина диэлектрика и толщина меди 5 мкм 17 мкм 35 мкм 70 мкм 105 мкм
0,050 мм . . . з з
0,075 мм м . . з з
0,100 мм . . . з з
0,150 мм
0,200 мм м . . з з
0,250 мм
0,300 мм
0,350 мм м . . з з
0,400 мм . . . з з
0,450 мм
0,710 мм м . . з з
0,930 мм м . . . з
1,000 мм . . . . з
Более 1 мм . . . . з

Как правило, в наличии;
з - По запросу (имеется в наличии не всегда)
м - Можно изготовить;
Примечание: для обеспечения надежности готовых плат важно знать, что для внутренних слоев зарубежные мы предпочитаем использовать ядра с фольгой 35 мкм, а не 18 мкм (даже при ширине проводника и зазора 0,1 мм). Это повышает надежность печатных плат.
Диэлектрическая проницаемость ядер FR4 может составлять от 3.8 до 4.4 в зависимости от марки.

Таблица 3. Препрег («связующий» слой) для многослойных печатных плат

Тип препрега Толщина после прессования Возможное отклонение
Основные
1080 0,066 мм -0,005/+0,020 мм
2116 0,105 мм -0,005/+0,020 мм
7628 0,180 мм -0,005/+0,025 мм
Дополнительно
106 no flow 0,050 мм -0,005/+0,020 мм
1080 no flow 0,066 мм -0,005/+0,020 мм
2113 0,100 мм -0,005/+0,025 мм

Диэлектрическая проницаемость препрега FR4 может составлять от 3.8 до 4.4 в зависимости от марки.
Уточняйте этот параметр для конкретного материала у наших инженеров по email

Таблица 4. Материалы СВЧ фирмы Rogers для печатных плат

Материал Dk* Потери Толщина диэлектрика, мм Толщина фольги, мкм
Ro4003 3,38 0,2 18 или 35
0,51 18 или 35
0,81 18 или 35
Ro4350 3,48 0,17 18 или 35
0,25 18 или 35
0,51 18 или 35
0,762 18
1,52 35
Препрег Ro4403 3,17 0,1 --
Препрег Ro4450 3,54 0,1 --

* Dk — диэлектрическая проницаемость

Таблица 5. Материалы СВЧ фирмы Arlon для МПП

Материал Диэлектрическая
проницаемость (Dk)
Толщина
диэлектрика, мм
Толщина
фольги, мкм
AR-1000 10 0,61±0,05 18
AD600L 6 0,787±0,08 35
AD255IM 2,55 0,762±0,05 35
AD350A 3,5 0,508±0,05
0,762±0,05
35
35
DICLAD527 2,5 0,508±0,038
0,762±0,05
1,52±0,08
35
35
35
25N 3,38 0,508
0,762
18 или 35
25N 1080pp
pre-preg
3,38 0,099 --
25N 2112pp
pre-preg
3,38 0,147 --
25FR 3,58 0,508
0,762
18 или 35
25FR 1080pp
pre-preg
3,58 0,099 --
25FR 2112pp
pre-preg
3,58 0,147 --

Примечание: СВЧ-материалы не всегда есть на складе, и срок их поставки может доходить до 1 месяца. При выборе конструкции платы надо уточнить состояние склада производителя МПП.

Dk — Диэлектрическая проницаемость
Tg — температура стеклования

Хочется отметить важность следующих моментов:
1. В принципе доступны все номиналы ядер FR4 от 0,1 до 1,0 мм с шагом 0,1 мм. Однако при проектировании срочных заказов следует заранее уточнять наличие материалов на складе у производителя ПП.
2. Когда речь идет о толщине материала - у материалов, предназначенных для изготовления двусторонних плат, толщина материала указывается включая медь. Толщины «ядра» для внутренних слоев МПП задаются в документации без толщины меди.
Пример 1: материал FR4, 1,6/35/35 имеет толщину диэлектрика: 1,6-(2x35 мкм)=1,53 мм (с допуском ±10%).
Пример 2: ядро FR4, 0,2/35/35 имеет толщину диэлектрика: 200 мкм (с допуском ±10%) и полную толщину: 200 мкм+(2x35 мкм)=270 мкм.
3. Обеспечение надежности. Допустимое количество смежных слоев препрега вМПП - не менее 2 и не более 4. Возможность же использования одиночного слоя препрега между «ядрами» зависит от характера рисунка и от толщины смежных слоев меди. Чем толще медь и чем насыщенней рисунок проводников, тем сложнее заполнить смолой пространство между проводниками. А от качества заполнения зависит надежность платы.
Пример: медь 17 мкм - можно использовать 1 слой 1080, 2116 или 106; медь 35 мкм - можно использовать 1 слой только для 2116.

Покрытия площадок печатной платы
Рассмотрим, какие бывают покрытия медных площадок. Наиболее часто площадки покрываются сплавом олово-свинец, или ПОС. Способ нанесения и выравнивания поверхности припоя называют HAL или HASL (от английского Hot Air Solder Leveling — выравнивание припоя горячим воздухом). Это покрытие обеспечивает наилучшую паяемость площадок. Однако на смену ему приходят более современные покрытия, как правило, совместимые с требованиями международной директивы RoHS. Эта директива требует запретить присутствие вредных веществ, в том числе свинца, в продукции. Пока что действие RoHS не распространяется на территорию нашей страны, однако помнить о ее существовании небесполезно. Проблемы, связанные с RoHS, будут описаны нами в одном из последующих разделов, пока же давайте ознакомимся с возможными вариантами покрытия площадок МПП в таблице 7. HASL применяется повсеместно, если нет иных требований. Иммерсионное (химическое) золочение используется для обеспечения более ровной поверхности платы (особенно это важно для площадок BGA), однако имеет несколько более низкую паяемость. Пайка в печи выполняется примерно по той же технологии, что и HASL, но ручная пайка требует применения специальных флюсов. Органическое покрытие, или OSP, защищает поверхность меди от окисления. Его недостаток — малый срок сохранения паяемости (менее 6 месяцев). Иммерсионное олово обеспечивает ровную поверхность и хорошую паяемость, хотя тоже имеет ограниченный срок пригодности для пайки. Бессвинцовый HAL имеет те же свойства, что и свинец-содержащий, но состав припоя — примерно 99,8% олова и 0,2% добавок. Контакты ножевых разъемов, подвергающихся трению при эксплуатации платы, гальваническим способом покрывают более толстым и более жестким слоем золота. Для обоих видов золочения применяется никелевый подслой для предотвращения диффузии золота.

Таблица 7. Покрытия площадок печатной платы

Тип Описание Толщина
HASL, HAL
(hot air solder leveling)
ПОС-61 или ПОС-63,
оплавленный и выровненный горячим воздухом
15-25 мкм
Immersion gold, ENIG Иммерсионное золочение по подслою никеля Au 0,05-0,1 мкм/Ni 5 мкм
OSP, Entek Органическое покрытие,
защищает поверхность меди от окисления до пайки
При пайке
полностью растворяется
Immersion tin Иммерсионное олово, более плоская поверхность, чем HASL 10-15 мкм
Lead-free HAL Бессвинцовое лужение 15-25 мкм
Hard gold, gold fingers Гальваническое золочение контактов разъема по подслою никеля Au 0,2-0,5 мкм/Ni 5 мкм

Примечание: все покрытия, кроме HASL, совместимы с директивой RoHS и подходят для бессвинцовой пайки.

Защитные и другие виды покрытий печатной платы
Для полноты картины рассмотрим функциональное назначение и материалы покрытий печатной платы.
- Паяльная маска — наносится на поверхность платы для защиты проводников от случайного замыкания и грязи, а также для защиты стеклотекстолита от термоударов при пайке. Маска не несет другой функциональной нагрузки и не может служить защитой от влаги, плесени, пробоя и т. д. (за исключением случаев применения специальных видов масок).
- Маркировка — наносится на плату краской поверх маски для упрощения идентификации самой платы и расположенных на ней компонентов.
- Отслаиваемая маска — наносится на заданные участки платы, которые надо временно защитить, например, от пайки. В дальнейшем ее легко удалить, так как она представляет собой резиноподобный компаунд и просто отслаивается.
- Карбоновое контактное покрытие — наносится в определенные места платы как контактные поля для клавиатур. Покрытие имеет хорошую проводимость, не окисляется и износостойко.
- Графитовые резистивные элементы — могут наноситься на поверхность платы для выполнения функции резисторов. К сожалению, точность выполнения номиналов невысока — не точнее ±20% (с лазерной подгонкой— до 5%).
- Серебряные контактные перемычки — могут наноситься как дополнительные проводники, создавая еще один проводящий слой при недостатке места для трассировки. Применяются в основном для однослойных и двусторонних печатных плат.

Таблица 8. Покрытия поверхности печатной платы

Тип Назначение и особенности
Паяльная маска Для защиты при пайке
Цвет: зеленый, синий, красный, желтый, черный, белый
Маркировка Для идентификации
Цвет: белый, желтый, черный
Отслаиваемая маска Для временной защиты поверхности
При необходимости легко удаляется
Карбон Для создания клавиатур
Имеет высокую износостойкость
Графит Для создания резисторов
Желательна лазерная подгонка
Серебряное покрытие Для создания перемычек
Используется для ОПП и ДПП

Заключение
Выбор материалов велик, но, к сожалению, часто при изготовлении малых и средних серий печатных плат камнем преткновения становится наличие нужных материалов на складе завода - производителя МПП. Поэтому перед проектированием МПП, особенно если речь идет о создании нетиповой конструкции и применении нетиповых материалов, надо обязательно договориться с производителем об используемых в МПП материалах и толщинах слоев, а может быть, и заказать эти материалы заблаговременно.

Что такое печатная платa

Печа́тная пла́та (англ. printed circuit board, PCB, или printed wiring board, PWB) - пластина из диэлектрика, на поверхности и/или в объёме которой сформированы электропроводящие цепи электронной схемы. Печатная плата предназначена для электрического и механического соединения различных электронных компонентов. Электронные компоненты на печатной плате соединяются своими выводами с элементами проводящего рисунка обычно пайкой.

В отличие от навесного монтажа, на печатной плате электропроводящий рисунок выполнен из фольги, целиком расположенной на твердой изолирующей основе. Печатная плата содержит монтажные отверстия и контактные площадки для монтажа выводных или планарных компонентов. Кроме того, в печатных платах имеются переходные отверстия для электрического соединения участков фольги, расположенных на разных слоях платы. С внешних сторон на плату обычно нанесены защитное покрытие («паяльная маска») и маркировка (вспомогательный рисунок и текст согласно конструкторской документации).

В зависимости от количества слоёв с электропроводящим рисунком, печатные платы подразделяют на:

    односторонние (ОПП): имеется только один слой фольги, наклеенной на одну сторону листа диэлектрика.

    двухсторонние (ДПП): два слоя фольги.

    многослойные (МПП): фольга не только на двух сторонах платы, но и во внутренних слоях диэлектрика. Многослойные печатные платы получаются склеиванием нескольких односторонних или двухсторонних плат.

По мере роста сложности проектируемых устройств и плотности монтажа, увеличивается количество слоёв на платах.

Основой печатной платы служит диэлектрик, наиболее часто используются такие материалы, как стеклотекстолит, гетинакс. Также основой печатных плат может служить металлическое основание, покрытое диэлектриком (например, анодированный алюминий), поверх диэлектрика наносится медная фольга дорожек. Такие печатные платы применяются в силовой электронике для эффективного теплоотвода от электронных компонентов. При этом металлическое основание платы крепится к радиатору. В качестве материала для печатных плат, работающих в диапазоне СВЧ и при температурах до 260 °C, применяется фторопласт, армированный стеклотканью (например, ФАФ-4Д), и керамика. Гибкие платы делают из полиимидных материалов, таких как каптон.

Какой материал будем использовать для изготовления плат

Самые распространненые, доступные материалы для изготовления плат - это Гетинакс и Стеклотекстолит. Гетинакс-бумага пропитанная бакелитовым лаком, текстолит стекловолокно с эпоксидкой. Однозначно будем использовать стеклотекстолит!

Стеклотекстолит фольгированный представляет собой листы, изготовленные на основе стеклотканей, пропитанных связующим на основе эпоксидных смол и облицованные с двух сторон медной электролитической гальваностойкой фольгой толщиной 35 мкм. Предельно допустимая температура от -60ºС до +105ºС. Имеет очень высокие механические и электроизоляционные свойства, хорошо поддается механической обработке резкой, сверлением, штамповкой.

Стеклотекстолит в основном используется одно или двухсторонний толщиной 1.5мм и с медной фольгой толщиной 35мкм или 18мкм. Мы будем использовать односторонний стеклотекстолит толщиной 0.8мм с фольгой толщиной 35мкм (почему будет подробно рассмотрено далее).

Методы изготовления печатных плат дома

Платы можно изготавливать химическим методом и механическим.

При химическом методе в тех местах где должны быть дорожки (рисунок) на плате на фольгу наносится защитный состав (лак, тонер, краска и т.д.). Далее плата погружается в специальный раствор (хлорное железо, перекись водорода и другие) который «разъедает» медную фольгу, но не действует на защитный состав. В итоге под защитным составом остается медь. Защитный состав в дальнейшем удаляется растворителем и остаётся готовая плата.

При механическом методе используется скальпель (при ручном изготовлении) или фрезерный станок. Специальная фреза делает бороздки на фольге, в итоге оставляя островки с фольгой - необходимый рисунок.

Фрезерные станки довольно дорогое удовольствие, а также сами фрезы дороги и имеют небольшой ресурс. Так что, этот метод мы не будем использовать.

Самый простой химический метод - ручной. Ризографом лаком рисуются дорожки на плате и потом травим раствором. Этот метод не позволяет делать сложные платы, с очень тонкими дорожками - так что это тоже не наш случай.


Следующий метод изготовления плат - с помощью фоторезиста. Это очень распространненая технология (на заводе платы делаются как раз этим методом) и она часто используется в домашних условиях. В интернет очень много статей и методик изготовления плат по этой технологии. Она дает очень хорошие и повторяемые результаты. Однако это тоже не наш вариант. Основная причина - довольно дорогие материалы (фоторезист, который к тому же портится со временем), а также дополнительные инструменты (УФ ламка засветки, ламинатор). Конечно, если у вас будет объемное производство плат дома - то фоторезист вне конкуренции - рекомендуем освоить его. Также стоит отметить, что оборудование и технология фоторезиста позволяет изготовливать шелкографию и защитные маски на платы.

С появлением лазерных принтеров радиолюбители стали активно их использовать для изготовления плат. Как известно, для печати лазерный принтер использует «тонер». Это специальный порошок, который под температурой спекается и прилипает к бумаге - в итоге получается рисунок. Тонер устойчив к различным химическим веществам, это позволяет использовать его как защитное покрытие на поверхности меди.

Итак, наш метод состоит в том, чтобы перенести тонер с бумаги на поверхность медной фольги и потом протравить плату специальным раствором для получения рисунка.

В связи с простотой использования данный метод заслужил очень большое распространение в радиолюбительстве. Если вы наберете в Yandex или Google как перенести тонер с бумаги на плату - то сразу найдёте такой термин как «ЛУТ» - лазерно утюжная технология. Платы по этой технологии делаются так: печатается рисунок дорожек в зеркальном варианте, бумага прикладывается к плате рисунком к меди, сверху данную бумагу гладим утюгом, тонер размягчяется и прилипает к плате. Бумага далее размачивается в воде и плата готова.

В интернет «миллион» статей о том как сделать плату по этой технологии. Но у данной технологии есть много минусов, которые требуют прямых рук и очень долгой пристройки себя к ней. То есть ее надо почувствовать. Платы не выходят с первого раза, получаются через раз. Есть много усовершенствований - использовать ламинатор (с переделкой - в обычном не хватает температуры), которые позволяют добиться очень хороших результатов. Даже есть методы построения специальных термопрессов, но все это опять требует специального оборудования. Основные недостатки ЛУТ технологии:

    перегрев - дорожки растекаются - становятся шире

    недогрев - дорожки остаютяся на бумаге

    бумага «прижаривается» к плате - даже при размокании сложно отходит - в итоге может повредится тонер. Очень много информации в интернете какую бумагу выбрать.

    Пористый тонер - после снятия бумаги в тонере остаются микропоры - через них плата тоже травится - получаются изъеденные дорожки

    повторяемость результата - сегодня отлично, завтра плохо, потом хорошо - стабильного результат добиться очень сложно - нужна строго постоянная температура прогрева тонера, нужно стабильное давление прижима платы.

К слову, у меня этим методом не получилось сделать плату. Пробовал делать и на журналах, и на мелованной бумаге. В итоге даже платы портил - от перегрева вздувалась медь.

В интернет почему-то незаслуженно мало информации про еще один метод переноса тонера - метод холодного химического переноса. Он основан на том факте, что тонер не растворяется спиртом, но растворяется ацетоном. В итоге, если подобрать такую смесь ацетона и спирта, которая будет только размягчать тонер - то его можно «переклеить» на плату с бумаги. Этот метод мне очень понравился и сразу дал свои плоды - первая плата была готова. Однако, как оказалось потом, я нигде не смог найти подробной информации, которая давала бы 100% результат. Нужен такой метод, которым плату мог сделать даже ребёнок. Но на второй раз плату сделать не вышло, потом опять и пришло долго подбирать нужные ингридиенты.

В итоге после долгих была разработана последовательность действий, подобраны все компоненты, которые дают если не 100% то 95% хорошего результата. И самое главное процесс настолько простой, что плату может сделать ребенок полностью самостоятельно. Вот этот метод и будем использовать. (конечно его можно и далее доводить до идеала - если у вас выйдет лучше - то пишите). Плюсы данного метода:

    все реактивы недорогие, доступные и безопасные

    не нужны дополнительные инструменты (утюги, лампы, ламинаторы - ничего, хотя нет - нужна кастрюля)

    нет возможности испортить плату - плата вообще не нагревается

    бумага отходит сама - видно результат перевода тонера - где перевод не вышел

    нет пор в тонере (они заклеиваются бумагой) - соответственно нет протравов

    делаем 1-2-3-4-5 и получаем всегда один и тот же результат - почти 100% повторяемость

Прежде чем начать, посмотрим какие платы нам нужны, и что мы сможем сделать дома данным методом.

Основные требования к изготовленным платам

Мы будем делать приборы на микроконтроллерах, с применением современных датчиков и микросхем. Микросхемы становятся все меньше и меньше. Соответственно необходимо выполнение следующих требований к платам:

    платы должны быть двух сторонними (как правило развести одностороннюю плату очень сложно, сделать дома четырехслойные платы довольно сложно, микроконтроллерам нужен земляной слой для защиты от помех)

    дорожки должны быть толщиной 0.2мм - такого размера вполне достаточно - 0.1мм было бы еще лучше - но есть вероятность протравов, отхода дорожек при пайке

    промежутки между дорожками - 0.2мм - этого достаточно практически для всех схем. Уменьшение зазора до 0.1мм чревато сливанием дорожек и сложностью в контроле платы на замыкания.

Мы не будем использовать защитные маски, а также делать шелкографию - это усложнит производство, и если вы делаете плату для себя, то в этом нет нужды. Опять же в интернет много информации на эту тему, и если есть желание вы можете навести «марафет» самостоятельно.

Мы не будем лудить платы, в этом тоже нет необходимости (если только вы не делаете прибор на 100лет). Для защиты мы будем использовать лак. Основная наша цель - быстро, качественно, дёшево в домашних условиях сделать плату для прибора.

Вот так выглядит готовая плата. сделанная нашим методом - дорожки 0.25 и 0.3, расстояния 0.2

Как сделать двухстороннюю плату из 2-ух односторонних

Одна из проблем изготовления двухсторонних плат - это совмещение сторон, так чтобы переходные отверстия совпадали. Обычно для этого делается «бутерброд». На листе бумаги печатается сразу 2 стороны. Лист сгибается пополам, на просвет точно совмещаются стороны с помощью специальных меток. Внутрь вкладывается двухсторонний текстолит. При методе ЛУТ такой бутерброд проглаживается утюгом и получается двухсторонняя плата.

Однако, при методе холодного переноса тонера сам перенос осуществляется с помощью жидкости. И поэтому очень сложно организовать процесс смачивания одной стороны одновременно с другой стороной. Это конечно тоже можно сделать, но с помощью специального приспособления - мини пресса (тисков). Берутся плотные листы бумаги - которые впитывают жидкость для переноса тонера. Листы смачиваются так, чтобы жидкость не капала, и лист держал форму. И дальше делается «бутерброд» - смоченный лист, лист туалетной бумаги для впитывания лишней жидкости, лист с рисунком, плата двухсторонняя, лист с рисунком, лист туалетной бумаги, опять смоченный лист. Все это зажимается вертикально в тиски. Но мы так делать не будем, мы поступим проще.

На форумах по изготовлению плат проскочила очень хорошая мысль - какая проблема делать двухстороннюю плату - берем нож и режем текстолит пополам. Так как стеклотекстолит - это слоеный материал, то это не сложно сделать при опредленной сноровке:


В итоге из одной двухсторонней платы толщиной 1.5мм получаем две односторонние половинки.


Далее делаем две платы, сверлим и все - они идеально совмещены. Ровно разрезать текстолит не всегда получалось, и в итоге пришла идея использовать сразу тонкий односторонний текстолит толщиной 0.8мм. Две половинки потом можно не склеивать, они будут держаться за счет запаяных перемычек в переходных отверстиях, кнопок, разъемов. Но если это необходимо без проблем можно склеить эпоксидным клеем.

Основные плюсы такого похода:

    Текстолит толщиной 0,8мм легко режется ножницами по бумаге! В любую форму, то есть очень легко обрезать под корпус.

    Тонкий текстолит - прозрачный - посветив фонарем снизу можно легко проверить корректность всех дорожек, замыкания, разрывы.

    Паять одну сторону проще - не мешают компоненты на другой стороне и легко можно контролировать спайки выводов микросхем- соединить стороны можно в самом конце

    Сверлить надо в два раза больше отверстий и отверстия могут чуть-чуть не совпасть

    Немного теряется жёсткость конструкции если не склеивать платы, а склеивать не очень удобно

    Односторонний стеклотекстолит толщиной 0.8мм трудно купить, в основном продается 1.5мм, но если не удалось достать, то можно раскроить ножем более толстый текстолит.

Перейдем к деталям.

Необходимые инструменты и химия

Нам понадобятся следующие ингридиенты:


Теперь когда все это есть, делаем по шагам.

1. Компоновка слоев платы на листе бумаги для печати c помощью InkScape

Автоматический цанговый набор:

Мы рекомендуем первый вариант - он дешевле. Далее необходимо к мотору припаять провода и выключатель (лучше кнопку). Кнопку лучше разместить на корпусе, чтобы удобнее было быстро включать и выключать моторчик. Остается подобрать блок питания, можно взять любой блок питания на 7-12в током 1А (можно и меньше), если такого блока питания нет, то может подойти зарядка по USB на 1-2А или батарейка Крона (только надо пробовать - не все зарядки любят моторы, мотор может не запустится).

Дрель готова, можно сверлить. Но вот только необходимо сверлить строго под углом 90градусов. Можно соорудить мини станок - в интернет есть различные схемы:

Но есть более простое решение.

Кондуктор для сверления

Чтобы сверлить ровно под 90 градусов достаточно изготовить кондуктор для сверления. Мы будем делать вот такой:

Изготовить его очень легко. Берем квадратик любого пластика. Кладем нашу дрель на стол или другую ровную поверхность. И сверлим в пластике нужным сверлом отверстие. Важно обеспечить ровное горизонтальное смещение дрели. Можно прислонить моторчик к стене или рейке и пластик тоже. Далее большим сверлом рассверлить отверстие под цангу. С обратной стороны рассверлить или срезать кусок пластика, чтобы было видно сверло. На низ можно приклеить нескользящую поверхность - бумагу или резинку. Такой кондуктор надо сделать под каждое сверло. Это обеспечит идеально точное сверление!

Такой вариант тоже подойдет, срезать сверху часть пластика и срезать уголок снизу.

Вот как производится сверление с его помощью:


Зажимаем сверло так, чтобы оно торчало на 2-3мм при полном погружении цанги. Ставим сверло на место где надо сверлить (при травлении платы у нас будет оставаться метка где сверлить в виде мини отверстия в меди - в Kicad мы специально ставили галку для этого, так что сверло будет само вставать туда), прижимаем кондуктор и включаем мотор - отверстие готово. Для подстветки можно использовать фонарик, положив его на стол.

Как уже мы писали ранее, сверлить можно только отверстия с одной стороны - там где подходят дорожки - вторую половину можно досверлить уже без кондуктора по направляющему первому отверстию. Это немного экономит силы.

8. Лужение платы

Зачем лудить платы - в основном для защиты меди от корозии. Основной минус лужения - перегрев платы, возможная порча дорожек. Если у вас нет паяльной станции - однозначо - не лудите плату! Если она есть, то риск минимальный.

Можно лудить плату сплавом РОЗЕ в кипящей воде, но он дорого стоит и его сложно достать. Лудить лучще обычным припоем. Чтобы сдеалать это качественно, очень тонким слоем надо сделать простое приспособление. Берем кусочек оплетки для выпайки деталей и одеваем ее на жало, прикручиваем проволокой к жалу, чтобы она не соскочила:

Плату покрываем флюсом - например ЛТИ120 и оплетку тоже. Теперь в оплетку набираем олово и ей водим по плате (красим)- получается отличный результат. Но по мере использования оплетка расподается и на плате начинают оставаться ворскинки медные - их обязательно надо убрать, а то будет замыкание! Увидеть это очень легко посветив фонарем с обратной стороны платы. При таком методе хорошо использовать или мощный паяльник (60ват) или сплав РОЗЕ.

В итоге, платы лучше не лудить, а покрывать лаком в самом конце- например PLASTIC 70, или простой акриловый лак купленный в автозапчастях KU-9004:

Тонкий тюнинг метода переноса тонера

В методе есть два момента, которые поддаются тюнингу, и могут не получиться сразу. Для их настройки, необходимо в Kicad сделать тестовую плату, дорожки по квадратной спирали разной толщины, от 0.3 до 0.1 мм и с разными промежутками, от 0.3 до 0.1 мм. Лучше сразу распечатать несколько таких образцов на одном листе и провести подстройку.

Возможные проблемы, которые мы будем устранять:

1) дорожки могут менять геометрию - растекаться, становится шире, обычно очень не значительно, до 0.1мм - но это не хорошо

2) тонер может плохо прилипать к плате, отходить при снятии бумаги, плохо держаться на плате

Первая и вторая проблема взаимосвязаны. Решаю первую, вы приходите ко второй. Надо найти компромисс.

Дорожки могут растекаться по двум причинам - слишкой большой груз прижима, слишком много ацетона в составе полученной жидкости. В первую очередь надо попробовать уменьшить груз. Минимальный груз - около 800гр, ниже уменьшать не стоит. Соответственно груз кладем без всякого прижима - просто ставим сверху и все. Обязательно должно быть 2-3 слоя туалетной бумаги для хорошего впитывания лишнего раствора. Вы должны добиться того, что после снятия груза, бумага должна быть белая, без фиолетовых подтеков. Такие подтеки говорят о сильном расплавлении тонера. Если грузом отрегулировать не получилось, дорожки все равно расплываются, то увеличиваем долю жидкости для снятия лака в растворе. Можно увеличить до 3 части жидкости и 1 часть ацетона.

Вторая проблема, если нет нарушения геометрии, говорит о недостаточном весе груза или малом количестве ацетона. Начать опять же стоит с груза. Больше 3кг смысла не имеет. Если тонер все равно плохо держится на плате, то надо увеличить количество ацетона.

Эта проблема в основном возникает, когда вы меняете жидкость для снятия лака. К сожалению, это не постоянный и не чистый компонент, но на другой его заменить не получилось. Пробовал заменить его спиртом, но видимо получается не однородная смесь и тонер прилипает какими-то вкраплениями. Также жидкость для снятия лака может содержать ацетон, тогда ее надо будет меньше. В общем, такой тюнинг вам надо будет провести один раз, пока не закончится жидкость.

Плата готова

Если вы не будете сразу запаивать плату, то ее необходимо защитить. Самый простой способ сделать это - покрыть спиртоканифольным флюсом. Перед пайкой это покрытие надо будет снять например изопропиловым спиртом.

Альтернативные варианты

Вы также можете сделать плату:

Дополнительно, сейчас набирает популярность сервис изготовления плат на заказ - например Easy EDA . Если необходима более сложная плата (например 4-х слойная) - то это единственный выход.

Печатная плата

Печатная плата со смонтированными на ней электронными компонентами.

Гибкая печатная плата с установленными деталями объёмного и поверхностного монтажа.

Чертеж платы в CAD-программе и готовая плата

Устройство

Так же основой печатных плат может служить металлическое основание, покрытое диэлектриком (например, анодированный алюминий), поверх диэлектрика наносится медная фольга дорожек. Такие печатные платы применяются в силовой электронике для эффективного теплоотвода от электронных компонентов. При этом металлическое основание платы крепится к радиатору .

В качестве материала для печатных плат, работающих в диапазоне СВЧ и при температурах до 260 °C, применяется фторопласт , армированный стеклотканью (например, ФАФ-4Д) и керамика .

  • ГОСТ 2.123-93 Единая система конструкторской документации. Комплектность конструкторской документации на печатные платы при автоматизированном проектировании.
  • ГОСТ 2.417-91 Единая система конструкторской документации. Платы печатные. Правила выполнения чертежей.

Другие стандарты на печатные платы:

  • ГОСТ Р 53386-2009 Платы печатные. Термины и определения.
  • ГОСТ Р 53429-2009 Платы печатные. Основные параметры конструкции. Этот ГОСТ задает классы точности печатных плат и соответствующие геометрические параметры.

Типовой процесс

Рассмотрим типичный процесс разработки платы из готовой принципиальной электрической схемы:

  • Трансляция принципиальной электрической схемы в базу данных САПР разводки печатной платы. Заранее определяются чертежи каждого компонента, расположение и назначение выводов и др. Обычно используются готовые библиотеки компонентов, поставляемые разработчиками САПР.
  • Уточнение у будущего изготовителя печатной платы его технологических возможностей (имеющиеся материалы, количество слоев, класс точности, допустимые диаметры отверстий, возможность покрытий и т. п.).
  • Определение конструктива печатной платы (габаритов, точек крепления, допустимых высот компонентов).
    • Вычерчивание габаритов (краёв) платы, вырезов и отверстий, областей запрета размещения компонентов.
    • Расположение конструктивно-привязанных деталей: разъёмов, индикаторов, кнопок и др.
    • Выбор материала платы, количества слоев металлизации, толщины материала и толщины фольги (наиболее часто используется стеклотекстолит толщиной 1,5 мм с фольгой толщиной 18 или 35 мкм).
  • Выполнение автоматического или ручного размещения компонентов. Обычно стремятся разместить компоненты на одной стороне платы поскольку двусторонний монтаж деталей заметно дороже в производстве.
  • Запуск трассировщика. При неудовлетворительном результате - перерасположение компонентов. Эти два шага зачастую выполняются десятки или сотни раз подряд. В некоторых случаях трассировка печатных плат (отрисовка дорожек ) производится вручную полностью или частично.
  • Проверка платы на ошибки (DRC, Design Rules Check ): проверка на зазоры, замыкания, наложения компонентов и др.
  • Экспорт файла в формат, принимаемый изготовителем печатных плат, например Gerber .
  • Подготовка сопроводительной записки в которой, как правило, указывают тип фольгированного материала, диаметры сверления всех типов отверстий, вид переходных отверстий (закрытые лаком или открытые, луженые), области гальванических покрытий и их тип, цвет паяльной маски, необходимость маркировки, способ разделения плат (фрезеровка или скрайбирование) и т. п..

Изготовление

Изготовление ПП возможно аддитивным или субтрактивным методом. В аддитивном методе проводящий рисунок формируется на нефольгированном материале путём химического меднения через предварительно нанесённую на материал защитную маску. В субтрактивном методе проводящий рисунок формируется на фольгированном материале, путём удаления ненужных участков фольги. В современной промышленности применяется исключительно субтрактивный метод.

Весь процесс изготовления печатных плат можно разделить на четыре этапа:

  • Изготовление заготовки (фольгированного материала).
  • Обработка заготовки с целью получения нужных электрического и механического вида.
  • Монтаж компонентов.
  • Тестирование.

Часто под изготовлением печатных плат понимают только обработку заготовки (фольгированного материала). Типовой процесс обработки фольгированного материала состоит из нескольких этапов: сверловка переходных отверстий, получение рисунка проводников путем удаления излишков медной фольги, металлизация отверстий, нанесение защитных покрытий и лужение, нанесение маркировки. Для многослойных печатных плат добавляется прессование конечной платы из нескольких заготовок.

Изготовление фольгированного материала

Фольгированный материал - плоский лист диэлектрика с наклеенной на него медной фольгой. Как правило в качестве диэлектрика используют стеклотекстолит . В старой или очень дешевой аппаратуре используют текстолит на тканевой или бумажной основе, иногда именуемый гетинаксом . В СВЧ устройствах используют фторсодержащие полимеры (фторопласты). Толщина диэлектрика определяется требуемой механической и электрической прочностью, наибольшее распространение получила толщина 1,5 мм.

На диэлектрик с одной или двух сторон наклеивают сплошной лист медной фольги. Толщина фольги определяется токами под которые проектируется плата. Наибольшее распространение получила фольга толщиной 18 и 35 мкм. Такие значения исходят из стандартных толщин меди в импортных материалах, в которых толщина слоя медной фольги исчисляется в унциях (oz) на квадратный фут . 18 мкм соответствует ½ oz и 35 мкм - 1 oz.

Алюминиевые печатные платы

Отдельную группу материалов составляют алюминиевые металлические печатные платы. Их можно разделить на две группы.

Первая группа - решения в виде листа алюминия с качественно оксидированной поверхностью, на которую наклеена медная фольга. Такие платы нельзя сверлить, поэтому обычно их делают только односторонними. Обработка таких фольгированных материалов выполняется по традиционным технологиям химического нанесения рисунка.

Вторая группа подразумевает создание токопроводящего рисунка непосредственно в алюминии основы. Для этой цели алюминиевый лист оксидируют не только по поверхности но и на всю глубину основы согласно рисунку токопроводящих областей, заданному фотошаблоном.

Обработка заготовки

Получение рисунка проводников

При изготовлении плат используются химические, электролитические или механические методы воспроизведения требуемого токопроводящего рисунка, а также их комбинации.

Химический способ

Химический способ изготовления печатных плат из готового фольгированного материала состоит из двух основных этапов: нанесение защитного слоя на фольгу и травление незащищенных участков химическими методами.

В промышленности защитный слой наносится фотолитографическим способом с использованием ультрафиолетово -чувствительного фоторезиста , фотошаблона и источника ультрафиолетового света. Фоторезистом сплошь покрывают медь фольги, после чего рисунок дорожек с фотошаблона переносят на фоторезист засветкой. Засвеченный фоторезист смывается, обнажая медную фольгу для травления, незасвеченный фоторезист фиксируется на фольге, защищая её от травления.

Фоторезист бывает жидким или пленочным. Жидкий фоторезист наносят в промышленных условиях так как он чувствителен к несоблюдению технологии нанесения. Пленочный фоторезист популярен при ручном изготовлении плат, однако он дороже. Фотошаблон представляет собой УФ-прозрачный материал с распечатанным на нём рисунком дорожек. После экспозиции фоторезист проявляется и закрепляется как и в обычном фотохимическом процессе.

В любительских условиях защитный слой в виде лака или краски может быть нанесен шелкотрафаретным способом или вручную. Радиолюбители для формирования на фольге травильной маски применяют перенос тонера с изображения, отпечатанного на лазерном принтере («лазерно-утюжная технология»).

Под травлением фольги понимают химический процесс перевода меди в растворимые соединения. Незащищенная фольга травится, чаще всего, в растворе хлорного железа или в растворе других химикатов, например медного купороса , персульфата аммония , аммиачного медно-хлоридного, аммиачного медно-сульфатного, на основе хлоритов , на основе хромового ангидрида . При использовании хлорного железа процесс травления платы идет следующим образом: FeCl 3 +Cu → FeCl 2 +CuCl. Типовая концентрация раствора 400 г/л, температура до 35°С. При использовании персульфата аммония процесс травления платы идет следующим образом: (NH 4) 2 S 2 O 8 +Cu → (NH 4) 2 SO 4 +CuSO 4 .

После травления защитный рисунок с фольги смывается.

Механический способ

Механический способ изготовления предполагает использование фрезерно-гравировальных станков или других инструментов для механического удаления слоя фольги с заданных участков.

Лазерная гравировка

До недавнего времени лазерная гравировка печатных плат была слабо распространена в связи с хорошими отражающими свойствами меди на длине волны наиболее распространенных мощных газовых СО лазеров. В связи с прогрессом в области лазеростроения сейчас начали появляться промышленные установки прототипирования на базе лазеров.

Металлизация отверстий

Переходные и монтажные отверстия могут сверлиться, пробиваться механически (в мягких материалах типа гетинакса) или лазером (очень тонкие переходные отверстия). Металлизация отверстий обычно выполняется химическим или механическим способом.

Механическая металлизация отверстий выполняется специальными заклепками, пропаянными проволочками или заливкой отверстия токопроводящим клеем. Механический способ дорог в производстве и потому применяется крайне редко, обычно в высоконадежных штучных решениях, специальной сильноточной технике или радиолюбительских условиях.

При химической металлизации в фольгированной заготовке сначала сверлятся отверстия, затем они металлизируются и только потом производится травление фольги для получения рисунка печати. Химическая металлизация отверстий - многостадийный сложный процесс, чувствительный к качеству реактивов и соблюдению технологии. Поэтому в радиолюбительских условиях практически не применяется. Упрощенно состоит из таких этапов:

  • Нанесение на диэлектрик стенок отверстия проводящей подложки. Эта подложка очень тонкая, непрочная. Наносится химическим осаждением металла из нестабильных соединений, таких как хлорид палладия .
  • На полученную основу производится электролитическое или химическое осаждение меди.
  • В конце производственного цикла для защиты довольно рыхлой осажденной меди применяется либо горячее лужение либо отверстие защищается лаком (паяльной маской). Нелуженые переходные отверстия низкого качества являются одной из самых частых причин отказа электронной техники.

Прессование многослойных плат

Многослойные платы (с числом слоев металлизации более 2) собираются из стопки тонких двух- или однослойных печатных плат, изготовленных традиционным способом (кроме наружных слоев пакета - их пока оставляют с нетронутой фольгой). Их собирают «бутербродом» со специальными прокладками (препреги). Далее выполняется прессование в печи, сверление и металлизация переходных отверстий. В последнюю очередь делают травление фольги внешних слоев.

Переходные отверстия в таких платах могут также делаться до прессования. Если отверстия делаются до прессования, то можно получать платы с так называемыми глухими отверстиями (когда отверстие есть только в одном слое бутерброда), что позволяет уплотнить компоновку.

Нанесение покрытий

Возможны такие покрытия как:

  • Защитно-декоративные лаковые покрытия («паяльная маска»). Обычно имеет характерный зелёный цвет.
  • Лужение. Защищает поверхность меди, увеличивает толщину проводника, облегчает монтаж компонентов. Обычно выполняется погружением в ванну с припоем или волной припоя.
  • Гальваническое покрытие фольги инертными металлами (золочение, палладирование) и токопроводящими лаками для улучшения контактных свойств разъемов и мембранных клавиатур .
  • Декоративно-информационные покрытия (маркировка). Обычно наносится с помощью шелкографии , реже - струйным методом или лазером.

Механическая обработка

На одном листе заготовки зачастую помещается множество отдельных плат. Весь процесс обработки фольгированной заготовки они проходят как одна плата и только в конце их готовят к разделению. Если платы прямоугольные, то фрезеруют несквозные канавки, облегчающие последующее разламывание плат (скрайбирование, от англ. scribe царапать). Если платы сложной формы, то делают сквозную фрезеровку, оставляя узкие мостики чтобы платы не рассыпались. Для плат без металлизации вместо фрезеровки иногда сверлят ряд отверстий с маленьким шагом. Сверление крепежных (неметаллизированных) отверстий также происходит на этом этапе.

См. также: ГОСТ 23665-79 Платы печатные. Обработка контура. Требования к типовым технологическим процессам.

По типовому техпроцессу отделение плат от заготовки происходит уже после монтажа компонентов.

Монтаж компонентов

Пайка является основным методом монтажа компонентов на печатные платы. Пайка может выполняться как вручную паяльником так и с помощью специально разработанных специфических технологий.

Пайка волной

Основной метод автоматизированной групповой пайки для выводных компонентов. С помощью механических активаторов создается длинная волна расплавленного припоя. Плату проводят над волной так чтобы волна едва коснулась нижней поверхности платы. При этом выводы заранее установленных выводных компонентов смачиваются волной и припаиваются к плате. Флюс наносится на плату губчатым штемпелем.

Пайка в печах

Основной метод групповой пайки планарных компонентов. На контактные площадки печатной платы через трафарет наносится специальная паяльная паста (порошок припоя в пастообразном флюсе). Затем устанавливаются планарные компоненты. Затем плату с установленными компонентами подают в специальную печь, где флюс паяльной пасты активизируется, а порошок припоя плавится, припаивая компонент.

Если такой монтаж компонентов выполняется с двух сторон, то плата подвергается этой процедуре дважды - отдельно для каждой стороны монтажа. Тяжелые планарные компоненты устанавливаются на капельки клея, которые не позволяют им упасть с перевернутой платы во время второй пайки. Легкие компоненты удерживаются на плате за счет поверхностного натяжения припоя.

После пайки плату обрабатывают растворителями с целью удаления остатков флюса и других загрязнений, либо, при использовании безотмывочной паяльной пасты, плата готова сразу для некоторых условий эксплуатации.

Установка компонентов

Установка компонентов может выполняться как вручную так и на специальных автоматах-установщиках. Автоматическая установка уменьшает вероятность ошибки и значительно ускоряет процесс (лучшие автоматы устанавливают несколько компонентов в секунду).

Финишные покрытия

После пайки печатную плату с компонентами покрывают защитными составами: гидрофобизаторами, лаками, средствами защиты открытых контактов.

Сходные технологии

Подложки гибридных микросхем представляют собой нечто похожее на керамическую печатную плату, однако обычно используют другие техпроцессы:

  • шелкографическое нанесение рисунка проводников металлизированной пастой с последующим спеканием пасты в печи. Технология позволяет многослойную разводку проводников благодаря возможности нанесения на слой проводников слоя изолятора теми же шелкографическими методами.
  • Осаждение металла через трафарет.

Для изготовления основы печатной платы используют фольгированные и нефольгированные диэлектрики – гетинакс, стеклоткань, фторопласт, полистирол, керамические и металлические (с поверхностным изоляционным слоем) материалы.

Фольгированные материалы – это многослойные прессованные пластики из электроизо­ляционной бумаги или стеклоткани, пропитанные искусственной смолой. Они покрыты с одной или двух сторон электролитической фольгой толщиной 18; 35 и 50 мкм.

Фольгированный стеклотекстолит марок СФ выпускают листами размерами 400×600 мм и толщиной листа до 1 мм и 600×700 мм с большей толщиной листа, рекомендуется для плат, которые эксплуатируются при температуре до 120°С.

Более высокие физико-механические свойства и теплостойкость имеют стеклотекстолиты марок СФПН.

Диэлектрик слофодит имеет медную фольгу толщиной 5 мкм, которую получают испарением меди в вакууме.

Для многослойных и гибких плат используют теплостойкие стеклотекстолиты марок СТФи ФТС; они эксплуатируются в диапазоне температур от минус 60 до плюс 150°С.

Нефольгированный диэлектрик СТЭФ металлизируется слоем меди в процессе изготовления печатной платы.

Фольгу изготовляют из меди высокой чистоты, содержание примесей не превышает 0,05%. Медь имеет высокую электропроводность, она относительно устойчива к коррозии, хотя и требует защитного покрытия.

Для печатного монтажа допустимое значение тока выбирают: для фольги 100–250 A/мм2, для гальванической меди 60–100 А/мм2.

Для производства печатных кабелей используют армированные фольгированные пленки из фторопласта.

Керамические платы могут работать в диапазоне температур 20...700ºС. Их изготовляют из минерального сырья (например, кварцевого песка) прессовкой, литьем под давлением или отливанием пленок.

Металлические платы используют в изделиях с большой токовой нагрузкой.

В качестве основы используют алюминий или сплавы железа с никелем. Изоляционный слой на поверхности алюминия получают анодным оксидированием с толщиной от десятков до сотен микрометров и сопротивлением изоляции 109–1010 Ом.

Толщину проводника берут 18; 35 и 50 мкм. По плотности проводящего рисунка печатные платы подразделяют на пять классов:

– первый класс характеризуется наименьшей плотностью проводящего рисунка и шириной проводника и пробелов более 0,75 мм;

– пятый класс имеет наибольшую плотность рисунка и ширину проводника и пробелов в пределах 0,1 мм.

Поскольку печатный проводник имеет малую массу, то сила его сцепления с основой достаточна, чтобы выдержать действующие на проводнике знакопеременные механические перегрузки до 40q в диапазоне частот 4–200Гц.

Стандарты на материалы для печатных плат представлены ниже в соответствующем разделе «Стандартизация производства печатных плат».

Качество поставляемых материалов соответствует стандарту IPC4101B, система управления качеством производителей подтверждена международными сертификатами ISO 9001:2000.

FR 4 – стеклотекстолит класса огнестойкости 94V-0 - является наиболее распространенным материалом для производства печатных плат. Наша компания поставляет следующие виды материалов для производства одно-, и двусторонних печатных плат :

  • Стеклотекстолит FR4 с температурой стеклования 135ºС , 140ºС и 170ºС для производства односторонних и двухсторонних печатных плат. Толщиной 0,5 - 3,0 мм с фольгой 12, 18, 35, 70, 105 мкм.
  • Базовый FR4 для внутренних слоев МПП с температурой стеклования 135ºС, 140ºС и 170ºС
  • Препреги FR4 с температурой стеклования 135ºС, 140ºС и 170ºС для прессования МПП
  • Материалы XPC , FR1 , FR2 , CEM-1 , CEM-3 , НА-50
  • Материалы для плат с контролируемым отводом тепла:
    • (алюминий, медь, нержавеющая сталь) с диэлектриком теплопроводностью от 1 Вт/м*К до 3 Вт/м*К производства Totking и Zhejiang Huazheng New Material Co.
    • Материал HA-30 CEM-3 с теплопроводностью 1 Вт/м*К для производства одно- и двухсторонних печатных плат.

Для некоторых целей бывает необходим высококачественный нефольгированный диэлектрик, обладающий всеми достоинствами FR4 (хорошие диэлектрические свойства, стабильность характеристик и размеров, высокая устойчивость к воздействию неблагоприятных климатических условий). Для этих применений мы можем предложить нефольгированный стеклотекстолит FR4 .

Во многих случаях, где требуются достаточно простые печатные платы (при производстве бытовой аппаратуры, различных датчиков, некоторых комплектующих к автомобилям и т.п.) превосходные свойства стеклотекстолита оказываются избыточными, и на первый план выходят показатели технологичности и стоимости. Здесь мы можем предложить следующие материалы:

  • XPC , FR1 , FR2 - фольгированные гетинаксы (основа из целлюлозной бумаги, пропитанной фенольной смолой), широко применяется при изготовлении печатных плат для бытовой электроники, аудио-, видео техники, в автомобилестроении (расположены в порядке возрастания показателей свойств, и, соответственно, цены). Прекрасно штампуются.
  • CEM-1 - ламинат на основе композиции целлюлозной бумаги и стеклоткани с эпоксидной смолой. Прекрасно штампуется.

Также в нашем ассортименте есть электроосажденная медная фольга для прессования МПП производства Kingboard. Фольга поставляется в рулонах различной ширины, толщина фольги 12, 18, 35, 70, 105 мкм, фольга толщиной 18 и 35 мкм практически всегда доступна с нашего склада в России.

Все материалы произведены в соответствии с директивой RoHS, содержание вредных веществ подтверждено соответствующими сертификатами и RoHS тест-репортами. Также все материалы, на многие позиции имеются сертификаты, и др.