В частном доме

Уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой. Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой

Уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой. Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой

Данная статья дает представление о том, как составить уравнение плоскости, проходящей через заданную точку трехмерного пространства перпендикулярно к заданной прямой. Разберем приведенный алгоритм на примере решения типовых задач.

Yandex.RTB R-A-339285-1

Нахождение уравнения плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой

Пусть задано трехмерное пространство и прямоугольная система координат O x y z в нем. Заданы также точка М 1 (x 1 , y 1 , z 1) , прямая a и плоскость α , проходящая через точку М 1 перпендикулярно прямой a . Необходимо записать уравнение плоскости α .

Прежде чем приступить к решению этой задачи, вспомним теорему геометрии из программы 10 - 11 классов, которая гласит:

Определение 1

Через заданную точку трехмерного пространства проходит единственная плоскость, перпендикулярная к заданной прямой.

Теперь рассмотрим, как же найти уравнение этой единственной плоскости, проходящей через исходную точку и перпендикулярной данной прямой.

Возможно записать общее уравнение плоскости, если известны координаты точки, принадлежащей этой плоскости, а также координаты нормального вектора плоскости.

Условием задачи нам заданы координаты x 1 , y 1 , z 1 точки М 1 , через которую проходит плоскость α . Если мы определим координаты нормального вектора плоскости α , то получим возможность записать искомое уравнение.

Нормальным вектором плоскости α , так как он ненулевой и лежит на прямой a , перпендикулярной плоскости α , будет являться любой направляющий вектор прямой a . Так, задача нахождения координат нормального вектора плоскости α преобразовывается в задачу определения координат направляющего вектора прямой a .

Определение координат направляющего вектора прямой a может осуществляться разными методами: зависит от варианта задания прямой a в исходных условиях. К примеру, если прямая a в условии задачи задана каноническими уравнениями вида

x - x 1 a x = y - y 1 a y = z - z 1 a z

или параметрическими уравнениями вида:

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

то направляющий вектор прямой будет иметь координаты а x , а y и а z . В случае, когда прямая a представлена двумя точками М 2 (x 2 , y 2 , z 2) и М 3 (x 3 , y 3 , z 3) , то координаты направляющего вектора буду определяться как (x3 – x2, y3 – y2, z3 – z2).

Определение 2

Алгоритм для нахождения уравнения плоскости, проходящей через заданную точку перпендикулярно заданной прямой:

Определяем координаты направляющего вектора прямой a: a → = (а x , а y , а z) ;

Определяем координаты нормального вектора плоскости α как координаты направляющего вектора прямой a:

n → = (A , B , C) , где A = a x , B = a y , C = a z ;

Записываем уравнение плоскости, проходящей через точку М 1 (x 1 , y 1 , z 1) и имеющей нормальный вектор n → = (A , B , C) в виде A (x – x 1) + B (y – y 1) + C (z – z 1) = 0 . Это и будет являться требуемым уравнением плоскости, которая проходит через заданную точку пространства и перпендикулярна к данной прямой.

Полученное общее уравнение плоскости: A (x – x 1) + B (y – y 1) + C (z – z 1) = 0 дает возможность получить уравнение плоскости в отрезках или нормальное уравнение плоскости.

Решим несколько примеров, используя полученный выше алгоритм.

Пример 1

Задана точка М 1 (3 , - 4 , 5) , через которую проходит плоскость, и эта плоскость перпендикулярна координатной прямой О z .

Решение

направляющим вектором координатной прямой O z будет координатный вектор k ⇀ = (0 , 0 , 1) . Следовательно, нормальный вектор плоскости имеет координаты (0 , 0 , 1) . Запишем уравнение плоскости, проходящей через заданную точку М 1 (3 , - 4 , 5) , нормальный вектор которой имеет координаты (0 , 0 , 1) :

A (x - x 1) + B (y - y 1) + C (z - z 1) = 0 ⇔ ⇔ 0 · (x - 3) + 0 · (y - (- 4)) + 1 · (z - 5) = 0 ⇔ z - 5 = 0

Ответ: z – 5 = 0 .

Рассмотрим еще один способ решить данную задачу:

Пример 2

Плоскость, которая перпендикулярна прямой O z будет задана неполным общим уравнением плоскости вида С z + D = 0 , C ≠ 0 . Определим значения C и D: такие, при которых плоскость проходит через заданную точку. Подставим координаты этой точки в уравнение С z + D = 0 , получим: С · 5 + D = 0 . Т.е. числа, C и D связаны соотношением - D C = 5 . Приняв С = 1 , получим D = - 5 .

Подставим эти значения в уравнение С z + D = 0 и получим требуемое уравнение плоскости, перпендикулярной к прямой O z и проходящей через точку М 1 (3 , - 4 , 5) .

Оно будет иметь вид: z – 5 = 0 .

Ответ: z – 5 = 0 .

Пример 3

Составьте уравнение плоскости, проходящей через начало координат и перпендикулярной к прямой x - 3 = y + 1 - 7 = z + 5 2

Решение

Опираясь на условия задачи, можно утверждать, что за нормальный вектор n → заданной плоскости можно принять направляющий вектор заданной прямой. Таким, образом: n → = (- 3 , - 7 , 2) . Запишем уравнение плоскости, проходящей через точку О (0 , 0 , 0) и имеющей нормальный вектор n → = (- 3 , - 7 , 2) :

3 · (x - 0) - 7 · (y - 0) + 2 · (z - 0) = 0 ⇔ - 3 x - 7 y + 2 z = 0

Мы получили требуемое уравнение плоскости, проходящей через начало координат перпендикулярно к заданной прямой.

Ответ: - 3 x - 7 y + 2 z = 0

Пример 4

Задана прямоугольная система координат O x y z в трехмерном пространстве, в ней – две точки А (2 , - 1 , - 2) и B (3 , - 2 , 4) . Плоскость α проходит через точку A перпендикулярно прямой А В. Необходимо составить уравнение плоскости α в отрезках.

Решение

Плоскость α перпендикулярна к прямой А В, тогда вектор А В → будет нормальным вектором плоскости α . Координаты этого вектора определяются как разности соответствующих координат точек В (3 , - 2 , 4) и А (2 , - 1 , - 2) :

A B → = (3 - 2 , - 2 - (- 1) , 4 - (- 2)) ⇔ A B → = (1 , - 1 , 6)

Общее уравнение плоскости будет записано в следующем виде:

1 · x - 2 - 1 · y - (- 1 + 6 · (z - (- 2)) = 0 ⇔ x - y + 6 z + 9 = 0

Теперь составим искомое уравнение плоскости в отрезках:

x - y + 6 z + 9 = 0 ⇔ x - y + 6 z = - 9 ⇔ x - 9 + y 9 + z - 3 2 = 1

Ответ: x - 9 + y 9 + z - 3 2 = 1

Также нужно отметить, что встречаются задачи, требование которых – написать уравнение плоскости, проходящей через заданную точку и перпендикулярной к двум заданным плоскостям. В общем, решение этой задачи в том, чтобы составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой, т.к. две пересекающиеся плоскости задают прямую линию.

Пример 5

Задана прямоугольная система координат O x y z , в ней – точка М 1 (2 , 0 , - 5) . Заданы также уравнения двух плоскостей 3 x + 2 y + 1 = 0 и x + 2 z – 1 = 0 , которые пересекаются по прямой a . Необходимо составить уравнение плоскости, проходящей через точку М 1 перпендикулярно к прямой a .

Решение

Определим координаты направляющего вектора прямой a . Он перпендикулярен как нормальному вектору n 1 → (3 , 2 , 0) плоскости n → (1 , 0 , 2) , так и нормальному вектору 3 x + 2 y + 1 = 0 плоскости x + 2 z - 1 = 0 .

Тогда направляющим вектором α → прямой a возьмем векторное произведение векторов n 1 → и n 2 → :

a → = n 1 → × n 2 → = i → j → k → 3 2 0 1 0 2 = 4 · i → - 6 · j → - 2 · k → ⇒ a → = (4 , - 6 , - 2)

Таким образом, вектор n → = (4 , - 6 , - 2) будет нормальным вектором плоскости, перпендикулярной к прямой a . Запишем искомое уравнение плоскости:

4 · (x - 2) - 6 · (y - 0) - 2 · (z - (- 5)) = 0 ⇔ 4 x - 6 y - 2 z - 18 = 0 ⇔ ⇔ 2 x - 3 y - z - 9 = 0

Ответ: 2 x - 3 y - z - 9 = 0

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Рассмотрим точки М 1 (x 1 , y 1 , z 1), M 2 (x 2 , y 2 , z 2), M 3 (x 3 , y 3 , z 3) в общей декартовой системе координат.

Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М 1 , М 2 , М 3 необходимо, чтобы векторы были компланарны.

(
) = 0

Таким образом,

Уравнение плоскости, проходящей через три точки:

Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости.

Пусть заданы точки М 1 (x 1 ,y 1 ,z 1),M 2 (x 2 ,y 2 ,z 2) и вектор
.

Составим уравнение плоскости, проходящей через данные точки М 1 и М 2 и произвольную точку М(х, у, z) параллельно вектору .

Векторы
и вектор
должны быть компланарны, т.е.

(
) = 0

Уравнение плоскости:

Уравнение плоскости по одной точке и двум векторам,

коллинеарным плоскости.

Пусть заданы два вектора
и
, коллинеарные плоскости. Тогда для произвольной точки М(х, у,z), принадлежащей плоскости, векторы
должны быть компланарны.

Уравнение плоскости:

Уравнение плоскости по точке и вектору нормали .

Теорема. Если в пространстве задана точка М 0 0 , у 0 , z 0 ), то уравнение плоскости, проходящей через точку М 0 перпендикулярно вектору нормали (A , B , C ) имеет вид:

A (x x 0 ) + B (y y 0 ) + C (z z 0 ) = 0.

Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору
. Тогда скалярное произведение

= 0

Таким образом, получаем уравнение плоскости

Теорема доказана.

Уравнение плоскости в отрезках.

Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на (-D)

,

заменив
, получим уравнение плоскости в отрезках:

Числа a, b, c являются точками пересечения плоскости соответственно с осями х, у, z.

Уравнение плоскости в векторной форме.

где

- радиус- вектор текущей точки М(х, у, z),

Единичный вектор, имеющий направление, перпендикуляра, опущенного на плоскость из начала координат.

,  и  - углы, образованные этим вектором с осями х, у, z.

p – длина этого перпендикуляра.

В координатах это уравнение имеет вид:

xcos + ycos + zcos - p = 0.

Расстояние от точки до плоскости.

Расстояние от произвольной точки М 0 (х 0 , у 0 , z 0) до плоскости Ах+Ву+Сz+D=0 равно:

Пример. Найти уравнение плоскости, зная, что точка Р(4; -3; 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Таким образом, A = 4/13; B = -3/13; C = 12/13, воспользуемся формулой:

A(x – x 0 ) + B(y – y 0 ) + C(z – z 0 ) = 0.

Пример. Найти уравнение плоскости, проходящей через две точки P(2; 0; -1) и

Q(1; -1; 3) перпендикулярно плоскости 3х + 2у – z + 5 = 0.

Вектор нормали к плоскости 3х + 2у – z + 5 = 0
параллелен искомой плоскости.

Получаем:

Пример. Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и

В(3, 2, -1) перпендикулярно плоскости х + у + 2z – 3 = 0.

Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор
(1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали(1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 112 + 71 - 24 +D= 0;D= -21.

Итого, получаем уравнение плоскости: 11x - 7y – 2z – 21 = 0.

Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Находим координаты вектора нормали
= (4, -3, 12). Искомое уравнение плоскости имеет вид: 4x – 3y + 12z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р:

16 + 9 + 144 + D = 0

Итого, получаем искомое уравнение: 4x – 3y + 12z – 169 = 0

Пример. Даны координаты вершин пирамиды А 1 (1; 0; 3), A 2 (2; -1; 3), A 3 (2; 1; 1),

    Найти длину ребра А 1 А 2 .

    Найти угол между ребрами А 1 А 2 и А 1 А 4 .

    Найти угол между ребром А 1 А 4 и гранью А 1 А 2 А 3 .

Сначала найдем вектор нормали к грани А 1 А 2 А 3 как векторное произведение векторов
и
.

= (2-1; 1-0; 1-3) = (1; 1; -2);

Найдем угол между вектором нормали и вектором
.

-4 – 4 = -8.

Искомый угол  между вектором и плоскостью будет равен  = 90 0 - .

    Найти площадь грани А 1 А 2 А 3 .

    Найти объем пирамиды.

    Найти уравнение плоскости А 1 А 2 А 3 .

Воспользуемся формулой уравнения плоскости, проходящей через три точки.

2x + 2y + 2z – 8 = 0

x + y + z – 4 = 0;

При использовании компьютерной версии “Курса высшей математики ” можно запустить программу, которая решит рассмотренный выше пример для любых координат вершин пирамиды.

Для запуска программы дважды щелкните на значке:

В открывшемся окне программы введите координаты вершин пирамиды и, нажимитеEnter. Таким образом, поочередно могут быть получены все пункты решения.

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple ( Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

В рамках этого материала мы разберем, как найти уравнение плоскости, если мы знаем координаты трех различных ее точек, которые не лежат на одной прямой. Для этого нам понадобится вспомнить, что такое прямоугольная система координат в трехмерном пространстве. Для начала мы введем основной принцип данного уравнения и покажем, как именно использовать его при решении конкретных задач.

Yandex.RTB R-A-339285-1

Для начала нам необходимо вспомнить одну аксиому, которая звучит следующим образом:

Определение 1

Если три точки не совпадают друг с другом и не лежат на одной прямой, то в трехмерном пространстве через них проходит только одна плоскость.

Иными словами, если у нас есть три разных точки, координаты которых не совпадают и которые нельзя соединить прямой, то мы можем определить плоскость, проходящую через нее.

Допустим, у нас имеется прямоугольная система координат. Обозначим ее O x y z . В ней лежат три точки M с координатами M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) , которые нельзя соединить прямой линией. Исходя из этих условий, мы можем записать уравнение необходимой нам плоскости. Есть два подхода к решению этой задачи.

1. Первый подход использует общее уравнение плоскости. В буквенном виде оно записывается как A (x - x 1) + B (y - y 1) + C (z - z 1) = 0 . С его помощью можно задать в прямоугольной системе координат некую плоскость альфа, которая проходит через первую заданную точку M 1 (x 1 , y 1 , z 1) . У нас получается, что нормальный вектор плоскости α будет иметь координаты A , B , C .

Определение N

Зная координаты нормального вектора и координаты точки, через которую проходит плоскость, мы можем записать общее уравнение этой плоскости.

Из этого мы и будем исходить в дальнейшем.

Таким образом, согласно условиям задачи, мы имеем координаты искомой точки (даже трех), через которую проходит плоскость. Чтобы найти уравнение, нужно вычислить координаты ее нормального вектора. Обозначим его n → .

Вспомним правило: любой не равный нулю вектор данной плоскости является перпендикулярным нормальному вектору этой же плоскости. Тогда мы имеем, что n → будет перпендикулярным по отношению к векторам, составленным из исходных точек M 1 M 2 → и M 1 M 3 → . Тогда мы можем обозначить n → как векторное произведение вида M 1 M 2 → · M 1 M 3 → .

Поскольку M 1 M 2 → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) а M 1 M 3 → = x 3 - x 1 , y 3 - y 1 , z 3 - z 1 (доказательства этих равенств приведены в статье, посвященной вычислению координат вектора по координатам точек), тогда получается, что:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1

Если мы вычислим определитель, то получим необходимые нам координаты нормального вектора n → . Теперь мы можем записать нужное нам уравнение плоскости, проходящей через три заданные точки.

2. Второй подход нахождения уравнения, проходящей через M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) , основан на таком понятии, как компланарность векторов.

Если у нас есть множество точек M (x , y , z) , то в прямоугольной системе координат они определяют плоскость для заданных точек M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) только в том случае, когда векторы M 1 M   → = (x - x 1 , y - y 1 , z - z 1) , M 1 M 2   → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) и M 1 M 3   → = (x 3 - x 1 , y 3 - y 1 , z 3 - z 1) будут компланарными.

На схеме это будет выглядеть так:

Это будет означать, что смешанное произведение векторов M 1 M → , M 1 M 2 → , M 1 M 3 → будет равно нулю: M 1 M → · M 1 M 2 → · M 1 M 3 → = 0 , поскольку это является основным условием компланарности: M 1 M   → = (x - x 1 , y - y 1 , z - z 1) , M 1 M 2   → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) и M 1 M 3   → = (x 3 - x 1 , y 3 - y 1 , z 3 - z 1) .

Запишем полученное уравнение в координатной форме:

После того, как мы вычислим определитель, мы сможем получить нужное нам уравнение плоскости для трех не лежащих на одной прямой точек M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) .

От полученного в результате уравнения можно перейти к уравнению плоскости в отрезках или к нормальному уравнению плоскости, если этого требуют условия задачи.

В следующем пункте мы приведем примеры того, как указанные нами подходы реализуются на практике.

Примеры задач на составление уравнения плоскости, проходящих через 3 точки

Ранее мы выделили два подхода, с помощью которых можно найти искомое уравнение. Давайте посмотрим, как они применяются в решениях задач и когда следует выбирать каждый из них.

Пример 1

Есть три точки, не лежащие на одной прямой, с координатами M 1 (- 3 , 2 , - 1) , M 2 (- 1 , 2 , 4) , M 3 (3 , 3 , - 1) . Составьте уравнение плоскости, проходящей через них.

Решение

Используем поочередно оба способа.

1. Найдем координаты двух нужных нам векторов M 1 M 2 → , M 1 M 3 → :

M 1 M 2 → = - 1 - - 3 , 2 - 2 , 4 - - 1 ⇔ M 1 M 2 → = (2 , 0 , 5) M 1 M 3 → = 3 - - 3 , 3 - 2 , - 1 - - 1 ⇔ M 1 M 3 → = 6 , 1 , 0

Теперь вычислим их векторное произведение. Вычисления определителя расписывать при этом не будем:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → 2 0 5 6 1 0 = - 5 · i → + 30 · j → + 2 · k →

У нас получился нормальный вектор плоскости, которая проходит через три искомые точки: n → = (- 5 , 30 , 2) . Далее нам нужно взять одну из точек, например, M 1 (- 3 , 2 , - 1) , и записать уравнение для плоскости с вектором n → = (- 5 , 30 , 2) . Мы получим, что: - 5 · (x - (- 3)) + 30 · (y - 2) + 2 · (z - (- 1)) = 0 ⇔ - 5 x + 30 y + 2 z - 73 = 0

Это и есть нужное нам уравнение плоскости, которая проходит через три точки.

2. Используем другой подход. Запишем уравнение для плоскости с тремя точками M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) в следующем виде:

x - x 1 y - y 1 z - z 1 x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1 = 0

Сюда можно подставить данные из условия задачи. Поскольку x 1 = - 3 , y 1 = 2 , z 1 = - 1 , x 2 = - 1 , y 2 = 2 , z 2 = 4 , x 3 = 3 , y 3 = 3 , z 3 = - 1 , в итоге мы получим:

x - x 1 y - y 1 z - z 1 x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1 = x - (- 3) y - 2 z - (- 1) - 1 - (- 3) 2 - 2 4 - (- 1) 3 - (- 3) 3 - 2 - 1 - (- 1) = = x + 3 y - 2 z + 1 2 0 5 6 1 0 = - 5 x + 30 y + 2 z - 73

Мы получили нужное нам уравнение.

Ответ: - 5 x + 30 y + 2 z - 73 .

А как быть, если заданные точки все же лежат на одной прямой и нам нужно составить уравнение плоскости для них? Здесь сразу надо сказать, что это условие будет не совсем корректным. Через такие точки может проходить бесконечно много плоскостей, поэтому вычислить один-единственный ответ невозможно. Рассмотрим такую задачу, чтобы доказать некорректность подобной постановки вопроса.

Пример 2

У нас есть прямоугольная система координат в трехмерном пространстве, в которой размещены три точки с координатами M 1 (5 , - 8 , - 2) , M 2 (1 , - 2 , 0) , M 3 (- 1 , 1 , 1) . Необходимо составить уравнение плоскости, проходящей через нее.

Решение

Используем первый способ и начнем с вычисления координат двух векторов M 1 M 2 → и M 1 M 3 → . Подсчитаем их координаты: M 1 M 2 → = (- 4 , 6 , 2) , M 1 M 3 → = - 6 , 9 , 3 .

Векторное произведение будет равно:

M 1 M 2 → × M 1 M 3 → = i → j → k → - 4 6 2 - 6 9 3 = 0 · i ⇀ + 0 · j → + 0 · k → = 0 →

Поскольку M 1 M 2 → × M 1 M 3 → = 0 → , то наши векторы будут коллинеарными (перечитайте статью о них, если забыли определение этого понятия). Таким образом, исходные точки M 1 (5 , - 8 , - 2) , M 2 (1 , - 2 , 0) , M 3 (- 1 , 1 , 1) находятся на одной прямой, и наша задача имеет бесконечно много вариантов ответа.

Если мы используем второй способ, у нас получится:

x - x 1 y - y 1 z - z 1 x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1 = 0 ⇔ x - 5 y - (- 8) z - (- 2) 1 - 5 - 2 - (- 8) 0 - (- 2) - 1 - 5 1 - (- 8) 1 - (- 2) = 0 ⇔ ⇔ x - 5 y + 8 z + 2 - 4 6 2 - 6 9 3 = 0 ⇔ 0 ≡ 0

Из получившегося равенства также следует, что заданные точки M 1 (5 , - 8 , - 2) , M 2 (1 , - 2 , 0) , M 3 (- 1 , 1 , 1) находятся на одной прямой.

Если вы хотите найти хоть один ответ этой задачи из бесконечного множества ее вариантов, то нужно выполнить следующие шаги:

1. Записать уравнение прямой М 1 М 2 , М 1 М 3 или М 2 М 3 (при необходимости посмотрите материал об этом действии).

2. Взять точку M 4 (x 4 , y 4 , z 4) , которая не лежит на прямой М 1 М 2 .

3. Записать уравнение плоскости, которая проходит через три различных точки М 1 , М 2 и M 4 , не лежащих на одной прямой.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Пусть нужно найти уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой. Обозначая их радиусы-векторы через а текущий радиус-вектор через , мы легко получим искомое уравнение в векторной форме. В самом деле, векторы , должны быть компланарны (они все лежат в искомой плоскости). Следовательно, векторно-скалярное произведение этих векторов должно быть равно нулю:

Это и есть уравнение плоскости, проходящей через три данные точки , в векторной форме.

Переходя к координатам, получим уравнение в координатах:

Если бы три данные точки лежали на одной прямой, то векторы были бы коллинеарны. Поэтому соответствующие элементы двух последних строк определителя, стоящего в уравнении (18), были бы пропорциональны и определитель тождественно равен нулю. Следовательно, уравнение (18) обращалось бы в тождество при любых значениях х, у и z. Геометрически это значит, что через каждую точку пространства проходит плоскость, в которой лежат и три данные точки.

Замечание 1. Эту же задачу можно решить, не пользуясь векторами.

Обозначая координаты трех данных точек соответственно чрез напишем уравнение любой плоскости, проходящей через первую точку:

Чтобы получить уравнение искомой плоскости, нужно потребовать, чтобы уравнение (17) удовлетворялось координатами двух других точек:

Из уравнений (19) нужно определить отношения двух коэффициентов к третьему и внести найденные значения в уравнение (17).

Пример 1. Составить уравнение плоскости, проходящей через точки .

Уравнение плоскости, проходящей через первую из данных точек, будет:

Условия прохождения плоскости (17) через две другие точки и первую точку суть:

Складывая второе уравнение с первым, найдем:

Подставляя во второе уравнение, получим:

Подставляя в уравнение (17) вместо А, В, С соответственно 1, 5, -4 (числа, им пропорциональные), получим:

Пример 2. Составить уравнение плоскости, проходящей через точки (0, 0, 0), (1, 1, 1), (2, 2, 2).

Уравнение любой плоскости, проходящей через точку (0, 0, 0), будет]

Условия прохождения этой плоскости, через точки (1, 1, 1) и (2, 2, 2) суть:

Сокращая второе уравнение на 2, видим, что для определения двух неизвестных отношении имеет одно уравнение с

Отсюда получим . Подставляя теперь в уравнение плоскости вместо его значение, найдем:

Это и есть уравнение искомой плоскости; оно зависит от произвольных

количеств В, С (а именно, от отношения т. е. имеется бесчисленное множество плоскостей, проходящих через три данные точки (три данные точки лежат на одной прямой линии).

Замечание 2. Задача о проведении плоскости через три данные точки, не лежащие на одной прямой, легко решается в общем виде, если воспользоваться определителями. Действительно, так как в уравнениях (17) и (19) коэффициенты А, В, С не могут быть одновременно равны нулю, то, рассматривая эти уравнения как однородную систему с тремя неизвестными А, В, С, пишем необходимое и достаточное условие существования решения этой системы, отличного от нулевого (ч. 1, гл. VI, § 6):

Разложив этот определитель по элементам первой строки, получим уравнение первой степени относительно текущих координат , которому будут удовлетворять, в частности, координаты трех данных точек.

В этом последнем можно также убедиться и непосредственно, если подставить в уравнение, записанное с помощью определителя, координаты любой из данных точек вместо . В левой части получается определитель, у которого либо элементы первой строки нули, либо имеются две одинаковые строки. Таким образом, составленное уравнение представляет плоскость, проходящую через три данные точки.