В частном доме

Складирование лестничных маршей чертеж. Складирование материальных элементов

Складирование лестничных маршей чертеж. Складирование материальных элементов

Закон Хаббла Кажущаяся скорость удаления галактики от нас прямо пропорциональна расстоянию до нее. Вернувшись с первой мировой войны, Эдвин Хаббл устроился на работу в высокогорную астрономическую обсерваторию Маунт-Вилсон в Южной Калифорнии, которая в те годы была лучшей в мире по оснащенности. Используя ее новейший телескоп-рефлектор с диаметром главного зеркала 2,5 м, он провел серию любопытных измерений, навсегда перевернувших наши представления о Вселенной. Вообще-то, Хаббл намеревался исследовать одну застаревшую астрономическую проблему - природу туманностей. Эти загадочные объекты, начиная с XVIII века, волновали ученых таинственностью своего происхождения. К XX веку некоторые из этих туманностей разродились звездами и рассосались, однако большинство облаков так и остались туманными - и по своей природе, в частности. Тут ученые и задались вопросом: а где, собственно, эти туманные образования находятся - в нашей Галактике? или часть из них представляют собой иные «островки Вселенной», если выражаться изощренным языком той эпохи? До ввода в действие телескопа на горе Уилсон в 1917 году этот вопрос стоял чисто теоретически, поскольку для измерения расстояний до этих туманностей технических средств не имелось. Начал свои исследования Хаббл с самой, пожалуй, популярной с незапамятных времен туманности Андромеды. К 1923 году ему удалось рассмотреть, что окраины этой туманности представляют собой скопления отдельных звезд, некоторые из которых принадлежат к классу переменных цефеид (согласно астрономической классификации). Наблюдая за переменной цефеидой на протяжении достаточно длительного времени, астрономы измеряют период изменения ее светимости, а затем по зависимости период- светимость определяют и количество испускаемого ею света. Чтобы лучше понять, в чем заключается следующий шаг, приведем такую аналогию. Представьте, что вы стоите в беспросветно темной ночи, и тут вдалеке кто-то включает электрическую лампу. Поскольку ничего, кроме этой далекой лампочки, вы вокруг себя не видите, определить расстояние до нее вам практически невозможно. Может, она очень яркая и светится далеко, а может, тусклая и светится неподалеку. Как это определить? А теперь представьте, что вам каким-то образом удалось узнать мощность лампы - скажем, 60, 100 или 150 ватт. Задача сразу упрощается, поскольку по видимой светимости вы уже сможете примерно оценить геометрическое расстояние до нее. Так вот: измеряя период изменения светимости цефеиды, астроном находится примерно в той же ситуации, как и вы, рассчитывая расстояние до удаленной лампы, зная ее светосилу (мощность излучения). Первое, что сделал Хаббл, - рассчитал расстояние до цефеид на окраинах туманности Андромеды, а значит, и до самой туманности: 900 000 световых лет (более точно рассчитанное на сегодняшний день расстояние до галактики Андромеды, как ее теперь называют, составляет 2,3 миллиона световых лет. - Прим. автора) - то есть туманность находится далеко за пределами Млечного Пути - нашей галактики. Пронаблюдав эту и другие туманности, Хаббл пришел к базовому выводу о структуре Вселенной: она состоит из набора огромных звездных скоплений - галактик. Именно они и представляются нам в небе далекими туманными «облаками», поскольку отдельных звезд на столь огромном удалении мы рассмотреть попросту не можем. Одного этого открытия, вообще- то, хватило бы Хабблу для всемирного признания его заслуг перед наукой. Ученый, однако, этим не ограничился и подметил еще один важный аспект в полученных данных, который астрономы наблюдали и прежде, но интерпретировать затруднялись. А именно: наблюдаемая длина спектральных световых волн, излучаемых атомами удаленных галактик, несколько ниже длины спектральных волн, излучаемых теми же атомами в условиях земных лабораторий. То есть в спектре излучения соседних галактик квант света, излучаемый атомом при скачке электрона с орбиты на орбиту, смещен по частоте в направлении красной части спектра по сравнению с аналогичным квантом, испущенным таким же атомом на Земле. Хаббл взял на себя смелость интерпретировать это наблюдение как проявление эффекта Доплера, а это означает, что все наблюдаемые соседние галактики удаляются от Земли, поскольку практически у всех галактических объектов за пределами Млечного Пути наблюдается именно красное спектральное смещение, пропорциональное скорости их удаления. Самое главное, Хабблу удалось сопоставить результаты своих измерений расстояний до соседних галактик (по наблюдениям переменных цефеид) с измерениями скоростей их удаления (по красному смещению). И Хаббл выяснил, что чем дальше от нас находится галактика, тем с большей скоростью она удаляется. Это самое явление центростремительного «разбегания» видимой Вселенной с нарастающей скоростью по мере удаления от локальной точки наблюдения и получило название закона Хаббла. Математически он формулируется очень просто: v = Hr где v - скорость удаления галактики от нас, r - расстояние до нее, а H - так называемая постоянная Хаббла. Последняя определяется экспериментально, и на сегодняшний день оценивается как равная примерно 70 км/(с·Мпк) (километров в секунду на мегапарсек; 1 Мпк приблизительно равен 3,3 миллионам световых лет). А это означает, что галактика, удаленная от нас на расстояние 10 мегапарсек, убегает от нас со скоростью 700 км/с, галактика, удаленная на 100 Мпк, - со скоростью 7000 км/с, и т. д. И, хотя изначально Хаббл пришел к этому закону по результатом наблюдения всего нескольких ближайших к нам галактик, ни одна из множества открытых с тех пор новых, всё более удаленных от Млечного Пути галактик видимой Вселенной из-под действия этого закона не выпадает. Итак, главное и - казалось бы - невероятное следствие закона Хаббла: Вселенная расширяется! Мне этот образ нагляднее всего представляется так: галактики - изюмины в быстро всходящем дрожжевом тесте. Представьте себя микроскопическим существом на одной из изюмин, тесто для которого представляется прозрачным: и что вы увидите? Поскольку тесто поднимается, все прочие изюмины от вас удаляются, причем чем дальше изюмина, тем быстрее она удаляется от вас (поскольку между вами и далекими изюминами больше расширяющегося теста, чем между вами и ближайшими изюминами). В то же время, вам будет представляться, что это именно вы находитесь в самом центре расширяющегося вселенского теста, и в этом нет ничего странного - если бы вы оказались на другой изюмине, вам всё представлялось бы в точности так же. Так и галактики разбегаются по одной простой причине: расширяется сама ткань мирового пространства. Все наблюдатели (и мы с вами не исключение) считают себя находящимися в центре Вселенной. Лучше всего это сформулировал мыслитель XV века Николай Кузанский: «Любая точка есть центр безграничной Вселенной».

В относительной близости от нашей галактики Млечный Путь астрономы обнаружили несколько мелких галактик, заставивших их задуматься об известных им законах тяготения. Эти галактики образуют целое кольцо диаметром 10 млн световых лет и разлетаются от нас с такой высокой скоростью, что ученые не могут найти внятного объяснения столь быстрому разлету.

Находя аналогии между обнаруженной структурой и Большим взрывом, ученые уверены, что сформирована она была и получила скорость за счет сближения Млечного Пути и галактики Андромеды в далеком прошлом.

Проблема в одном: ученые не могут понять, почему при таком разлете эти мелкие галактики получили такую высокую скорость.

«Если теория гравитации Эйнштейна верна, наша галактика никогда не могла бы подойти столь близко к Андромеде, чтобы выбросить что-то с подобной скоростью», — пояснил Чжао Хуншэн из Сент-Эндрюсского университета (Шотландия), автор исследования, опубликованного в журнале MNRAS .

Чжао с коллегами изучают движения этого кольца мелких галактик, которые вместе с Млечным Путем и галактикой Андромеды входят в состав так называемой Местной группы, включающей минимум 54 галактики. Нашу спиральную галактику Млечный Путь и соседнюю галактику Андромеды разделяют 2,5 млн световых лет, однако в отличие от большинства известных галактик наша соседка не удаляется от нас, а летит навстречу со скоростью более 400 км/c.

Используя в расчетах Стандартную космологическую модель (так называемая ΛCDM-модель), ученые предполагают, что через 3,75 млрд лет две галактики должны столкнуться, а еще через несколько миллиардов лет это столкновение приведет к сильному разрушению обеих галактик и образованию новой. Но если эти галактики сближаются сейчас, то могли ли они сближаться в прошлом?

В 2013 году команда Чжао предположила , что 7-11 млрд лет назад Млечный Путь и Андромеда уже пролетали мимо друг друга на весьма близком расстоянии.

Это породило в них «цунамиподобные» волны, благодаря которым наружу были выброшены более мелкие галактики, которые и наблюдаются сегодня разлетающимися от нас.

Подобные сближения двух галактик известны астрономам (на иллюстрации к заметке — сближение галактик NGC 5426 and NGC 5427). Однако разлетаются они слишком быстро. «Высокие галактоцентрические радиальные скорости некоторых галактик Местной группы были вызваны действовавшими на них силами, которые наша модель не учитывает», — заключили они в статье. Более того, в общем прошлом Млечного Пути, Андромеды и этих разлетающихся галактик сомневаться не приходится хотя бы потому, что находятся они примерно в одной плоскости, аргументируют ученые.

«Кольцеобразное распределение — очень специфическое. Эти небольшие галактики выглядят как капли дождя, разлетающиеся от вращающегося зонтика, — пояснил соавтор исследования Индранил Баник.

— По моим оценкам, шанс, что случайно распределенные галактики выстроятся подобным образом, составляет 1/640.

Я проследил их происхождение до динамического события, которое произошло, когда Вселенная была в два раза моложе».

ΛCDM-модель — , учитывающая наличие во Вселенной обычной (барионной материи, темной энергии, описываемой в уравнениях Эйнштейна в виде постоянной Λ) и холодной темной материи.

Проблема описанного сценария разлета мелких галактик не только в гипотетическом нарушении модели ΛCDM. Расчеты показывают, что столь тесное сближение Млечного Пути и Андромеды в прошлом должно было привести к их слиянию, чего, как известно, не произошло.

«Столь высокая скорость (разлета галактик) требует в 60 раз большей массы звезд, чем мы наблюдаем сегодня в Млечном Пути и Андромеде. Однако трение, возникшее бы между массивным гало из темной материи в центре галактик и этими звездами, привело бы к их слиянию, а не к разлету на 2,5 млн световых лет, который произошел», — пояснил Баник.

«Наука развивается через вызовы, — считает Марсел Павловски, астрофизик из Калифорнийского университета в Ирвайне. — Это гигантское кольцо создает серьезный вызов стандартной парадигме».

Следующая ступень организации материи во Вселенной − галактики. Типичным примером является наша галактика − Млечный путь. Она содержит около 10 11 звезд и имеет форму тонкого диска с утолщением в центре.
На рис. 39 схематически показано строение нашей галактики Млечный путь и указано положение Солнца в одном из спиральных рукавов галактики.

Рис. 39. Строение галактики Млечный путь.

На рис. 40 показана проекция на плоскость 16 ближайших соседей нашей галактики.


Рис. 40. 16 ближайших соседей нашей Галактики, спроецированных на плоскость. БМО и ММО − Большое и Малое Магелланово Облако

Звезды в галактиках распределены неравномерно.
Размеры галактик изменяются от 15 до 800 тысяч световых лет. Масса галактик варьируется от 10 7 до 10 12 масс Солнца. В галактиках сосредоточено основное число звезд и холодного газа. Звезды в галактиках удерживаются суммарным гравитационным полем галактики и темной материи.
Наша галактика Млечный путь представляет собой типичную спиральную систему. Звезды в галактике наряду с общим вращением галактик имеют также собственные скорости относительно галактики. Орбитальная скорость Солнца в нашей галактике составляет 230 км/с. Собственная скорость Солнца относительно галактики составляет
20 км/с.

Открытие мира галактик принадлежит Э. Хабблу. В 1923–1924 гг., наблюдая изменения светимости цефеид, находящихся в отдельных туманностях, он показал, что обнаруженные им туманности являются галактиками, расположенными за пределами нашей галактики − Млечного пути. В частности он обнаружил, что Туманность Андромеды является другой звездной системой − галактикой, не входящей в состав нашей галактики Млечный путь. Туманность Андромеды – спиральная галактика, находящаяся на расстоянии 520 кпк. Поперечный размер туманности Андромеды составляет 50 кпк.
Изучая лучевые скорости отдельных галактик, Хаббл сделал выдающееся открытие:

H = 73.8 ± 2.4 км·сек -1 ·мегапарсек -1 – параметр Хаббла.


Рис. 41. Оригинальный график Хаббла из работы 1929 г.


Рис. 42. Скорость удаления галактик в зависимости от расстояния до Земли.

На рис. 42 в начале координат квадратом показана область скоростей галактик и расстояний до них, на основе которой Э. Хаббл вывел соотношение (9).
Открытие Хаббла имело предысторию. В 1914 г. астроном В. Слайфер показал, что туманность Андромеды и ещё несколько туманностей движутся относительно Солнечной системы со скоростями около 1000 км/ч. Э. Хабблу, работавшему на крупнейшем в мире телескопе с главным зеркалом диаметром 2,5 м обсерватории Маунт Вилсон в Калифорнии (США), удалось впервые разрешить отдельные звезды в туманности Андромеды. Среди этих звезд были звезды-цефеиды, для которых известна зависимость между периодом изменения светимости и светимостью.
Зная светимость звезды и скорость звезды, Э. Хаббл получил зависимость скорости удаления звезд от Солнечной системы в зависимости от расстояния. На рис. 41 приведен график из оригинальной работы Э. Хаббла.


Рис. 43. Космический телескоп Хаббл

Эффект Доплера

Эффект Доплера − изменение частоты, регистрируемой приемником при движении источника или приемника.

Если движущийся источник излучает свет, имеющий частоту ω 0 , то частота света, регистрируемая приемником, определяется соотношением

с − скорость света в вакууме, v − скорость движения источника излучения относительно приемника излучения, θ − угол между направлением на источник и вектором скорости в системе отсчета приемника. θ = 0 соответствует радиальному удалению источника от приемника, θ = π соответствует радиальному приближению источника к приемнику.

Лучевую скорость движения небесных объектов − звезд, галактик − определяют, измеряя изменение частоты спектральных линий. При удалении источника излучения от наблюдателя происходит смещение длин волн в сторону более длинных длин волн (красное смещение). При приближении источника излучения к наблюдателю происходит смещение длин волн в сторону более коротких длин волн (синее смещение). По увеличению ширины распределения спектральной линии можно определить температуру излучающего объекта.
Хаббл разделил галактики по их внешнему виду на три больших класса:

    эллиптические (E),

    спиральные (S),

    иррегулярные (Ir).


Рис. 44. Типы галактик (спиральная, эллиптическая, иррегулярная).

Характерной чертой спиральных галактик являются спиральные ветви, простирающиеся от центра по всему звездному диску.
Эллиптические галактики представляют собой бесструктурные системы эллиптической формы.
Иррегулярные галактики выделяются внешне хаотической, клочковатой структурой и не имеют какой-то определенной формы.
Такая классификация галактик отражает не только их внешние формы, но и свойства входящих в них звезд.
Эллиптические галактики состоят преимущест­венно из старых звезд. В иррегулярных галактиках основной вклад в излучение дают звезды моложе Солнца. В спиральных галактиках обнаруживаются звезды всех возрастов. Таким образом, различие во внешнем виде галактик определяется характером их эволюции. В эллиптических галактиках звездообразование практически прекратилось миллиарды лет назад. В спиральных галактиках образование звезд продолжается. В иррегулярных галактиках звездообразование происходит так же интенсивно, как и миллиарды лет назад. Почти все звезды сосредоточенны в широком диске, основную массу которого составляет межзвездный газ.
В таблице 19 приведены относительное сравнение этих трех типов галактик и сравнение их свойств на основе анализа Э.Хаббла.

Таблица 19

Основные типы галактик и их свойства (по Э. Хабблу)

Спиральные

Эллиптические

Иррегулярные

Процентное соотношение во Вселенной

Форма и структурные свойства

Плоский диск звезд и газа со спиральными рукавами, утолщающимися к центру. Ядро из более старых звезд и примерно сферическое гало (межзвездный газ, немного звезд и магнитные поля)

Вы сидите, стоите или лежите, читая эту статью, и не ощущаете, что Земля вращается вокруг своей оси с бешеной скоростью - примерно 1 700 км/ч на экваторе. Однако скорость вращения не кажется такой уж быстрой, если перевести ее в км/с. Получится 0,5 км/с - едва заметная вспышка на радаре, в сравнении с другими окружающими нас скоростями.

Так же, как и другие планеты Солнечной системы, Земля вращается вокруг Солнца. И чтобы удерживаться на своей орбите, она двигается со скоростью 30 км/с. Венера и Меркурий, находящиеся ближе к Солнцу, двигаются быстрее, Марс, орбита которого проходит за орбитой Земли, движется намного медленнее нее.

Но даже Солнце не стоит на одном месте. Наша галактика Млечный Путь - огромная, массивная и тоже подвижная! Все звезды, планеты, газовые облака, частицы пыли, черные дыры, темная материя - все это движется относительно общего центра масс.

По предположениям ученых, Солнце находится на расстоянии 25 000 световых лет от центра нашей галактики и двигается по эллиптической орбите, совершая полный оборот каждые 220–250 млн лет. Получается, что скорость Солнца - около 200–220 км/с, что в сотни раз выше скорости движения Земли вокруг оси и в десятки раз выше скорости ее движения вокруг Солнца. Вот так выглядит движение нашей Солнечной системы.

Стационарна ли галактика? Снова нет. Гигантские космические объекты обладают большой массой, а следовательно, создают сильные гравитационные поля. Дайте Вселенной немного времени (а оно у нас было - примерно 13,8 миллиардов лет), и все начнет двигаться в направлении наибольшего притяжения. Вот почему Вселенная не однородна, а представляет собой галактики и группы галактик.

Что это означает для нас?

Это означает, что Млечный Путь тянут к себе другие галактики и группы галактик, расположенные поблизости. Это означает, что доминируют в этом процессе массивные объекты. И это означает, что не только наша галактика, но и все окружающие испытывают влияние этих «тягачей». Мы все ближе подходим к пониманию того, что происходит с нами в космическом пространстве, но нам все еще не хватает фактов, например:

  • каковы были начальные условия, при которых зародилась Вселенная;
  • как различные массы в галактике двигаются и изменяются со временем;
  • как образовывался Млечный Путь и окружающие галактики и скопления;
  • и как это происходит сейчас.

Однако есть трюк, который поможет нам разобраться.

Вселенную наполняет реликтовое излучение с температурой 2,725 К, которое сохранилось со времен Большого Взрыва. Кое-где есть крошечные отклонения - около 100 мкК, но общий температурный фон постоянен.

Это происходит потому, что Вселенная образовалась в результате Большого Взрыва 13,8 миллиардов лет назад и до сих пор расширяется и охлаждается.

Через 380 000 лет после Большого Взрыва Вселенная охладилась до такой температуры, что стало возможным образование атомов водорода. До этого фотоны постоянно взаимодействовали с остальными частицами плазмы: сталкивались с ними и обменивались энергией. По мере остывания Вселенной заряженных частиц стало меньше, а пространства между ними - больше. Фотоны смогли свободно перемещаться в пространстве. Реликтовое излучение - это фотоны, которые были излучены плазмой в сторону будущего расположения Земли, но избежали рассеяния, так как рекомбинация уже началась. Они достигают Землю сквозь пространство Вселенной, которая продолжает расширяться.

Вы сами можете «увидеть» это излучение. Помехи, которые возникают на пустом канале телевизора, если вы используете простую антенну, похожую на заячьи уши, на 1% вызваны реликтовым излучением.

И все-таки температура реликтового фона не одинакова во всех направлениях. По результатам исследований миссии Planck, температура несколько различается в противоположных полушариях небесной сферы: она немного выше на участках неба южнее эклиптики - около 2,728 K, и ниже в другой половине - около 2,722 K.


Карта микроволнового фона, сделанная при помощи телескопа Planck.

Эта разница почти в 100 раз больше остальных наблюдаемых колебаний температуры реликтового фона, и это вводит в заблуждение. Почему так происходит? Ответ очевиден - эта разница происходит не из-за флуктуаций реликтового излучения, она появляется, потому что есть движение!

Когда вы приближаетесь к источнику света или он приближается к вам, спектральные линии в спектре источника смещаются в сторону коротких волн (фиолетовое смещение), когда отдаляетесь от него или он от вас - спектральные линии смещаются в сторону длинных волн (красное смещение).

Реликтовое излучение не может быть более или менее энергичным, значит, мы движемся сквозь пространство. Эффект Доплера помогает определить, что наша Солнечная система движется относительно реликтового излучения со скоростью 368 ± 2 км/с, а местная группа галактик, включающая Млечный Путь, галактику Андромеды и галактику Треугольника, движется со скоростью 627 ± 22 км/с относительно реликтового излучения. Это так называемые пекулярные скорости галактик, которые составляют несколько сотен км/с. Помимо них существуют еще космологические скорости, обусловленные расширением Вселенной и рассчитываемые по закону Хаббла.

Благодаря остаточному излучению от Большого Взрыва мы можем наблюдать, что во Вселенной постоянно все движется и изменяется. И наша галактика - лишь часть этого процесса.