В частном доме

Уравнения с одной переменной теория. Уравнение с одной переменной

Уравнения с одной переменной теория. Уравнение с одной переменной

Уравнение - это равенство, содержащее переменную, обозначенную буквой.

Корень уравнения (или решение уравнения) - это такое значение переменной, при котором уравнение превращается в верное равенство.

Пример: решим уравнение (то есть найдем корень уравнения): 4x - 15 = x + 15

Итак:

4х - х = 15 + 15

3х = 30

х = 30: 3

х = 10

Результат: уравнение имеет один корень - число 10.

Уравнение может иметь и два, три, четыре и более корней.
Например, уравнение (х - 4)(х - 5)(х - 6) = 0 имеет три корня: 4, 5 и 6.

Уравнение может вовсе не иметь корней.
Например, уравнение х + 2 = х не имеет корней, т.к. при любом значении х равенство невозможно.

Равносильность уравнений.

Два уравнения являются равносильными, если они имеют одинаковые корни либо если оба уравнения не имеют корней.

Пример1 :

Уравнения х + 3 = 5 и 3х - 1 = 5 равносильны, так как в обоих уравнениях х = 2.

Пример 2 :

Уравнения х 4 + 2 = 1 и х 2 + 5 = 0 равносильны, так как оба уравнения не имеют корней.

Целое уравнение с одной переменной - это уравнение, левая и правая части которого являются целыми выражениями (о целых выражениях см.раздел «Рациональные выражения»).

Уравнение с одной переменной может быть записано в виде P (x ) = 0, где P (x ) - многочлен стандартного вида.

Например:
y 2 + 3y - 6 = 0
(здесь P (x ) представлен в виде многочлена y 2 + 3y - 6).

В таком уравнении степень многочлена называют степенью уравнения .

В нашем примере представлено уравнение второй степени (так как в нем многочлен второй степени).

Уравнение первой степени.

Уравнение первой степени можно привести к виду:

ax + b = 0,

где x - переменная, a и b - некоторые числа, причем a ≠ 0.

Отсюда легко вывести значение x :

b
x = - —
a

Это значение x является корнем уравнения.

Уравнения первой степени имеют один корень.

Уравнение второй степени.

Уравнение второй степени можно привести к виду:

ax 2 + bx + c = 0,

где x - переменная, a, b, c - некоторые числа, причем a ≠ 0.

Число корней уравнения второй степени зависит от дискриминанта:

Если D > 0, то уравнение имеет два корня;

Если D = 0, то уравнение имеет один корень;

Если D < 0, то уравнение корней не имеет.

Уравнение второй степени может иметь не более двух корней.

(о том, что такое дискриминант и как находить корни уравнения, см.разделы «Формулы корней квадратного уравнения. Дискриминант» и «Другой способ решения квадратного уравнения»).

Уравнение третьей степени.

Уравнение третьей степени можно привести к виду:

ax 3 + bx 2 + cx + d = 0,

где x - переменная, a, b, c, d - некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более трех корней.

Уравнение четвертой степени.

Уравнение четвертой степени можно привести к виду:

ax 4 + bx 3 + cx 2 + dx + e = 0,

где x - переменная, a, b, c, d, e - некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более четырех корней.

Обобщение:

1) уравнение пятой, шестой и т.д. степеней можно легко вывести самостоятельно, следуя приведенной выше схеме;

2) уравнение n -й степени может иметь не более n корней.

Пример 1 : Решим уравнение

x 3 - 8x 2 - x + 8 = 0.

Мы видим, что это уравнение третьей степени. Значит, у него может быть от нуля до трех корней.
Найдем их и тем самым решим уравнение.
Разложим левую часть уравнения на множители:

x 2 (x - 8) - (x - 8) = 0.

Применим правило разложения многочлена способом группировки его членов. Для этого поставим перед вторыми скобками число 1:

x 2 (x - 8) - 1(x - 8) = 0.

Теперь сгруппируем многочлены x 2 и -1, являющиеся множителями многочлена x -8. Получим две группы многочленов: (x 2 -1) и (x - 8). Следовательно, наше уравнение примет новый вид:

(x - 8)(x 2 - 1) = 0.

Здесь выражение x 2 - 1 можно представить в виде x 2 - 1 2 . А значит, можем применить формулу сокращенного умножения: x 2 - 1 2 = (x - 1)(x + 1). Подставим в наше уравнение это выражение и получим:

(x - 8)(x - 1)(x + 1) = 0.

x - 8 = 0

x - 1 = 0

x + 1 = 0

Осталось найти корни нашего уравнения:

x 1 = 0 + 8 = 8

x 2 = 0 + 1 = 1

x 3 = 0 - 1 = -1.

Уравнение решено. Оно имеет три корня: 8, 1 и -1.

Пример 2 : Решим уравнение

(x 2 - 5x + 4)(x 2 - 5x +6) = 120

Это уравнение сложнее. Но его можно упростить оригинальным образом - методом введения новой переменной.
В нашем уравнении дважды встречается выражение x 2 - 5x .
Мы можем обозначить его переменной y . То есть представим, что x 2 - 5x = y .

Тогда наше уравнение обретает более простой вид:

(y + 4)(y + 6) = 120.

Раскроем скобки:

y 2 + 4y + 6y + 24 = 120

y 2 + 10y + 24 = 120

Приравняем уравнение к нулю:

y 2 + 10y + 24 - 120 = 0

y 2 + 10y - 96 = 0

Мы получили обычное квадратное уравнение. Найдем его корни. Нет необходимости производить расчеты: о том, как решать подобные уравнения, подробно написано в разделах «Квадратные уравнения» и «Формулы корней квадратного уравнения. Дискриминант». Здесь же мы сразу выведем результат. Квадратное уравнение y 2 + 10y - 96 = 0 имеет два корня:

y 1 = -16

y 2 = 6

Буквой y мы заменили выражение x 2 - 5x . А значит, мы уже можем подставить значения y и найти корни заданного уравнения, тем самым решив задачу:

1) Сначала применяем значение y 1 = -16:

x 2 - 5x = -16

Чтобы решить это уравнение, превращаем его в квадратное уравнение:

x 2 - 5x + 16 = 0

Решив его, мы обнаружим, что оно не имеет корней.

2) Теперь применяем значение y 2 = 6:

x 2 - 5x = 6

x 2 - 5x - 6 = 0

Решив это квадратное уравнение, мы увидим, что у него два корня:

x 1 = -1

x 2 = 6.

Уравнение решено. Оно имеет два корня: -1 и 6.

Метод введения новой переменной позволяет легко решать уравнения четвертой степени, которые являются квадратными относительно x 2 (такие уравнения называют биквадратными ).

Уравнение – это равенство, в котором присутствует одна или несколько переменных.
Мы рассмотрим случай, когда в уравнении одна переменная, то есть одно неизвестное число. По сути, уравнение – это вид математической модели . Поэтому в первую очередь уравнения необходимы нам для решения задач.

Вспомним, как составляется математическая модель для решения задачи.
Например, в новом учебном году количество учащихся в школе №5 увеличилось вдвое. После того, как 20 учеников перешли в другую школу, в общей сложности в школе №5 стало учиться 720 учеников. Сколько учащихся было в прошлом году?

Нам нужно выразить то, что сказано в условии математическим языком . Пусть количество учащихся в прошлом году будет X. Тогда согласно условию задачи,
2X – 20 = 720. У нас получилась математическая модель, которая представляет собой уравнение с одной переменной . Если точнее, то это уравнение первой степени с одной переменной. Осталось найти его корень.


Что такое корень уравнения?

То значение переменной, при котором наше уравнение обратится в верное равенство, называется корнем уравнения. Бывают такие уравнения, у которых много корней. Например, в уравнении 2*X = (5-3)*X любое значение X является корнем. А уравнение X = X +5 вообще не имеет корней, так как какое бы мы не подставили значение X, у нас не получится верное равенство. Решить уравнение означает найти все его корни, или определить, что оно не имеет корней. Таким образом, чтобы ответить на наш вопрос, нам нужно решить уравнение 2X – 20 = 720.

Как решать уравнения с одной переменной?

Для начала запишем базовые определения. Каждое уравнение имеет правую и левую части. В нашем случае, (2X – 20) – левая часть уравнения (она стоит слева от знака равенства), а 720 – правая часть уравнения. Слагаемые правой и левой части уравнения называются членами уравнения. У нас членами уравнения являются 2X, -20 и 720.

Сразу скажем про 2 свойства уравнений:

  1. Любой член уравнения можно переносить из правой части уравнения в левую, и наоборот. При этом надо изменить знак этого члена уравнения на противоположный. То есть, записи вида 2X – 20 = 720, 2X – 20 – 720 = 0, 2X = 720 + 20, -20 = 720 – 2X равносильны.
  2. Обе части уравнения можно умножить или разделить на одно и то же число. Это число не должно быть равно нулю. То есть, записи вида 2X – 20 = 720, 5*(2X – 20) = 720*5, (2X – 20):2 = 720:2 также равносильны.
Воспользуемся этими свойствами для решения нашего уравнения.

Перенесем -20 в правую часть с противоположным знаком. Получим:

2X = 720 + 20. Сложим то, что у нас в правой части. Получим, что 2X = 740.

Теперь разделим левую и правую части уравнения на 2.

2X:2 = 740:2 или X = 370. Мы нашли корень нашего уравнения и заодно нашли ответ на вопрос нашей задачи. В прошлом году в школе №5 было 370 учеников.

Проверим, действительно ли наш корень обращает уравнение в верное равенство. Подставим вместо X число 370 в уравнение 2X – 20 = 720.

2*370-20 = 720.

Все верно.

Итак, чтобы решить уравнение с одной переменной его нужно привести к так называемому линейному уравнению вида ax = b, где a и b – некоторые числа. Затем левую и правую часть разделить на число a. Получим, что x = b:a.

Что означает привести уравнение к линейному уравнению?

Рассмотрим такое уравнение:

5X - 2X + 10 = 59 - 7X +3X.

Это также уравнение с одной неизвестной переменной X. Наша задача привести это уравнение к виду ax = b.

Для этого сначала соберем все слагаемые, имеющие в качестве множителя X в левой части уравнения, а остальные слагаемые - в правой части. Слагаемые, имеющие в качестве множителя одну и ту же букву, называют подобными слагаемыми.

5X - 2X + 7X – 3X = 59 – 10.

Согласно распределительному свойству умножения мы можем вынести одинаковый множитель за скобки, а коэффициенты (множители при переменной x) сложить. Этот процесс также называют приведением подобных слагаемых.

X(5-2+7-3) = 49.

7X = 49. Мы привели уравнение к виду ax = b, где a = 7, b = 49.

А как мы написали выше, корнем уравнения вида ax = b будет x = b:a.

То есть X = 49:7 = 7.

Алгоритм нахождения корней уравнения с одной переменной.

  1. Собрать подобные слагаемые в левой части уравнения, остальные слагаемые – в правой части уравнения.
  2. Привести подобные слагаемые.
  3. Привести уравнение к виду ax = b.
  4. Найти корни по формуле x = b:a.
Примечание . В данной статье мы не рассматривали те случаи, когда переменная возводится в какую-нибдуь степень. Иначе говоря мы рассматривали уравнения первой степени с одной переменной. х и областью определения Х . Тогда высказывательная форма вида f(x) = g(x) называется уравнением с одной переменной.

Значение переменной х из множества Х , при котором уравнение обращается в истинное числовое равенство, называется корнем уравнения (или его решением). Решить уравнение - это значит найти множество его корней.


Множество значений переменной, при которых выражения f(x) и g(x) имеют смысл, называется областью определения уравнения
f(x) = g(x) . Множество решений уравнения является подмножеством области его определения.


Чтобы решить какое-либо уравнение, его сначала преобразовывают, заменяя другим, более простым; полученное уравнение опять преобразовывают, заменяя более простым, и т.д. Этот процесс продолжают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями заданного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называются равносильными.


Замена уравнения равносильным ему уравнением называется преобразованием.


Преобразования, позволяющие получать равносильные уравнения, могут быть следующими:


1. Если к обеим частям уравнения f(x) = g(x) , определенного на множестве Х , прибавить одно и то же выражение h(x) , имеющее смысл на множестве Х , то получится уравнение f(x) + h(x) = g(x) + h(x) , равносильное данному.


Из данного утверждения вытекают следствия , которые используются при решении уравнений:


1) Если к обеим частям уравнения прибавить одно и то же число, то получим уравнение, равносильное данному.


2) Если какое-либо слагаемое ( или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.


2. Если обе части уравнения f(x) = g(x) , определенного на множестве Х , умножить на одно и то же выражение h(x) , имеющее смысл на множестве Х и не обращающееся на нем в нуль, то получится уравнение f(x) × h(x) = g(x)× h(x) , равносильное данному.


Из этого утверждения вытекает следствие:


Если обе части уравнения умножить на одно и то же число, отличное от нуля, то получится уравнение, равносильное данному.


Задача. Установить, какие из следующих пар уравнений равносильны на множестве действительных чисел:


а) х 2 - 9 = 0 и (2х + 6)(х - 3) = 0;


б) (3х + 1) × 2 = 6х + 1 и х 2 + 1 = 0;


в) х 2 - х - 2 = 0 и (х - 1)(х + 2) = 0;


Решение. а) уравнения равносильны, так как оба имеют своими корнями числа 3 и -3; б) уравнения равносильны, так как оба не имеют корней, т.е. множества их решений совпадают; в) уравнения не являются равносильными, так как корнями первого уравнения являются числа -1 и 2, а второго - числа 1 и -2.


Задача. Решить уравнение и обосновать все преобразования, которые будут выполняться в процессе решения.


Решение.






























Преобразования



Обоснование преобразований



1. Приведем выражения, стоящие в левой и правой частях уравнения, к общему знаменателю: .



Выполнили тождественное преобра-зование выражения в левой части уравнения.



2. Отбросим общий знаменатель:


6 - 2х = х .



Умножили на 6 обе части уравнения (теорема 2), получили уравнение, равносильное данному.



3. Выражение --2х переносим в правую часть уравнения с противоположным знаком:


6 = х + 2х .



Воспользовались следствием из теоремы 1, получили уравнение, равносильное предыдущему и, значит, данному.



4. Приводим подобные члены в правой части уравнения: 6 = 3х .



Выполнили тождественное преобра-зование выражения.



5. Разделим обе части уравнения на 3: х = 2.



Воспользовались следствием из теоремы 2, получили уравнение, равносильное предыдущему, а значит, и данному.


Так как все преобразования, которые мы выполняли, решая данное уравнение, были равносильными, то можно утверждать, что 2 - корень этого уравнения.


Если же в процессе решения уравнения не выполняются условия теорем 1 и 2, то может произойти потеря корней или могут появиться посторонние корни. Поэтому важно, осуществляя преобразования уравнения с целью получения более простого, следить за тем, чтобы они приводили к уравнению, равносильному данному.


Рассмотрим, например, уравнение х (х - 1) = 2х , х Î R . Разделим обе части на х , получим уравнение х - 1 = 2, откуда х = 3, т.е. данное уравнение имеет единственный корень - число 3. Но верно ли это? Нетрудно видеть, что если в данное уравнение вместо переменной
х подставить 0, оно обратится в истинное числовое равенство
0 × (0 - 1) = 2 × 0. А это означает, что 0 - корень данного уравнения, который мы потеряли, выполняя преобразования. Проанализируем их. Первое, что мы сделали, - это разделили обе части уравнения на х , то есть умножили на выражение , но при х = 0 оно не имеет смысла. Следовательно, мы не выполнили условие теоремы 2, что и привело к потере корня.


Чтобы убедиться в том, что множество корней данного уравнения состоит из двух чисел 0 и 3, приведем другое решение. Перенесем выражение 2х из правой части в левую: х (х - 1) - 2х = 0. Вынесем в левой части уравнения за скобки х и приведем подобные члены:
х (х - 3) = 0. Произведение двух множителей равно нулю в том и только в том случае, когда хотя бы один из них равен нулю, поэтому х = 0 или х - 3 = 0. Отсюда получаем, что корни данного уравнения - 0 и 3.


В начальном курсе математики теоретической основой решения уравнений является взаимосвязь между компонентами и результатами действий.


Задача. Решить уравнение (х × 9) : 24 = 3, используя взаимосвязь между компонентами и результатами действий.


Решение. Так как неизвестное находится в делимом, то, чтобы найти делимое, надо делитель умножить на частное: х × 9 = 24 × 3, или х × 9 = 72. Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель: х = 72: 9, или х = 8, следовательно, корнем данного уравнения является число 8.


Упражнения для самостоятельной работы


1. Уравнение 2х 4 + 4х 2 - 6 = 0 задано на множестве натуральных чисел. Объясните, почему число 1 является корнем этого уравнение, а 2 и -1 не являются его корнями.


2. Установите, какие из следующих пар уравнений равносильны на множестве R :


а) 3 + 7х = -4 и 2(3 + 7х ) = -8; в) 3 + 7х = -4 и х + 2 = 0.


б) 3 + 7х = -4 и 6 + 7х = -1;


3. Решите уравнения и обоснуйте все преобразования, выполняемые в процессе их упрощения:


а) ; б) ; в) (2 - х ) × 2 - х (х + 1,5) = 4.


4. Решите уравнения, используя взаимосвязь между компонентами и результатами действий:


а) (х + 70) × 4 = 328; в) (85х + 765) : 170 = 98;


б) 560: (х + 9) = 56; г) (х - 13581) : 709 = 306.

И т.п., логично познакомиться с уравнениями и других видов. Следующими по очереди идут линейные уравнения , целенаправленное изучение которых начинается на уроках алгебры в 7 классе.

Понятно, что сначала надо объяснить, что такое линейное уравнение, дать определение линейного уравнения, его коэффициентов, показать его общий вид. Дальше можно разбираться, сколько решений имеет линейное уравнение в зависимости от значений коэффициентов, и как находятся корни. Это позволит перейти к решению примеров, и тем самым закрепить изученную теорию. В этой статье мы это сделаем: детально остановимся на всех теоретических и практических моментах, касающихся линейных уравнений и их решения.

Сразу скажем, что здесь мы будем рассматривать только линейные уравнения с одной переменной, а уже в отдельной статье будем изучать принципы решения линейных уравнений с двумя переменными .

Навигация по странице.

Что такое линейное уравнение?

Определение линейного уравнения дается по виду его записи. Причем в разных учебниках математики и алгебры формулировки определений линейных уравнений имеют некоторые различия, не влияющие на суть вопроса.

Например, в учебнике алгебры для 7 класса Ю. Н. Макарычева и др. линейное уравнение определяется следующим образом:

Определение.

Уравнение вида a·x=b , где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной .

Приведем примеры линейных уравнений, отвечающие озвученному определению. Например, 5·x=10 – это линейное уравнение с одной переменной x , здесь коэффициент a равен 5 , а число b есть 10 . Другой пример: −2,3·y=0 – это тоже линейное уравнение, но с переменной y , в котором a=−2,3 и b=0 . А в линейных уравнениях x=−2 и −x=3,33 a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2 , а во втором - b=3,33 .

А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6 , и т.п. тоже линейные.

В свою очередь в учебнике алгебры для 7 классов А. Г. Мордковича дается такое определение:

Определение.

Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

К примеру, линейными уравнениями такого вида являются 2·x−12=0 , здесь коэффициент a равен 2 , а b – равен −12 , и 0,2·y+4,6=0 с коэффициентами a=0,2 и b=4,6 . Но в тоже время там приводятся примеры линейных уравнений, имеющие вид не a·x+b=0 , а a·x=b , например, 3·x=12 .

Давайте, чтобы у нас в дальнейшем не было разночтений, под линейным уравнениями с одной переменной x и коэффициентами a и b будем понимать уравнение вида a·x+b=0 . Такой вид линейного уравнения представляется наиболее оправданным, так как линейные уравнения – это алгебраические уравнения первой степени. А все остальные указанные выше уравнения, а также уравнения, которые с помощью равносильных преобразований приводятся к виду a·x+b=0 , будем называть уравнениями, сводящимися к линейным уравнениям . При таком подходе уравнение 2·x+6=0 – это линейное уравнение, а 2·x=−6 , 4+25·y=6+24·y , 4·(x+5)=12 и т.п. – это уравнения, сводящиеся к линейным.

Как решать линейные уравнения?

Теперь пришло время разобраться, как решаются линейные уравнения a·x+b=0 . Другими словами, пора узнать, имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.

Наличие корней линейного уравнения зависит от значений коэффициентов a и b . При этом линейное уравнение a·x+b=0 имеет

  • единственный корень при a≠0 ,
  • не имеет корней при a=0 и b≠0 ,
  • имеет бесконечно много корней при a=0 и b=0 , в этом случае любое число является корнем линейного уравнения.

Поясним, как были получены эти результаты.

Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям , то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:

  • перенос слагаемого из одной части уравнения в другую с противоположным знаком,
  • а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.

Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b .

А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.

Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a , после этого оно преобразуется к виду x=(−b):a , этот результат можно записать с использованием дробной черты как .

Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .

Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.

Обозначим корень как x 1 . Предположим, что существует еще один корень линейного уравнения, который обозначим x 2 , причем x 2 ≠x 1 , что в силу определения равных чисел через разность эквивалентно условию x 1 −x 2 ≠0 . Так как x 1 и x 2 корни линейного уравнения a·x+b=0 , то имеют место числовые равенства a·x 1 +b=0 и a·x 2 +b=0 . Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств , имеем a·x 1 +b−(a·x 2 +b)=0−0 , откуда a·(x 1 −x 2)+(b−b)=0 и дальше a·(x 1 −x 2)=0 . А это равенство невозможно, так как и a≠0 и x 1 −x 2 ≠0 . Так мы пришли к противоречию, что доказывает единственность корня линейного уравнения a·x+b=0 при a≠0 .

Так мы решили линейное уравнение a·x+b=0 при a≠0 . Первый результат, приведенный в начале этого пункта, обоснован. Остались еще два, отвечающие условию a=0 .

При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0 . Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x , при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0 . Это равенство верное, когда b=0 , а в остальных случаях при b≠0 это равенство неверное.

Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0 , так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0 . А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0 .

Приведенные обоснования позволяют сформировать последовательность действий, позволяющую решить любое линейное уравнение. Итак, алгоритм решения линейного уравнения таков:

  • Сначала по записи линейного уравнения находим значения коэффициентов a и b .
  • Если a=0 и b=0 , то это уравнение имеет бесконечно много корней, а именно, любое число является корнем этого линейного уравнения.
  • Если же a отлично от нуля, то
    • коэффициент b переносится в правую часть с противоположным знаком, при этом линейное уравнение преобразуется к виду a·x=−b ,
    • после чего обе части полученного уравнения делятся на отличное от нуля число a , что и дает искомый корень исходного линейного уравнения .

Записанный алгоритм является исчерпывающим ответом на вопрос, как решать линейные уравнения.

В заключение этого пункта стоит сказать, что похожий алгоритм применяется для решения уравнений вида a·x=b . Его отличие состоит в том, что при a≠0 сразу выполняется деление обеих частей уравнения на это число, здесь b уже находится в нужной части уравнения и не нужно осуществлять его перенос.

Для решения уравнений вида a·x=b применяется такой алгоритм:

  • Если a=0 и b=0 , то уравнение имеет бесконечно много корней, которыми являются любые числа.
  • Если a=0 и b≠0 , то исходное уравнение не имеет корней.
  • Если же a отлично от нуля, то обе части уравнения делятся на отличное от нуля число a , откуда находится единственный корень уравнения, равный b/a .

Примеры решения линейных уравнений

Переходим к практике. Разберем, как применяется алгоритм решения линейных уравнений. Приведем решения характерных примеров, соответствующих различным значениям коэффициентов линейных уравнений.

Пример.

Решите линейное уравнение 0·x−0=0 .

Решение.

В этом линейном уравнении a=0 и b=−0 , что то же самое, b=0 . Следовательно, это уравнение имеет бесконечно много корней, любое число является корнем этого уравнения.

Ответ:

x – любое число.

Пример.

Имеет ли решения линейное уравнение 0·x+2,7=0 ?

Решение.

В данном случае коэффициент a равен нулю, а коэффициент b этого линейного уравнения равен 2,7 , то есть, отличен от нуля. Поэтому, линейное уравнение не имеет корней.

При изучении русского языка в школе многие задавались вопросом: почему слово равнина пишется через а , ведь проверочное слово ровный пишется через о ? На самом деле ответ прост. Ведь равнина так называется потому, что все ее точки находятся на равном расстоянии (от уровня моря) и проверочное слово для неё — равно .

Определение: Уравнением с переменной x называется равенство вида A(x)=B(x), где A(x) и B(x) — выражения от x. Множество T значений x при подстановке которых в уравнение получается истинное числовое равенство, называют множеством истинности данного уравнения или решением данного уравнения, а каждое такое значение переменной — корнем уравнения .

Таким образом становится понятно, что основа любого уравнения это равенств о двух его частей. И когда при решении уравнений производятся над его частями это равенство всегда должно соблюдаться.

Методы решения уравнений с одной переменной

Существует огромное количество самых разнообразных видов уравнений для решения которых используются разные способы. Но для того чтобы легко решать уравнения вам необходимо знать три основных метода:

Тождественное преобразование уравнений

Разложение выражения на множители

Введение новой переменной

Тождественные преобразования уравнений

Наиболее простым и в то же время одним из самых распространенных способов решения уравнений является метод тождественных преобразований. В любых уравнениях для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась. Такие преобразования называются тождественными или равносильными. Рассмотрим основные способы тождественных преобразований алгебраических выражений.

Примеры и формулы тождественных преобразований:

Первое тождественное преобразование: к обеим частям любого уравнения можно прибавить (отнять) любое (но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.

Пример: 9x 2 + 12x + 10 = 15x + 10 → отнимем десять из обоих частей → 9x 2 + 12x = 15x

Второе тождественное преобразование : перенос членов уравнения из одной стороны в другую с обратными знаками.

Пример: 9x 2 + 12x = 15x → перенесем 15х влево → 9x 2 + 12x — 15x =0. После упрощения получаем: 9x 2 - 3x =0

Третье тождественное преобразование: обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя.

Пример: 9x 2 - 3x =0 → разделим обе части уравнения на три3x 2 - x =0

Четвертое тождественное преобразование: можно возвести обе части уравнения в нечётную степень или извлечь из обеих частей уравнения корень нечётной степени . Необходимо помнить, что:

а) возведение в чётную может привести к приобретению посторонних корней ;
б) неправильное извлечение корня чётной степени может привести к потере корней .

Пример: 49x 2 = 1225 → извлечем корень квадратный из обеих частей → | 7x | = 35

Разложение выражения на множители

Перечислим теперь некоторые наиболее распространённые приёмы разложения многочленов, как наиболее простых алгебраических , на множители.

Вынесение общего множителя за скобку

В том случае, когда все члены многочлена имеют один и тот же общий множитель, его можно вынести за скобку, получая тем самым разложение многочлена.
Пример: Разложить на множители многочлен х 5 – 2х 3 +х 2 .
Решение: Каждое слагаемое этого многочлена содержит множитель х 2 . Вынесем его за скобку и получим ответ:

х 5 – 2х 3 +х 2 = х 2 (х 3 – 2x + 1).

Применение формул сокращённого умножения

Сокращения довольно эффективно применяются при разложении многочлена на множители. Полезно помнить следующие формулы:

1.Квадрат суммы двух величин равен квадрату первой плюс удвоенное произведение первой на вторую плюс квадрат второй.

(a+b) 2 =a 2 +2ab+b 2

2.Квадрат разности двух величин равен квадрату первой минус удвоенное произведение первой на вторую плюс квадрат второй.

(a-b) 2 =a 2 -2ab+b 2

3.Произведение суммы двух величин на их разность равно разности их квадратов.

(a+b)(a-b)=a 2 -b 2

4.Куб суммы двух величин равен кубу первой плюс утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй плюс куб второй.

(a+b) 3 =a 3 +3a 2 b+3ab 2 +b 3

5.Куб разности двух величин равен кубу первой минус утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй минус куб второй.

(a-b) 3 =a 3 -3a 2 b+3ab 2 -b 3

6. Произведение суммы двух величин на неполный квадрат разности равно сумме их кубов.

(a+b)(a 2 -ab+b 2)=a 3 +b 3

7. Произведение разности двух величин на неполный квадрат суммы равно разности их кубов.

(a-b)(a 2 +ab+b 2)=a 3 -b 3

Пример: (3х+5) 2 =9х 2 +30х+25=0

Решение: используя формулу (1) 9х 2 +30х+25= (3х+5) 2

Применение выделения полного квадрата

Без преувеличения можно сказать, что метод выделения полного квадрата является одним из наиболее эффективных методов разложения на множители, применяемых при сдаче и