В частном доме

Селекции организмов. Методы селекции растений

Селекции организмов. Методы селекции растений

Селекция - отбор и создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами.

Породы животных, сорта растений, штаммы микроорганизмов - это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами. Теоретической основой селекции является генетика.

Основные методы селекции

Отбор

В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательным и методическим. Бессознательный отбор заключается в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенную породу или сорт. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами. В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор, который повышает приспособляемость организмов к условиям окружающей среды.

Сравнительная характеристика естественного и искусственного отбора
Показатели Естественный отбор Искусственный отбор
Исходный материал для отбора Индивидуальные признаки организмов
Отбирающий фактор Условия среды (живая и неживая природа) Человек
Путь благоприятных изменений Остаются, накапливаются, передаются по наследству Отбираются, становятся производительными
Путь неблагоприятных изменений Уничтожаются в борьбе за существание Отбираются, бракуются, уничтожаются
Направленность действия Отбор признаков, полезных особи, популяции, виду Отбор признаков, полезных человеку
Результат отбора Новые виды Новые сорта растений, породы животных, штаммы микроорганизмов
Формы отбора Движущий, стабилизирующий, дизруптивный Массовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Массовый отбор - выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства.
Индивидуальный отбор - выделение отдельных особей с желательными признаками и получение от них потомства.

Массовый отбор чаще применяют в селекции растений, а индивидуальный - в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдалённую) гибридизацию.

Внутривидовая гибридизация - скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведёт к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, но с другой - ведёт к снижению жизнеспособности, продуктивности и вырождению. Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрёстное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом . Основная причина эффекта гетерозиса - отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдалённая) гибридизация - скрещивание разных видов.

Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале - гибрид пшеницы и ржи, мул - гибрид кобылы с ослом, лошак - гибрид коня с ослицей). Обычно отдалённые гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдалённых гибридов растений удаётся с помощью полиплоидии. Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия

Полиплоидия - увеличение числа хромосомных наборов.

Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины: удвоение хромосом в неделящихся клетках, слияние соматических клеток или их ядер, нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом. Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Индуцированный мутагенез

В естественных условиях частота возникновения мутаций сравнительно невелика. Поэтому в селекции используется индуцированный (искусственно вызванный) мутагенез - воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

Клеточная и генная инженерия

Биотехнология - методы и приёмы получения полезных для человека продуктов и явлений с помощью живых организмов (бактерий, дрожжей и др.). Биотехнология открывает новые возможности для селекции. Её основные направления: микробиологический синтез, генная и клеточная инженерия.
Микробиологический синтез - использование микроорганизмов для получения белков, ферментов, органических кислот, лекарственных препаратов и других веществ. Благодаря селекции удалось вывести микроорганизмы, которые вырабатывают нужные человеку вещества в количествах, в десятки, сотни и тысячи раз превышающих потребности самих микроорганизмов. С помощью микроорганизмов получают лизин (аминокислоту, не образующуюся в организме животных; её добавляют в растительную пищу), органические кислоты (уксусную, лимонную, молочную и др.), витамины, антибиотики и т. д.
Клеточная инженерия - выращивание клеток вне организма на специальных питательных средах, где они растут и размножаются, образуя культуру ткани. Из клеток животных нельзя вырастить организм, а из растительных клеток можно. Так получают и размножают ценные сорта растений. Клеточная инженерия позволяет проводить гибридизацию (слияние) как половых, так и соматических клеток. Гибридизация половых клеток позволяет проводить оплодотворение «в пробирке» и имплантацию оплодотворённой яйцеклетки в материнский организм. Гибридизация соматических клеток делает возможным создание новых сортов растений, обладающих полезными признаками и устойчивых к неблагоприятным факторам внешней среды.
Генная инженерия - искусственная перестройка генома. Позволяет встраивать в геном организма одного вида гены другого вида. Так, введя в генотип кишечной палочки соответствующий ген человека, получают гормон инсулин. В настоящее время человечество вступило в эпоху конструирования генотипов клеток.



Селекция растений, животных и микроорганизмов

Селекция растений Для селекционера очень важно знать свойства исходного материала, используемого в селекции. В этом плане очень важны два достижения отечественного селекционера Н. И. Вавилова: закон гомологических рядов в наследственной изменчивости и учение о центрах происхождения культурных растений.
Закон гомологических рядов в наследственной изменчивости: виды и роды, генетически близкие (связанные друг с другом единством происхождения), характеризуются сходными рядами в наследственной изменчивости. Так, например, у мягкой и твёрдой пшеницы и ячменя существуют остистые, короткоостые и безостые колосья. Зная наследственные изменения у одного вида, можно предвидеть нахождение сходных изменений у родственных видов и родов, что используется в селекции. Чем ближе между собой виды и роды, тем больше сходство в изменчивости их признаков. Н. И. Вавиловым закон был сформулирован применительно к растениям, а позднее подтверждён для животных и микроорганизмов.
В селекции растений наиболее широко используются такие методы, как массовый отбор, внутривидовая гибридизация, отдалённая гибридизация, полиплоидия.
Большой вклад в селекцию плодовых растений внёс отечественный селекционер И. В. Мичурин. На основе методов межсортовой и межвидовой гибридизации, отбора и воздействия условиями среды им были созданы многие сорта плодовых культур. Благодаря его работам многие южные сорта плодовых культур удалось распространить в средней полосе нашей страны.
Многие сорта культурных растений являются полиплоидными. Таковы некоторые сорта пшеницы, ржи, клевера, картофеля, свёклы и т. д. Сочетание отдалённой гибридизации с последующим получением полиплоидных форм позволило преодолеть бесплодие отдалённых гибридов. В результате многолетних работ Н. В. Цицина и его сотрудников были получены гибриды пырея и пшеницы, пшеницы и ржи (тритикале).
К наиболее важным достижениям селекции растений следует отнести создание большого количества высокопродуктивных сортов сельскохозяйственных растений.

Селекция животных

Как и культурные растения, домашние животные имеют диких предков. Процесс превращения диких животных в домашних называют одомашниванием (доместикацией) . Почти все домашние животные относятся к высшим позвоночным животным - птицам и млекопитающим.
В селекции животных наиболее широко используются такие методы, как индивидуальный отбор, внутривидовая гибридизация (родственное и неродственное скрещивание) и отдалённая (межвидовая) гибридизация .
Использование индивидуального отбора связано с половым размножением животных, когда получить сразу много потомков затруднительно. В связи с этим селекционеру важно определить наследственные признаки самцов, которые непосредственно у них не проявляются (жирномолочность, яйценоскость). Поэтому оценка животных может быть осуществлена по их родословной и по качеству их потомства. Имеет определённое значение также учёт экстерьера, то есть совокупности внешних признаков животного. Подбор производителей в животноводстве особенно актуален в связи с применением в настоящее время искусственного осеменения, позволяющего получить от одного организма значительное число потомков. Родственное скрещивание ведёт к гомозиготности и чаще всего сопровождается уменьшением устойчивости животных к неблагоприятным факторам среды, снижением плодовитости и т. п. Для устранения неблагоприятных последствий используют неродственное скрещивание разных линий и пород. На основе межпородного скрещивания были созданы высокопродуктивные сельскохозяйственные животные (в частности М. Ф. Иванов создал высокопродуктивную породу свиней Белая украинская, породу овец Асканийская рамбулье). Неродственное скрещивание сопровождается гетерозисом, сущность которого состоит в том, что гибриды первого поколения имеют повышенную жизнеспособность и усиленное развитие. Примером эффективного использования гетерозиса служит выведение гибридных цыплят (бройлерное производство).
Отдалённая (межвидовая) гибридизация животных приводит к бесплодию гибридов. Но благодаря проявлению гетерозиса широко используется человеком. Среди достижений по отдалённой гибридизации животных следует отметить мула - гибрида кобылы с ослом, бестера - гибрида белуги и стерляди, продуктивного гибрида карпа и карася, гибридов крупного рогатого скота с яками и зебу, отдалённых гибридов свиней и т. д.

Селекция микроорганизмов

К микроорганизмам относятся прокариоты - бактерии, сине-зелёные водоросли; эукариоты - грибы, микроскопические водоросли, простейшие.
В селекции микроорганизмов наиболее широко используются индуцированный мутагенез и последующий отбор групп генетически идентичных клеток (клонов), методы клеточной и генной инженерии .
Деятельность микроорганизмов используют в промышленности, сельском хозяйстве, медицине. Ферментативную активность микроорганизмов (грибов и бактерий) используют в производстве молочных продуктов, хлебопечении, виноделии и др. С помощью микроорганизмов получают аминокислоты, белки, ферменты, спирты, полисахариды, антибиотики, витамины, гормоны, интерферон и пр.
Выведены штаммы бактерий, способные разрушать нефтепродукты, что позволит использовать их для очистки окружающей среды. Ведутся работы по перенесению генетического материала азотфиксирующих микроорганизмов в геном почвенных бактерий, которые этими генами не обладают, а также непосредственно в геном растений. Это позволит избавиться от необходимости производить огромное количество азотных удобрений.

Что такое селекция

Термин «селекция» происходит от латинского слова selection отбор. Говоря о селекции, имеют в виду два значения:

1. процесс создания сортов растений, пород животных, штаммов полезных микроорганизмов;

2. науку, разрабатывающую теорию и методы создания сортов растений, пород животных, штаммов полезных микроорганизмов.

Теоретическая база селекции – генетика. Итогом селекционного процесса являются сорт, порода, штамм. Сорт растений, порода животных, штамм микроорганизмов – это совокупность организмов, созданных человеком в процессе селекции и имеющих определенные наследственные свойства. Все организмы, составляющие эту совокупность, имеют сходные наследственно закрепленные особенности, однотипную реакцию на условия среды. Как наука селекция окончательно оформилась благодаря трудам Ч. Дарвина. Он проанализировал огромный материал по одомашниванию животных и введению в культуру растений и на этой основе создал учение об искусственном отборе.

Селекция как процесс представляет собой специфическую форму эволюции, подчиняющуюся общим закономерностям. Главная отличительная особенность селекции как процесса состоит в том, что естественный отбор заменен на искусственный, проводимый человеком. Это и позволило Н.И. Вавилову дать емкое и образное определение селекции как процесса. Он писал, что селекция представляет собой «эволюцию, направляемую волей человека». Следовательно, селекция есть важнейший род практической деятельности человека, итогом которой и стали все имеющиеся сегодня сорта культурных растений, породы домашних животных и штаммы полезных микроорганизмов.

Одомашнивание как первый этап селекции

Культурные растения и домашние животные произошли от диких предков. Этот процесс называют одомашниванием или доместикацией . Важнейшей движущей и направляющей силой одомашнивания служит искусственный отбор. На самых ранних этапах одомашнивания, уходящих на тысячелетие в глубь истории, искусственный отбор был бессознательным. Первые попытки одомашнивания начинались, вероятно, со случайного выращивания диких животных. Только те из них, которые оказались способными контактировать с человеком и существовать в условиях неволи, выживали. Следовательно, на первых этапах одомашнивания особую роль могла сыграть селекция животных по поведению.

Отечественный генетик и эволюционист Д.К. Беляев предположил, а затем со своими коллегами экспериментально показал, что отбор по поведению был одним из важнейших факторов резкого повышения изменчивости на начальных этапах одомашнивания животных. Выяснилось, что селекция по поведению не ограничивается изменением самого поведения. Параллельно изменяются многие жизненно важные функции и процессы. Происходит перестройка такой строго стабилизированной системы организма, как репродуктивная. Например, у селекционируемых по поведению лисиц наблюдается переход от однократного размножения в году к двукратному, изменяется характер линьки, меняется фотопериодическая реакция, появляется большое количество морфологических признаков, очень похожих на те, что известны для других одомашненных животных (окраска тела, форма ушей, хвоста и т.д.). Громадное разнообразие, закономерно возникающее на первом этапе одомашнивания животных, послужило основой для создания пород животных, резко отличающихся как от диких предков, так и друг от друга.

Итак, на первых этапах введения в культуру растений и одомашнивания животных основным направлением селекции был отбор на способность размножаться в условиях искусственного содержания, т.е. под контролем человека. Среди животных оставлялись на потомство только те, которые могли размножаться в неволе и контактировать с человеком. Среди злаковых растений человек отбирал только те, которые были способны сохранить семена в колосе, т.е. не осыпались, как это характерно для «дикарей».

Центры происхождения культурных растений

Важнейший радел селекции как науки – учение об исходном материале. Фактически он разработан выдающимся советским генетиком и селекционером Н.И. Вавиловым и подробно изложен в его работе «Центры происхождения культурных растений». Любая селекционная программа начинается с подбора исходного материала. Решая проблему исходного материала, Н.И. Вавилов обследовал земной шар и выяснил территории с наибольшим генетическим разнообразием культивируемых растений и их диких сородичей. Вместе с сотрудниками Н.И. Вавилов осуществил в 20–30-е годы более 60 экспедиций по всем обитаемым континентам, кроме Австрии. Участники этих экспедиций – ботаники, генетики, селекционеры – были нестоящими охотниками за растениями. В результате огромной и самоотверженной работы они установили и отельные районы мира, обладающие наибольшим разнообразием генетических форм растений. Таких районов Н.И. Вавилов выделил восемь: 1. Индийский центр;

2. Южнокитайский;

3. Среднеазиатский;

4. Переднеазиатский;

5. Средиземноморский;

6. Абиссинский;

7. Центральноамериканский;

8. Южноамериканский.

Н.И. Вавилов считал, что районы, где обнаружено наибольшее генетическое разнообразие по тому или другому виду растений, и являются центрами их происхождения. У картофеля максимум генетического разнообразия связан с Южной Америкой, у кукурузы – с Мексикой, у риса – с Китаем и Японией, у хлебных злаков пшеницы, ржи – со Средней Азией и Закавказьем, у ячменя – с Африкой. Эти районы и были отмечены как центры происхождения перечисленных видов. То же самое было сделано и по многим другим видам.

Наряду с открытием мировых центров происхождения культурных растений Н.И. Вавилов и его экспедиции собрали самую крупную в мире коллекцию растений, которая была сосредоточена во вновь созданном в С.-Петербурге Всесоюзном институте растениеводства, ныне носящем имя Н.И. Вавилова. Эта коллекция в виде семенных образцов постоянно пополняется, воспроизводится на полях опытных станций института и насчитывает в настоящее время более 300 тыс. номеров. Она-то и является тем кладезем исходного материала, которым пользуются все генетики и селекционеры страны, работающие с растениями. Прежде чем начать создание нового сорта растений, селекционер подбираем из мировой коллекции все необходимые для работы образцы, обладающие интересующими его признаками.

Например, селекционер задумал создать для Сибири холодостойкий сорт пшеницы или ржи. Прежде всего, он будет изучать в мировой коллекции все холодостойкие сорта, собранные в северных районах Азии, Европы, Америки. После этого он сможет выбрать сорт, наиболее соответствующий его селекционной программе.

Мировая коллекция растений – наше крупнейшее национальное достояние, требующее к себе бережного отношения и постоянного пополнения.

Происхождение домашних животных и центры их одомашнивания

Как свидетельствуют современные данные, центры происхождения животных и районы их одомашнивания связаны – это места древних цивилизаций. В индонезийско-индокитайском центре впервые, по-видимому, были одомашнены собака, большинство пород которой происходит от волка, – одно из наиболее древних домашних животных.

В Передней Азии, как полагают, были одомашнены овцы, их предок – дикие бараны муфлоны. В Малой Азии одомашнены козы. Одомашнивание тура, ныне исчезнувшего вида, произошло, вероятно, в нескольких областях Евразии. В результате возникли многочисленные породы крупного рогатого скота. Предки домашней лошади – тарпаны, также исчезнувшие, были одомашнены в степях Причерноморья. Таким образом, для большинства видов домашних животных и культурных растений, несмотря на их огромное разнообразие, обычно удается указать на исходного дикого предка.

Применение цитоплазматической мужской стерильности

Возникает вопрос, как получить гибридные семена, например, у кукурузы, сахарной свеклы, риса, томатов, если в пределах одного растения или даже одного цветка расположены женские и мужские элементы системы размножения и всегда присутствует возможность самоопыления. В этих случаях избежать процесс самоопыления возможно только двумя путями: на материнских формах удалить вручную мужские элементы цветка, продуцирующие пыльцу; сделать мужские соцветия стерильными. Первый путь очень трудоёмок, поэтому генетики начали поиск систем, определяющих мужскую стерильность растений.

В 1929 г. Ученик Н.И. Вавилова, отечественный селекционер и генетик М.И. Хаджинов нашёл в посевах кукурузы растения с мужской стерильностью, которые ничем не отличались от нормальных, полностью стерильных, т.е. не продуцирующих пыльцу. Эта система затем была детально изучена генетически, выявлены разные типы мужской стерильности. Один из них – цитоплазматическая мужская стерильность (ЦМС) – был предложен и широко использован для получения гибридных семян у кукурузы, а затем и у многих других видов.

Схема использования ЦМС в селекции разработана в 30-х годах Родсом. Этот тип мужской стерильности характеризуется тем, что только взаимодействие особого типа цитоплазмы (S) и рецессивных генов ядра (rf) обусловливает мужскую стерильность.

В практике используют лишь гибридные семена первого поколения от скрещивания двух линий, простого гибрида и линии или двух простых гибридов. Второе и последующие поколения в производственных посевах не используются, так как гибриды расщепляются на исходные формы и эффект гетерозиса исчезает. В связи с этим при использовании гетерозиса у растений организовано семеноводство в специальных хозяйствах, фермах, где получают только семена первого поколения и продают их хозяйствам, фермерам и т.д. Так как урожайность гетерозисных гибридов значительно (на 20–30%) выше сортов, то затраты на семеноводство гибридных семян с лихвой окупаются. В растениеводстве гетерозис широко используется у кукурузы, сорго, сахарной свеклы, риса томатов и других видов.

СЕЛЕКЦИЯ
План
1. Что такое селекция.
2. Селекция в растениеводстве.
3. Селекция в животноводстве,
4. Селекция микроорганизмов.
1. ЧТО ТАКОЕ СЕЛЕКЦИЯ
Что называют селекцией? Селекция - это наука, кото-
рая разрабатывает методы создания сортов и гибридов сель-
скохозяйственных растений и пород животных с нужными
человеку признаками; она является также отраслью сельско-
хозяйственного производства, занимающейся выведением сор-
тов И гибридов сельскохозяйственных культур, пород живот-
ных.
С помощью селекции разрабатываются способы воздей-
ствия на растения и животных. Это происходит с целью изме-
нения их наследственных качеств в нужном для человека на-
правлении. Селекция стала одной из форм эволюции расти-
тельного и животного мира. Она подчинена тем же законам,
что и эволюция видов в природе, однако естественный отбор
здесь частично заменен искусственным.
Теоретической основой селекции является генетика, ко-
торая разрабатывает закономерности наследственности и из-
менчивости организмов. Используя эволюционную теорию
Чарлза Дарвина, законы Грегора Менделя, учения о чистых
линиях и мутациях, ученые смогли разработать методы ynpaR-
ления наследственностью растительных и животных организ-
мов. В селекционной практике особое место принадлежит гиб-
ридологическому анализу.
Биологами выделяется три отрасли селекции: селекция
в растениеводстве, селекция в животноводстве и селекция мик-
роорганизмов.
2. СЕЛЕКЦИЯ В РАСТЕНИЕВОДСТВЕ
Считается, что одновременно с земледелием появилась и
примитивная селекция. Человек, начав выраишнать растения,
отбирал, сохранял и пытался прорастить лучшие из них. Изве-
стно, что многие культурные растения начали евпю жизнь ещг
10 тысяч лет до нашей эры. Селекционеры древности сумгли
Общая биология 333
создать прекрасные сорта плодовых растений, винограда, мно-
гие сорта пшеницы, бахчевых культур. Большое влияние на
развитие селекции растений оказали работы западноевропейс-
ких селекционеров-практиков XVIII века. К ним относятся ан-
глийские ученые Галлст, Ширеф, немецкий ученый Римпау, Ими
были созданы несколько новых сортов пшеницы, разработаны
способы выведения новых сортов. Уже и 1774 г. под Парижем
создается селекционная фирма «Вильморен». Ее селекционеры
первыми в мире оценивали отбираемые растения по потомству
Также они обратили внимание на свеклу. Им удалось вывести
такие сорта сахарной свеклы, которые содержали практически
в 3 раза больше сахара, чем уже известные. Этой работой было
доказано огромное влияние селекции на изменение природы
растений в нужную человеку сторону. В Европе и Северной
Америке в конце XVIII - начале XIX веков появляются новые
промышленные семенные фирмы и крупные селекционно-се-
меноводческие предприятия. Капитализм повлиял и на зарож-
дение промышленной селекции растений. Также на ее развитие
оказали влияние достижения ботаники, микроскопической тех-
ники и многое другое.
Россия пытается не отставать от нововведений селек-
ции. И. В. Мичурин начинает селекцию плодовых культур.
Он применяет новые оригинальные методики, с помощью
которых выводит множество новых сортов плодовых и ягод-
ных культур. У Мичурина много работ по гибридизации гео-
графически отдаленных форм. Его работы имели большое
значение для теории и практики селекции растений. В США
одновременно с Мичуриным Л. Бербанк создает целый ряд
новых сортов различных сельскохозяйственных культур пу-
тем тщательного проведения скрещиваний и совершенного
отбора. Среди них были и такие формы, которые ранее не
встречались в природе. К ним относятся бескосточковая сли-
ва, неколючие сорта ежевики.
Для селекции растений большое значение имеет разви-
тие научных основ отбора и гибридизации, а именно изуче-
ние генетических и физиолого-биохимических основ имму-
нитета, наследование важнейших количественных и каче-
ственных признаков (белка и его аминокислотного состава,
жиров, крахмала, Сахаров). Важны также методы создания
исходного материала. К ним относятся полиплоидия, экспе-
риментальный мутагенез, гаплоидия, клеточная селекция,
хромосомная и генная инженерия, гибридизация протоплас-
тов, культура зародышевых и соматических клеток и тканей
растений, Современная селекция несколько отличается от
того, что было ранее. Сейчас в качестве исходного материа-
ла в ней используются естественные и гибридные популяции,
самоопыленные линии, искусственные мутанты и полипло-
идные формы. Большая часть сортов сельскохозяйственных
растений была создана с помощью отбора и внутривидовой
гибридизации. В результате были получены мутантные и по-
липлоидные сорта зерновых, технических н кормовых куль-
тур Для того чтобы гибридизация была успешной, нужно
определиться с правильным подбором для скрещивания ис-
ходных родительских пар, особенно по эколого-географи-
чеекому принципу. Ступенчатая гибридизация используется
для того, чтобы объединить в гибридном потомстве призна-
ки нескольких родительских форм. Во всем мире прибегают
к этому методу. А чтобы усилить желаемые свойства одного
из родителей в гибридном потомстве, применяются возврат-
ные скрещивания. Отдаленная гибридизация применяется,
чтобы сочетать в одном сорте признаки и свойства разных
видов или рпдов растений.
3. СЕЛЕКЦИЯ В ЖИВОТНОВОДСТВЕ
Как и в селекции растений, на ранних этапах развития
животноводства породы создавались в результате бессозна-
тельного отбора или под влиянием природно-экономических
условий. Но процесс накопления зоотехнической информа-
ции шел, и вскоре сложились определенные методы создания
пород по заранее намеченной программе отбора и подбора.
Начал использоваться инбридинг, чтобы закрепить определен-
ные качества. Инбридинг - близко-родственное скрещивание
животных. Таким образом были выведены многие из пород
мирового значения (шортгорнская, голландская породы круп-
ного рогатого скота и др.).
В селекции животных широко применяются современ-
ные генетические методы. Среди них большое значение имеют
генетика популяций, а также иммуногенетика. Постоянно раз-
рабатываются методы изучения изменчивости, наследуемости
и генетической корреляции признаков, оценки генотипа жи-
вотных и отбора плюс-вариантов, что и обеспечило более вы-
сокий научно-методический уровень селекционных работ.
У домашних животных, подобно растениям, часто мож-
но наблюдать явление гетерозиса. Он применяется в животно-
водстве и птицеводстве.
С помощью селекции стало возможным повышение бел-
ковости молока у молочного скота, увеличение выхода мяса и
уменьшение содержания жира в туше у мясных пород крупно-
го рогатого скота и свиней, получение шерсти необходимой
длины и тонины у овец и т. д.
4. СЕЛЕКЦИЯ МИКРООРГАНИЗМОВ
Важную роль в жизни человека играют и микроорганиз-
мы. С их помощью можно создавать вещества, которые ис-
пользуются в различных областях медицины и промышлен-
ности (производство некоторых органических кислот, спирта,
хлебопечение, виноделие основаны на деятельности микроор-
ганизмов).
Исключительное значение для здоровья человека име-
ют антибиотики. Их относят к особым веществам. Антиби-
отики являются продуктами жизнедеятельности некоторых
микробов и грибов, убивающими болезнетворные микробы
и вирусы.
Методы селекции широко применяются, чтобы получить
наиболее продуктивные формы микроорганизмов. С помо-
щью методов отбора ученые выделяли штаммы микроорга-
низмов, которые являлись активными синтезаторами того или
иного продукта, используемого человеком. Это могут быть
антибиотики, витамины и другие вещества. Микроорганизмы
могут мутировать, что закреплено наследственно. Ученые
широко используют метод экспериментального получения
мутаций под действием рентгеновских, ультрафиолетовых
лучей и кое-каких химических соединений. С помощью таких
методов наследственная изменчивость микроорганизмои по-
вышается в десятки и даже сотни рал. . _ .
Процесс селекции – непрерывный процесс. К тому же
происходит его постоянное совершенствование. Это вызвано
все возрастающими запросами производства и требованиями
к сортам растений, породам животных И эффективности мик
роорганизмов. _ .. ."„!_.
384 Биология
ЧЕЛОВЕК. ДЕЯТЕЛЬНОСТЬ МОЗГА
План
1. Исследования работы мозга.
2. Организация памяти.
3. Человеческая память.
1. ИССЛЕДОВАНИЯ РАБОТЫ МОЗГА
Данные о процессах в клетках морского моллюска, а так-
же о том, каким образом происходит синтез белков в челове-
ческом мозгу, помогают распознать природу обучения и памя-
ти у человека. В процессе исследований выяснилось, что ос-
новные биохимические механизмы передачи нервных импуль-
сов одинаковы у всех животных. Ученые пришли к выводу,
что если эволюция решила их сохранить, то кажется логич-
ным, что и клеточные механизмы обучения и памяти, исполь-
зующиеся у низших животных, тоже сохранились. В после-
днее время проводилось несколько экспериментов, среди Ко-
торых был следующий. Исследователи ввели в нейроны го-
ловного мозга многих млекопитающих фосфорилируюшиЙ
фермент, который является ответственным за процесс обуче-
ния у моллюсков. Этот фермент увеличивал возбудимость у
животных, т. е. производил действие, которое сходно с дей-
ствием в мембранах нейронов у моллюсков. До сих пор уче-
ные окончательно не решили, насколько верным был прово-
димый эксперимент и будет ли одна и та же реакция идентич-
ной у собаки и моллюска. Однако знание биохимических ме-
ханизмов научения у низших животных поможет исследова-
телям изучать более сложные нервные системы.
Очень трудно спрогнозировать результаты эксперимен-
тов, которые проводятся на клеточном уровне. И до сегод-
няшнего дня очень трудно объяснить, каким образом наш мозг
может запомнить партитуру симфонии Бетховена или же про-
стые сведения, которые нужны для разгадывания кроссворда.
Для этого необходимо перенестись на уровень мозговых сис-
тем, где у человека собраны десятки миллиардов нейтронов,
соединенных между собой определенным, хотя и запутанным
образом. Теперь и на высших животных ученые проводят эк-
сперименты с обучением и различными воздействиями на мозг.
Исследование психологии здоровых людей помогает узнать
больше о процессах переработки и хранения информации. Что-
бы понять организацию функций памяти, ученые пытаются
исследовать больных с различными видами амнезии, которые
развиваются после повреждения мозга.
2. ОРГАНИЗАЦИЯ ПАМЯТИ
Около сорока лет тому назад Карл Лэшли, являющийся
пионером в области экспериментального исследования мозга
и поведения, попытался решить вопрос о пространственной
организации памяти в мозгу. Ученый натаскивал животных
решать определенные задачи, а затем удалял один за другим
различные участки коры головного мозга в поисках мест хра-
нения следов памяти. Однако Лэшли, несмотря на вес попыт-
ки, так и не удалось Найти то место, где, по его мнению, долж-
ны были находиться следы памяти-энграммы. В дальнейшем
ученые нашли причину неудачи Лэшли. Они пришли к выво-
ду, что для научения и памяти важными ял.iлютея не только
кора мозга, но и многие области и структуры мозга помимо
нее. Также выяснилось, что следы памяти в коре широко раз-
бросаны и неоднократно дублируются. Один кз учеников Лэш-
ли, Дональд Хебб, продолжил дело своего учителя и предло-
жил теорию происходящих в памяти процессов, которая опре-
делила ход дальнейших исследований более чем на три деся-
тилетия вперед. Именно Хсбб ввел понятия долговременной и
кратковременной памяти. Он пришел к вывп.гу, что кратков-
ременная память - это активный процесс ограниченной дли-
тельности, не сохраняющий никаких следов, а долговре-
менная память определена структурными изменениями в нерв-
ной системе. Хебб считал, что эти структурны- изменения мог-
ли быть порождены повторной активацией замкнутых нейт-
ронных цепей, например путей от коры к таламусу или гиппо-
кампу и обратно к коре. Повторное возбуждение образующих
такую цепь нейтронов ведет к тому, что связь Бающие их си-
напсы становятся функционально эффективными.
После определения таких связей эти нейтроны создают
клеточный ансамбль, и любое возбуждение относящихся к нему
нейтронов будет активировать весь ансамбль Таким образом
может осуществляться хранение информации И ее повторное
извлечение под влиянием каких-либо ощущеыгл,-мыслей или
эмоций, возбуждающих некоторые из нейтронов клеточного
ансамбля. Структурные изменения, по мнению Хебба, по-ви-
димому, проистекают в синапсах в результате каких-либо про-
цессов роста или метаболических изменений, которые увели-
чивают воздействие каждого нейтрона на следующий нейт-
рон.
Особое внимание в теории клеточных ансамблей уделя-
лось тому факту, что след памяти - это статическая «запись»,
а не просто продукт видоизменений в строении одной нервной
клетки или молекулы мозга. Психологи сделали вывод, что
память - это особенный процесс, который включает в себя
взаимодействие многих нейтронов.
3. ЧЕЛОВЕЧЕСКАЯ ПАМЯТЬ
Человек может успешно пользоваться своей памятью. Но
для этого необходимо знать существование трех процессов.
Он должен усвоить информацию, сохранить ev в своем мозгу,
а затем при необходимости воспроизвести. Таким образом,
если человеку не удается вспомнить что-либо, то причина одна:
нарушен один из трех процессов. Однако не стоит думать, что
память настолько проста. Человек может усваивать и запоми-
нать не просто отдельные элементы информаци г." Он модели-
рует собственную систему знаний, которая способна помочь
ему накапливать, хранить и использовать огромный запас не-
обходимых сведений. К тому же память является активным
Общая биология 385
процессом, в результате котордго полученные знания посто-
янно реконструируются, анализируются и переосмысливают-
ся нашим мозгом; по этой причине обнаружить свойства памя-
ти очень трудно. По всей вероятности, существует несколько
фаз памяти. Одна из них, названная непосредственной памя-
тью, длится совсем немного времени. Во время этой фазы
информация сохраняется всего несколько секунд. Когда че-
ловек проезжает на машине мимо привлекших его внимание
пейзажей, то в памяти он сохраняет полученное впечатление
всего лишь в течение одной-двух секунд. Но если ему очень
понравились некоторые объекты, которым было уделено боль-
ше внимания, то из непосредственной памяти информация пе-
реводится в кратковременную. Уже в кратковременной памя-
ти информация сохраняется в течение нескольких минут. Сто-
ит представить, что может происходить в тот период, когда
необходимо запомнить только что названный помер телефо-
на. Чтобы запомнить номер, человек пытается повторить его
мысленно несколько раз, если у него нет с собой ручки или
карандаша. Но если в этот момент его отвлечь какой-либо
фразой или действием, то он обязательно либо забудет номер,
либо перепутает цифры. По всей видимости, человек может
удерживать в своей кратковременной памяти от 5 до 9 отдель-
ных единиц запоминаемого материала. Случается, что такие
единицы группируются, и тогда люди уверены, что способны
запомнить гораздо больше.
Часть информации может переводиться Из кратковремен-
ной памяти в долговременную, где сохраняется в течение про-
должительного времени или даже всей жизни. Известно, что
ситшокамп является одной Из систем мозга, которая отвечает
:ia осуществление такого переноса информации. Удалось выя-
нить такую особенность гиппокампа в результате операции на
мозге у одного больного. Б литературе, где есть описания пос-
леоперационного состояния этого больного, он назван иници-
алами Н. М. Выяснилось, что в каждой Из височных долей
мозга имеется по одному гиппокампу. Чтобы облегчить гнету-
щие эпилептические припадки, доктора решили удалить оба
гиппокампа. Впоследствии, после выяснения неблагоприят-
ных последствий такой операции, этот метод не применялся.
Когда операция завершилась, Н, М. мог существовать исклю-
чительно в настоящем времени. Он был в состоянии запоми-
нать все события, явления и предметы лишь на то время, пока
они могли удержаться в его мозгу. Если медсестрам приходи-
лось выйти на несколько минут из палаты, по возвращении
они встречались с абсолютно не помнящим их человеком.
Однако Н. М. прекрасно помнил те события, которые были до
операции. Его память не утратила ту информацию, которая
сохранилась в мозгу за три года до операции. Однако И здесь
пыли пробелы. Часто амнезия распространялась на события,
которые произошли с больным за 1 - 2 года до операции, но не
более. Все это лишний раз подтверждает тот факт, что следы
памяти претерпевают изменения спустя определенный проме-
жуток времени.
Гиппокамп расположен в височной доле мозга. Согласно
некоторым данным, гиппокамп и медиальная часть височной
доЛи играют определенную роль в процессе закрепления, или
консолидации следов памяти. Имеются в виду те изменения,
физические и психологические, которые должны проистечь в
мозгу для того, чтобы полученная им информация могла пе-
рейти в постоянную память. Даже после того, как информация
уже поступила в долговременную память, некоторые ее части
могут подвергаться преобразованию и даже забываться, и толь-
ко после этого реорганизованный материал отправляется на
постоянное хранение. Известно, что наш мозг сохраняет на-
много больше информации, чем мы в этом нуждаемся. Самая
же главная трудность состоит в том, чтобы извлечь нужную
информацию из памяти. В связи с этим люди, привычные к
чтению, никогда не читают по буквам и даже не прочитывают
отдельные слова; им удобнее читать группами слов. По всей
вероятности, гиппокамп и медиальная височная область уча-
ствуют в формировании и организации следов памяти. Поэто-
му они не могут являться местом постоянного хранения ин-
формации. Больной Н. М., который лишился этой области
мозга, прекрасно мог воспроизвести события, произошедшие
с ним более чем за 3 года до операции. Это подтвердило, что
височная область не является местом длительного храпения
следов. Но в то же время она помогает в их формировании,
что подтверждает потеря у Н. М. памяти на те события, кото-
рые происходили Е последние 3 года до операции.
Те же данные были получены, когда исследовали боль-
ных, подвергшихся электрошоковой терапии. Доказано, что
электрошок оказывает разрушительное действие, и особенно
иа гиппокамп. После этой процедуры больные, за небольшим
исключением, не могут вспомнить те события, которые пред-
шествовали их лечению. Зато память о гораздо более ранних
событиях полностью сохраняется. Лэрри Сквайр высказал
гипотезу, что в процессе усвоения каких-либо знаний височ-
ная область устанавливает связь с местами хранения следов
памяти в других частях мозга, прежде всего в коре. Надоб-
ность л таких взаимодействиях может сохраняться довольно
долго - в течение нескольких лет, пока идет процесс реорга-
низации материала памяти. Сквайр предполагал, что эта реор-
ганизация непосредственно зависит от физической перестрой-
ки нервных сетей. В тот момент, когда перестройка и реорга-
низация закончены, а информация стабильно сохраняется в
коре мозга, участие височной области в ее закреплении и из-
влечении становится ненужной.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Введение

Селекция (от лат. -- выбор, отбор) -- это наука о путях и методах создания новых и улучшения уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для практики признаками и свойствами.

Задачи селекции вытекают из ее определения -- это выведение новых и совершенствование уже существующих сортов растений, пород животных и штаммов микроорганизмов. Сортом, породой и штаммом называют устойчивую группу (популяцию) живых организмов, искусственно созданную человеком и имеющую определенные наследственные особенности. Все особи внутри породы, сорта и штамма имеют сходные, наследственно закрепленные морфологические, физиолого-биохимические и хозяйственные признаки и свойства, а также однотипную реакцию на факторы внешней среды. Основными направлениями селекции являются:

Высокая урожайность сортов растений, плодовитость и продуктивность пород животных; качество продукции (например, вкус, внешний вид, лежкость плодов и овощей, химический состав зерна -- содержание белка, клейковины, незаменимых аминокислот и т. д.);

Физиологические свойства (скороспелость, засухоустойчивость, зимостойкость, устойчивость к болезням, вредителям и неблагоприятным климатическим условиям);

Интенсивный путь развития (у растений -- отзывчивость на удобрения, полив, а у животных -- «оплата» корма и т. п.).

1.Теоретические основы селекции

В последние годы особое значение приобретает селекция ряда насекомых и микроорганизмов, используемых с целью биологической борьбы с вредителями и возбудителями болезней культурных растений.

Селекция должна учитывать также и потребности рынка сбыта сельскохозяйственной продукции, удовлетворения конкретных отраслей промышленного производства. Например, для выпечки высококачественного хлеба с эластичным мякишем и хрустящей корочкой необходимы сильные (стекловидные) сорта мягкой пшеницы, с большим содержанием белка и упругой клейковины. Для изготовления высших сортов печенья нужны хорошие мучнистые сорта мягкой пшеницы, а макаронные изделия, рожки, вермишель, лапша, вырабатываются из твердой пшеницы.

Ярким примером селекции с учетом потребностей рынка служит пушное звероводство. При выращивании таких ценных зверьков, как норка, выдра, лиса, отбираются животные с генотипом, соответствующим постоянно меняющейся моде в отношении окраски и оттенков меха.

В целом развитие селекции должно быть основано на законах генетики как науки о наследственности и изменчивости, поскольку свойства живых организмов определяются их генотипом и подвержены наследственной и модификационной изменчивости.

Теоретической основой селекции является генетика. Именно генетика прокладывает пути эффективного управления наследственностью и изменчивостью организмов. Вместе с тем селекция опирается и на достижения других наук: систематики и географии растений и животных, цитологии, эмбриологии, биологии индивидуального развития, молекулярной биологии, физиологии и биохимии. Бурное развитие этих направлений естествознания открывает совершенно новые перспективы. Уже на сегодняшний день генетика вышла на уровень целенаправленного конструирования организмов с нужными признаками и свойствами.

Генетике принадлежит определяющая роль в решении практически всех селекционных задач. Она помогает рационально, на основе законов наследственности и изменчивости, планировать селекционный процесс с учетом особенностей наследования каждого конкретного признака. Достижения генетики, закон гомологических рядов наследственной изменчивости, применение тестов для ранней диагностики селекционной перспективности исходного материала, разработка разнообразных методов экспериментального мутагенеза и отдаленной гибридизации в сочетании с полиплоидизацией, поиск методов управления процессами рекомбинации и эффективного отбора наиболее ценных генотипов с нужным комплексом признаков и свойств дали возможность расширить источники исходного материала для селекции. Кроме того, широкое использование в последние годы методов биотехнологии, культуры клеток и тканей позволили значительно ускорить селекционный процесс и поставить его на качественно новую основу. Этот далеко не полный перечень вклада генетики в селекцию дает представление о том, что современная селекция немыслима без использования достижений генетики.

Успех работы селекционера в значительной мере зависит от правильности выбора исходного материала (видов, сортов, пород) для селекции, изучения его происхождения и эволюции, использования в селекционном процессе организмов с ценными признаками и свойствами. Поиск нужных форм ведется с учетом всего мирового генофонда в определенной последовательности. Прежде всего, используются местные формы с нужными признаками и свойствами, затем применяются методы интродукции и акклиматизации, т. е. привлекаются формы, произрастающие в других странах или в других климатических зонах и, наконец, методы экспериментального мутагенеза и генетической инженерии.

С целью изучения многообразия и географического распространения культурных растений Н. И. Вавилов с 1924 г. и до конца 30-х гг. организовал 180 экспедиций по самым труднодоступным и зачастую опасным районам земного шара. В результате этих экспедиций Н. И. Вавилов изучил мировые растительные ресурсы и установил, что наибольшее разнообразие форм вида сосредоточено в тех районах, где этот вид возник. Кроме того, была собрана уникальная, самая крупная в мире коллекция культурных растений (к 1940 г. коллекция включала 300 тыс. образцов), которые ежегодно размножаются в кол лекциях Всероссийского института растениеводства имени Н. И. Вавилова (ВИР) и широко используются селекционерами как исходный материал для создания новых сортов зерновых, плодовых, овощных, технических, лекарственных и других культур.

На основании изучения собранного материала Вавилов выделил 7 центров происхождения культурных растений (Приложение 1). Центры происхождения важнейших культурных растений связаны с древними очагами цивилизации и местом первичного возделывания и селекции растений. Подобные очаги одомашнивания (центры происхождения) выявлены и у домашних животных.

2 .Значение селекции

Цели и задачи селекции как науки обусловлены уровнем агротехники и зоотехники, уровнем индустриализации растениеводства и животноводства. Например, в условиях дефицита пресной воды уже выведены сорта ячменя, которые дают удовлетворительные урожаи при орошении морской водой. Выведены породы кур, не снижающие продуктивности в условиях большой скученности животных на птицефабриках. Для России очень важно создание сортов, продуктивных в условиях мороза без снега при ясной погоде, поздних заморозков и т. д.

Одним из важнейших достижений человека на заре его становления и развития было создание постоянного и достаточно надежного источника продуктов питания путем одомашнивания диких животных и возделывания растений. Главным фактором одомашнивания служит искусственный отбор организмов, отвечающих требованиям человека. У культурных форм растений и животных сильно развиты отдельные признаки, часто бесполезные или даже вредные для их существования в естественных условиях, но полезные для человека. Например, способность некоторых пород кур давать более 300 яиц в год лишена биологического смысла, поскольку такое количество яиц курица не сможет высиживать. Продуктивность всех культурных растения также значительно выше, чем у родственных диких видов, но вместе с тем они хуже адаптируются к постоянно меняющимся условиям среды и не имеют средств защиты от поедания (горьких или ядовитых веществ, шипов, колючек и т. п.). Поэтому в естественных условиях культурные, т. е. одомашненные формы существовать не могут.

Одомашнивание привело к ослаблению действия стабилизирующего отбора, что резко повысило уровень изменчивости: и расширяло его спектр. При этом одомашнивание сопровождалось отбором, вначале бессознательным (отбор тех особей, которые лучше выглядели, имели более смирный нрав, обладали другими ценными для человека качествами), затем осознанным, или методическим. Широкое использование методического отбора направлено на формирование у растений и животных определенных качеств, удовлетворяющих человека. Опыт многих поколений людей позволил создать методы и правила отбора и сформировать селекцию как науку.

Процесс одомашнивания новых видов растений и животных для удовлетворения потребностей человека продолжается и в наше время. Например, для получения модной и высококачественной пушнины в нынешнем столетии создана новая отрасль животноводства -- пушное звероводство.

культурный растени е селекция

3.Селекция растений, методы

В отличие от селекции микроорганизмов селекция растений не оперирует миллионами и миллиардами особей и скорость их размножения измеряется не минутами и часами, а месяцами и годами. Однако по сравнению с селекцией животных, где число потомков единично, селекция растений находится в более выгодном положении. Кроме того, различаются и методические подходы к селекции само- и перекрестноопыляющихся растений, размножающихся вегетативным и половым путем, одно- и многолетних растений и т.д.

Основными методами селекции растений являются отбор и гибридизация. Для отбора необходимо наличие гетерогенности, т. е. различий, разнообразия в используемой группе особей. В противном случае отбор не имеет смысла, он будет неэффективен, Поэтому сначала осуществляется гибридизация, а затем после появления расщепления -- отбор.

В случае, если селекционеру не хватает естественного разнообразия признаков, существующего генофонда, он использует искусственный мутагенез (получает генные, хромосомные или геномные мутации -- полиплоиды), для манипуляций с отдельными генами -- генетическую инженерию, а для ускорения селекционного процесса -- клеточную. Однако классическими методами селекции были и остаются гибридизация и отбор.

Различают две основные формы искусственного отбора: массовый и индивидуальный.

Массовый отбор -- это выделение целой группы особей, обладающих ценными признаками. Чаще он используется при работе с перекрестноопыляемыми растениями. В этом случае сорт не является гомозиготным. Это сорт-популяция, обладающий сложной гетерозиготностью по многим генам, что обеспечивает ему пластичность в сложных условиях среды и возможность проявления гетерозисного эффекта. Основным достоинством метода является то, что он позволяет сравнительно быстро и без больших затрат сил улучшать местные сорта, а недостатком -- то, что не может контролироваться наследственная обусловленность отбираемых признаков, в силу чего часто неустойчивы результаты отбора.

Скрещивание, при котором родительские формы отличаются только по одной паре альтернативных признаков, называется моногибридным. Мендель до скрещивания разных форм гороха проводил их самоопыление. При скрещивании белоцветковых горохов с такими же белоцветковыми он получал во всех последующих поколениях только белоцветковые. Аналогичная ситуация наблюдалась и в случае пурпурноцветковых. При скрещивании же Горохов, имеющих пурпурные цветки, с белоцветковыми растениями все гибриды первого поколения Р1 имели пурпурные цветки, но при их самоопылении среди гибридов второго поколения Р2 кроме пурпурноцветковых растений (три части) появлялись и белоцветковые (одна часть).

Скрещивание, при котором родительские формы отличаются по двум парам альтернативных признаков (по двум парам аллелей), называется дигибридным.

Проводя скрещивание гомозиготных родительских форм, имеющих желтые семена с гладкой поверхностью и зеленые семена с морщинистой, Мендель получил все растения с желтыми гладкими семенами и сделал вывод, что эти признаки являются доминантными. Во втором поколении после самоопыления гибридов Р1 он наблюдал следующее расщепление: 315 желтых гладких, 101 желтых морщинистых, 108 зеленых гладких и 32 зеленых морщинистых. Используя другие гомозиготные родительские формы (желтые морщинистые и зеленые гладкие), Мендель получил аналогичные результаты и в первом, и во втором поколениях гибридов, т. е. расщепление во втором поколении в отношении 9: 3: 3: 1.

При индивидуальном отборе получают потомство от каждого растения отдельно при обязательном контроле наследования интересующих признаков. Он применяется у самоопылителей (пшеница, ячмень). Результатом индивидуального отбора является увеличение числа гомозигот. Это связано с тем, что при самоопылении гомозигот будут образовываться только гомозиготы, а половина потомков самоопыленных гетерозигот также будут гомозиготами. При индивидуальном отборе формируются чистые линии. Чистые линии -- это группа особей, являющаяся потомками одной гомозиготной самоопыленной особи. Они обладают максимальной степенью гомозиготности. Однако абсолютно гомозиготных особей практически не бывает, так как непрерывно происходит мутационный процесс, нарушающий гомозиготность. Кроме того, даже самые строгие самоопылители иногда могут переопыляться перекрестно. Это повышает их приспособленность к условиям и выживаемость, поскольку народу с искусственным отбором на все органические формы действует и естественный.

Естественный отбор играет важную роль в селекции, так как при проведении искусственного отбора селекционер не может избежать того, чтобы селекционный материал не подвергался воздействию условий внешней среды. Более того, селекционерами часто привлекается и естественный отбор для отбора форм, наиболее приспособленных к условиям произрастания -- влажности, температуры, устойчивости к естественным вредителям и болезням.

Так как одним из методов селекции является гибридизация, то большую роль играет выбор типа скрещиваний, т.е. система скрещиваний.

Системы скрещивания могут быть разделены на два основных типа: близкородственное (инбридинг -- разведение в себе) и скрещивание между неродственными формами (аутбридинг -- неродственное разведение). Если принудительное самоопыление приводит к гомозиготизации, то неродственные скрещивания -- к гетерозиготизации потомков от этих скрещиваний.

Инбридинг, т.е. принудительное самоопыление перекрестноопыляющихся форм, кроме прогрессирующей с каждым поколением степени гомозиготности, приводит и к распадению, разложению исходной формы на ряд чистых линий. Такие чистые линии будут обладать пониженной жизнеспособностью, что, по-видимому, связано с переходом из генетического груза в гомозиготное состояние всех рецессивных мутаций, которые в. основном являются вредными.

Чистые линии, полученные в результате инбридинга, имеют различные свойства. У них различные признаки проявляются по-разному. Кроме того, различна и степень снижения жизнеспособности. Если эти чистые линии скрещивать между собой, то, как правило, наблюдается эффект гетерозиса.

Гетерозис -- явление повышенной жизнеспособности, урожайности, плодовитости гибридов первого поколения, превышающих по этим параметрам обоих родителей. Уже со второго поколения гетерозисный эффект угасает. Генетические основы гетерозиса не имеют однозначного толкования, но предполагается, что гетерозис связан с высоким уровнем гетерозиготности у гибридов чистых линий (межлинейные гибриды). Производство чистолинейного материала кукурузы с использованием так называемой цитоплазматической мужской стерильности было широко изучено и поставлено на промышленную основу в США. Ее использование исключало необходимость кастрировать цветки, удалять пыльники, так как мужские цветки растений, используемые в качестве женских, были стерильны.

Разные чистые линии обладают разной комбинационной способностью, т. е. дают неодинаковый уровень гетерозиса при скрещиваниях друг с другом. Поэтому, создав большое количество чистых линий, экспериментально определяют наилучшие комбинации скрещиваний, которые затем используются в производстве.

Отдаленная гибридизация -- это скрещивание растений, относящихся к различным видам. Отдаленные гибриды, как правило, стерильны, что связано с содержанием в геноме различных хромосом, которые в мейозе не конъюгируют. В результате этого формируются стерильные гаметы. Для устранения данной причины в 1924 г. советским ученым Г. Д. Карпеченко было предложено использовать удвоение числа хромосом у отдаленных гибридов, которое приводит к образованию амфидиплоидов.

Таким методом кроме тритикале были получены многие ценные отдаленные гибриды, в частности многолетние пшенично-пырейные гибриды и др. У таких гибридов в клетках содержится полный диплоидный набор хромосом одного и другого родителя, поэтому хромосомы каждого родителя конъюгируют друг с другом и мейоз проходит нормально. Путем скрещивания с последующим удвоением числа хромосом терна и алычи удалось повторить эволюцию -- произвести ресинтез вида сливы домашней.

Подобная гибридизация позволяет полностью совместить в одном виде не только хромосомы, но и свойства исходных видов. Например, тритикале сочетает многие качества пшеницы (высокие хлебопекарные качества) и ржи (высокое содержание незаменимой аминокислоты лизина, а также способность расти на бедных песчаных почвах).

Это один из примеров использования в селекции полиплоидии, точнее аллоплоидии. Еще более широко используется автополиплоидия. Например, в Беларуси возделывается тетраплоидная рожь, выведены сорта полиплоидных овощных культур, гречихи, сахарной свеклы. Все эти формы обладают более высокой урожайностью по сравнению с исходными формами, сахаристостью (свекла), содержанием витаминов и других питательных веществ. Многие культуры представляют собой естественные полиплоиды (пшеница, картофель и д.р.).

Выведение новых высокопродуктивных сортов растений играет важнейшую роль в повышении урожайности и обеспечении населения продовольствием. Во многих странах мира идет «зеленая революция» -- резкая интенсификация сельскохозяйственного производства за счет выведения новых сортов растений интенсивного типа. В нашей стране также получены ценные сорта многих сельскохозяйственных культур.

При использовании новых методов селекции получены новые сорта растений. Так, академиком Н. В. Цициным путем отдаленной гибридизации пшеницы с пыреем и последующей полиплоидизации выведены многолетние пшеницы. Такими же методами получены перспективные сорта новой зерновой культуры тритикале. Для селекции вегетативно размножаемых растений используются соматические мутации (они использовались и И.В. Мичуриным, но он называл их почковыми вариациями). Широкое применение получили многие методы И. В. Мичурина после их генетического осмысления, хотя некоторые из них теоретически так и не разработаны. Большие успехи достигнуты в использовании результатов мутационной селекции в выведении новых сортов зерновых, хлопчатника и кормовых культур. Однако наибольший вклад во все возделываемые сорта внесли образцы коллекции мирового генофонда культурных растений, собранные Н. И. Вавиловым и его учениками.

4.Селекция животных, методы

Хотя основные принципы селекции животных существенно не отличаются от принципов селекции растений, все-таки они имеют ряд характерных особенностей. Так, у животных существует только половое размножение, смена поколений происходит редко (через несколько лет), количество особей в потомстве невелико. У них особенно сильно выражено модифицирующее влияние факторов внешней среды и затруднен анализ генотипа. Поэтому большую роль приобретает анализ совокупности внешних признаков, характерных для породы.

Одомашнивание животных началось, вероятно, 10-- 12 тыс. лет назад. Оно происходило в основном в тех же районах, где расположены и центры многообразия и происхождения культурных растений. Одомашнивание привело к ослаблению действия стабилизирующего отбора, что резко повысило уровень изменчивости и расширило ее спектр. Поэтому одомашнивание сразу же сопровождалось и отбором. По-видимому, сначала это был бессознательный отбор, т. е. отбор тех особей, которые лучше выглядели, имели более смирный нрав и т. д. Однако постепенно начал использоваться отбор методический, осознанный и направленный на формирование у животных определенных качеств, удовлетворяющих те или иные потребности человека в данных конкретных природных и экономических условиях. Опыт многих поколений позволил создать методы и правила племенного отбора и подбора и сформировать селекцию животных как науку.

Типы скрещивания и методы разведения внедрялись в селекцию животных часто путем экстраполяции из селекции растений. Это было связано с тем, что внедрение генетических знаний в селекцию растений началось гораздо раньше, чем в селекцию животных из-за дороговизны животных объектов, меньшего количества их в семье и т. д. Такая экстраполяция, проводившаяся без учета специфики объекта, часто давала отрицательные результаты. Так, в частности, метод инбридинга был внедрен из селекции растений-самоопылителей в селекцию животных как основной метод, хотя позже была установлена необоснованность его широкого использования, так как породы животных скорее соответствуют сортам-популяциям перекрестноопылителей. Породы являются сложными полигетерозиготными комплексами, генотипы внутри которых приведены в определенную систему. Поэтому основной тип скрещиваний -- аутбридинг, хотя в селекции используется и инбридинг -- родственное скрещивание между братьями и сестрами или между родителями и потомством. Так как инбридинг ведет к гомозиготности, то он ослабляет животных, снижает их устойчивость к условиям среды, повышает заболеваемость. Тем не менее, при выведении новых пород зачастую возникает необходимость в инбридинге с целью закрепления в породе характерных хозяйственно ценных признаков, предотвращения их «растворения», сглаживания в неродственных скрещиваниях. Иногда его практикуют даже в течение нескольких поколений с целью получения в чистом виде какого-то важного признака, а затем обязательно используют аутбридинг и выводят гетерозисное потомство. Неродственное скрещивание в пределах породы и даже между породами ведет к поддержанию и усилению ценных качеств породы, если такое скрещивание сопровождается отбором характерных признаков.

Хорошим примером межпородного скрещивания может служить выведенная академиком М. Ф. Ивановым высокопродуктивная порода свиней белая степная украинская от скрещивания местных беспородных украинских свиней с высокопродуктивными белыми английскими (на первом этапе). Затем применялось повторное межпородное скрещивание, несколько поколений инбридинга, давшего начало нескольким отобранным чистым линиям, которые были скрещены между собой. Таким образом, уделяя должное внимание подбору исходных производителей, их качеству, комбинируя аутбридинг, инбридинг и используя жесткий отбор потомства по необходимым признакам, селекционер реализует свою идею, свои планы, свое представление о породе.

Основными методами анализа наследственных хозяйственно ценных признаков у животных производителей являются анализ экстерьера и оценка по потомству. Для выведения новой породы животных, обладающей комплексом ценных признаков в соответствии с планом селекционера и требованиями производства, большое значение имеют правильный подбор и оценка качества исходных производителей. Оценку производят в первую очередь по экстерьеру, т. е. фенотипу. Под экстерьером понимают всю совокупность наружных форм и признаков животных, включая их телосложение, соотношение частей тела животного и даже масти и наличия для каждой породы своей экстерьерной «метки». При этом для опытного селекционера несущественные признаки интереса не представляют, им выбираются главные. Но в то же время, исследовав коррелятивные связи между признаками, можно по чисто внешним несущественным фенотипическим проявлениям проследить за наследованием трудно контролируемых, связанных с ними хозяйственно ценных признаков.

Так как подбор производителей в некотором смысле является решающим фактором, то во избежание ошибок селекционерами часто используется как бы «пристрелочный» предварительный эксперимент, суть которого состоит в оценке производителей по потомству, что особенно важно при оценке признаков, не проявляющихся у самцов. Для оценки проводится скрещивание производителей-самцов с несколькими самками, определяются продуктивность и другие качества потомства. Чтобы оценить качество наследственности, например быков-производителей по жирномолочности, петухов по яйценоскости и т. д., признаки полученного потомства сравниваются со средне-породными и материнскими признаками.

Отдаленная гибридизация домашних животных менее продуктивна, чем у растений, так как преодолеть стерильность отдаленных гибридов невозможно, если она проявляется. Правда, в некоторых случаях отдаленная гибридизация видов с родственными хромосомными наборами не приводит к нарушению мейоза, а ведет к нормальному слиянию гамет и развитию зародыша у отдаленных гибридов, что позволило получить некоторые ценные породы, сочетающие полезные признаки обоих использованных в гибридизации видов. Например, получены породы тонкорунных архаромериносов, которые, как и архары, могут использовать высокогорные пастбища, недоступные для тонкорунных мериносов. Успешно завершились попытки улучшить породы местного крупного рогатого скота скрещиванием его с зебу и яками.

Следует отметить, что не всегда необходимо добиваться плодовитого потомства от отдаленной гибридизации. Иногда полезны и стерильные гибриды, как, например, веками использующиеся мулы -- стерильные гибриды лошади и осла, отличающиеся выносливостью и долговечностью.

Селекция микроорганизмов, методы

К микроорганизмам относятся, прежде всего, прокариоты (бактерии, актиномицеты, микоплазмы и др.) и одноклеточные эукариоты -- простейшие, дрожжи и др. Из более 100 тыс. видов, известных в природе микроорганизмов, в хозяйственной деятельности человека используется уже несколько сотен, и число это растет. Качественный скачок в их использовании произошел в последние 20-30 лет, когда были установлены многие генетические механизмы регуляции биохимических процессов, происходящих в клетках микроорганизмов.

Микроорганизмы играют исключительно важную роль в биосфере и в жизни человека. Многие из них продуцируют десятки видов органических веществ -- аминокислот, белков, антибиотиков, витаминов, липидов, нуклеиновых кислот, ферментов, пигментов, Сахаров и т. п., широко используемых в разных областях промышленности и медицины. Такие отрасли пищевой промышленности, как хлебопечение, производство спирта, некоторых органических кислот, виноделие и многие другие, основаны на деятельности микроорганизмов.

Микробиологическая промышленность предъявляет к продуцентам различных соединений жесткие требования, которые важны для технологии производства: ускоренный рост, использование для жизнедеятельности дешевых субстратов и устойчивость к заражению микроорганизмами. Научная основа этой промышленности -- умение создавать микроорганизмы с новыми, заранее определенными генетическими свойствами и умение использовать их в промышленных масштабах.

Селекция микроорганизмов (в отличие от селекции растений и животных) имеет ряд особенностей:

у селекционера имеется неограниченное количество материала для работы -- за считанные дни в чашках Петри или пробирках на питательных средах можно вырастить миллиарды клеток;

более эффективное использование мутационного процесса, поскольку геном микроорганизмов гаплоидный, что позволяет выявить любые мутации уже в первом поколении;

организация генома бактерий более проста: меньше генов в геноме, менее сложна и генетическая регуляция взаимодействия генов.

Эти особенности накладывают свой отпечаток на методы селекции микроорганизмов, которые во многом существенно отличаются от методов селекции растений и животных. Например, в селекции микроорганизмов обычно используются их естественные способности синтезировать какие-либо полезные для человека соединения (аминокислоты, витамины, ферменты и др.). В случае использования методов генной инженерии можно заставить бактерии и другие микроорганизмы продуцировать те соединения, синтез которых в естественных природных условиях им никогда не был присущ (например, гормоны человека и животных, биологически активные соединения).

Природные микроорганизмы, как правило, обладают низкой продуктивностью тех веществ, которые интересуют селекционера. Для использования в микробиологической промышленности нужны высокопродуктивные штаммы, которые создают различными методами селекции, в том числе отбором среди природных микроорганизмов.

Отбору высокопродуктивных штаммов предшествует целенаправленная работа селекционера с генетическим материалом исходных микроорганизмов. В частности, широко используют различные способы рекомбинирования генов: конъюгацию, трансдукцию, трансформацию и другие генетические процессы. Например, конъюгация (обмен генетическим материалом между бактериями) позволила создать штамм, способный утилизировать углеводороды нефти. Часто прибегают к трансдукции (перенос гена из одной бактерии в другую, посредством бактериофагов), трансформации (перенос ДНК, изолированной из одних клеток, в другие) и амплификации (увеличение числа копий нужного гена).

Так, у многих микроорганизмов гены биосинтеза антибиотиков или их регуляторы находятся в плазмиде, а не в основной хромосоме. Поэтому увеличение путем амплификации числа этих плазмид позволяет существенно повысить производства антибиотиков.

Важнейшим этапом в селекционной работе является индуцирование мутаций. Экспериментальное получение мутаций открывает почти неограниченные перспективы для создания исходного материала в селекции. Вероятность (частота) возникновения мутаций у микроорганизмов (10-10 -- 10-6) ниже, чем у всех других организмов (10-6 --10-4). Но вероятность выделения мутаций по данному гену у бактерий значительно выше, чем у растений и животных, поскольку получить многомиллионное потомство у микроорганизмов довольно просто и быстро.

Для выделения мутаций служат селективные среды, на которых способны расти мутанты, но погибают исходные родительские особи дикого типа. Проводится так же отбор по окраске и форме колоний, скорости роста мутантов и диких форм и т.д.

Отбор по продуктивности (например, продуцентов антибиотиков) осуществляется по степени антагонизма и угнетения роста чувствительного штамма. Для этого штамм-продуцент высевается на «газон» чувствительной культуры. По размеру пятна, где отсутствует рост чувствительного штамма вокруг колонии штамма-продуцента, судят о степени активности (в данном случае антибиотической). Для размножения, естественно, отбираются наиболее продуктивные колонии. В результате селекции производительность продуцентов удается увеличить в сотни -- тысячи раз. Например, комбинируя мутагенез и отбор в работе с грибом Penicillium, выход антибиотика пенициллина увеличили примерно в 10 тыс. раз по сравнению с исходным диким штаммом.

Роль микроорганизмов в микробиологической, пищевой промышленности, в сельском хозяйстве и других областях трудно переоценить. Особенно важно отметить то, что многие микроорганизмы для производства ценных продуктов используют отходы промышленного производства, нефтепродукты и тем самым производят их разрушение, предохраняя от загрязнения окружающую среду.

5.Биотехнология, генетическая и клеточная инженерия

Биотехнология -- это сознательное производство необходимых человеку продуктов и материалов с помощью живых организмов и биологических процессов.

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились. Это связано с тем, что ее методы выгоднее Обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду.

Объектами биотехнологии являются многочисленные представители групп живых организмов -- микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты. Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.). Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Одним из важнейших направлений современной биотехнологии является также использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязненной почвы и т. п.).

Так, для извлечения металлов из сточных вод могут широко использоваться штаммы бактерий, способные накапливать уран, медь, кобальт. Другие бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Ассимилируя углеводороды нефти, такие микроорганизмы преобразуют их в белки, витамины из группы В и каротины.

Некоторые из штаммов галобактерий с успехом применяют для удаления мазута с песчаных пляжей. Получены также генно-инженерные штаммы, способные расщеплять октан, камфару, нафталин, ксилол, эффективно утилизировать сырую нефть.

Большое значение имеет использование методов биотехнологии для защиты растений от вредителей и болезней.

Биотехнология проникает в тяжелую промышленность, где микроорганизмы используются для добычи, превращения и переработки природных ископаемых. Уже в древности первые металлурги получали железо из болотных руд, производимых железобактериями, которые способны концентрировать железо. Теперь разработаны способы бактериальной концентрации ряда других денных металлов: марганца, цинка, меди, хрома и др. Эти методы используются для разработки отвалов старых рудников и бедных месторождений, где традиционные методы добычи экономически невыгодны.

Генетическая инженерия -- один из важнейших методов биотехнологии. Она предполагает целенаправленное искусственное создание определенных комбинаций генетического материала, способных нормально функционировать в клетке, т. е. размножаться и контролировать синтез конечных продуктов. Можно выделить несколько разновидностей метода генетической инженерии в зависимости от уровня и особенностей его использования.

Генетическая инженерия используется в основном на прокариотах и микроорганизмах, хотя в последнее время начала применяться и на высших эукариотах (например, на растениях). Этот метод включает выделение из клеток отдельных генов или синтез генов вне клеток (например, на основе матричной РНК, синтезированной данным геном), направленную перестройку, копирование и размножение выделенных или синтезированных генов (клонирование генов), а также их перенос и включение в подлежащий изменению геном. Таким путем можно добиться включения в клетки бактерий «чужих» генов и синтеза бактериями важных для человека соединений. Благодаря этому в геном кишечной палочки удалось ввести ген синтеза инсулина из генома человека. Инсулин, синтезированный бактериями, используется для лечения больных сахарным диабетом.

Развитие генетической инженерии стало возможным благодаря открытию двух ферментов -- рестриктаз, разрезающих молекулу ДНК в строго определенных участках, и лигаз, сшивающих кусочки различных молекул ДНК друг с другом. Кроме того, в основе генетической инженерии лежит открытие векторов, которые представляют собой короткие, самостоятельно размножающиеся в клетках бактерий кольцевые молекулы ДНК. С помощью рестриктаз и лигаз в векторы и встраивают необходимый ген, добиваясь впоследствии его включения в геном клетки-хозяина.

Клеточная инженерия -- это метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции. Она базируется на использовании методов культуры клеток и тканей. Выделяются два направления клеточной инженерии: 1) использование клеток, переведенных в культуру, для синтеза различных полезных для человека соединений; 2) применение культивируемых клеток для получения из них растений-регенерантов.

Растительные клетки в культуре -- это важный источник ценнейших природных веществ, так как они сохраняют способность синтезировать свойственные им вещества: алкалоиды, эфирные масла, смолы, биологически активные соединения. Так, переведенные в культуру клетки женьшеня продолжают синтезировать, как и в составе целостного растения, ценное лекарственное сырье. Причем, в культуре с клетками и их геномами можно проводить любые манипуляции. Используя индуцированный мутагенез, можно повышать продуктивность штаммов культивируемых клеток и проводить их гибридизацию (в том числе и отдаленную) гораздо легче и проще, чем на уровне целостного организма. Кроме этого, с ними, как и с прокариотическими клетками, можно проводить генно-инженерные работы.

Путем гибридизации лимфоцитов (клеток, синтезирующих антитела, но неохотно и недолго растущих в культуре) с опухолевыми клетками, обладающими потенциальным бессмертием и способными к неограниченному росту в искусственной среде, решена одна из важнейших задач биотехнологии на современном этапе -- получены клетки гибридомы, способные к бесконечному синтезу высокоспецифических антител определенного типа.

Таким образом, клеточная инженерия позволяет конструировать клетки нового типа с помощью мутационного процесса, гибридизации и, более того, комбинировать отдельные фрагменты разных клеток (ядра, митохондрии, пластиды, цитоплазму, хромосомы и т. д.), клетки различных видов, относящиеся не только к разным родам, семействам, но и царствам. Это облегчает решение многих теоретических проблем и имеет практическое значение.

Клеточная инженерия широко используется в селекции растений. Выведены гибриды томата и картофеля, яблони и вишни. Регенерированные из таких клеток растения с измененной наследственностью позволяют синтезировать новые формы, сорта, обладающие полезными свойствами и устойчивые к неблагоприятным условиям среды и болезням. Этот метод широко используется и для «спасения» ценных сортов, пораженных вирусными болезнями. Из их ростков в культуре выделяют несколько верхушечных клеток, еще не пораженных вирусом, и добиваются регенерации из них здоровых растений сначала в пробирке, а затем пересаживают в почву и размножают.

Заключение

Для того чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе, человечеству необходимо научиться эффективно изменять наследственную природу живых организмов. Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача -- она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. При появлении все новых и новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем -- непосредственно белки и незаменимые аминокислоты, употребляемые в пищу.

Список литературы

1.Биология. / Н.П.Соколова, И.И.Андреева и др. - М.: Высшая школа, 1987. 304с.

2.Колесников С.И. Экология. - Ростов-на-Дону: Феникс, 2003. - 384с.

3.Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология.- М.: Айрис-пресс, 2005. 512с.

4.Петров Б.Ю. Общая биология. - СПб.: Химия, 1999. - 420с

5.Петров К.М. Взаимодействие общества и природы: Учебное пособие для вузов. -- СПб: Химия, 1998. - 408с.

Размещено на Allbest.ru

Подобные документы

    Селекция как наука о методах создания новых пород животных, сортов растений, штаммов микроорганизмов с нужными человеку признаками. Особенности селекции животных на современном этапе, используемые методы и принципы, подходы, инструментарий и назначение.

    презентация , добавлен 25.01.2012

    Общие сведения и история селекции - науки о методах создания новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов, с полезными для человека свойствами. Основные принципы селекции животных, ее некоторые особенности.

    презентация , добавлен 06.09.2016

    Создания и совершенствования сортов культурных растений и пород домашних животных, применение этих методов в растениеводстве (селекция растений) и животноводстве (селекция животных). Сорта растений и породы животных с нужными биологическими свойствами.

    презентация , добавлен 25.10.2011

    Виды селекции и ее значение. Методы селекции микроорганизмов и животных. Биотехнология, генетическая и клеточная инженерия. Цели и задачи селекции как науки. Процесс одомашнивания новых видов растений и животных для удовлетворения потребностей человека.

    курсовая работа , добавлен 10.09.2010

    Селекция как наука о методах создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов. Центры происхождения культурных растений. Закон гомологических рядов. Индуцированный мутагенез. Полиплоидия и гибридизация в селекции.

    презентация , добавлен 09.12.2011

    Наука о выведении новых форм живых организмов и задачи селекции по улучшению качества продукции, сортов и пород. Генетическое разнообразие растений, животных и их географическое распространение, гетерозис и инбридинг, их значение в природе и отборе.

    презентация , добавлен 17.09.2012

    Селекция как наука об улучшении уже существующих и о выведении новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами, ее цели и задачи, направления развития на сегодня. Сферы использования методов селекции.

    презентация , добавлен 18.04.2013

    Селекция как наука о методах создания и улучшения пород животных, сортов растений, штаммов микроорганизмов, ее цели и задачи, используемые методы и приемы, современные достижения. Понятие и принципы гибридизации. Типы отбора и значение мутогенеза.

    презентация , добавлен 15.12.2015

    Понятие селекции как эволюции, управляемой человеком. Выведение новых сортов растений и пород животных для человека свойствами как основная задача селекционеров. Методы селекции: отбор, гибридизация, мутагенез. Центры происхождения культурных растений.

    презентация , добавлен 23.02.2013

    Закономерности наследственности и мутационной изменчивости как основа теории селекции, ее задачи и методы. Выведение новых пород животных, сортов растений, микроорганизмов с учетом законов эволюции, роль внешней среды в развитии и формировании признаков.

Исходный материал - линии, сорта, виды, роды культурных или диких растений или животных, обладающих ценными хозяйственными качествами или экстерьером.

Гибридизация (от греч. "гибрис" - помесь) - естественное или искусственное скрещивание особей, относящихся к различным линиям, сортам, породам, видам, родам растений или животных.

Сорт - совокупность культурных растений одного вида, искусственно созданная человеком и характеризующаяся: а) определенными наследственными особенностями, б) наследственно закрепленной продуктивностью, в) структурными (морфологическими) признаками.

Порода - совокупность домашних животных одного вида, искусственно созданная человеком и характеризующаяся: а) определенными наследственными особенностями, б) наследственно закрепленной продуктивностью, в) экстерьером.

Линия - потомство одной самоопыляющейся особи у растений, потомство от близкородственного скрещивания у животных, имеющих большинство генов в гомозиготном состоянии.

Инбридинг (инцухт) по-англ. "разведение в себе" - близкородственное скрещивание сельскохозяйственных животных. Принудительное самоопыление у перекрестноопыляющихся растений.

Инбредная депрессия - снижение жизнеспособности и продуктивности у животных и растений, полученных путем инбридинга, вследствие перехода большинства генов в гомозиготное состояние.

Гетерозис - мощное развитие гибридов, полученных при скрещивании инбредных (чистых) линий, одна из которых гомозиготна по доминантным, другая - по рецессивным генам.
Подвой - корнесобственное (укорененное) растение, на которое производится прививка.

Привой - черенок растения или почка, которые прививаются на корнесобственное растение.

Полиплоидия - кратное увеличение диплоидного или гаплоидного набора хромосом, вызванное мутацией

Мутагенез (от лат. "мутацио" - перемена, изменение и греч. "генос" - образующий) - метод в селекции высших растений и микроорганизмов, который позволяет искусственно получать мутации с целью увеличения продуктивности.

Биотехнология - использование живых организмов и биологических процессов в производстве. Биологическая очистка сточных вод, биологическая защита растений, а также синтез в промышленных условиях кормовых белков, аминокислот, получение ранее недоступных препаратов (гормон инсулин, ростовой гормон, интерферон), создание новых сортов растений, пород животных, видов микроорганизмов и т. д.- это главные направления новой отрасли науки и производства.

Генная инженерия - наука, создающая новые комбинации генов в молекуле ДНК. Возможность рассекать и сращивать молекулу ДНК позволила создать гибридную клетку бактерии с генами человека, ответственными за синтез гормона инсулина и интерферона. Эта разработка применяется в фармацевтической промышленности для получения лекарственных препаратов. С помощью пересадки генов создаются растения, устойчивые к болезням, неблагоприятным условиям среды, с более высоким эффектом фотосинтеза и фиксирования атмосферного азота.