В частном доме

Рвет резьбу при нарезании резцом. Понятие о резьбе

Рвет резьбу при нарезании резцом. Понятие о резьбе

Резьбу широко применяют в машиностроении, она служит для соединения деталей между собой и для передачи движения. Примером применения резьбы для соединения деталей является резьба на шпинделе токарного стана, предназначенная для крепления патрона; примером применения резьбы для передачи движения является резьба ходового винта, передающая движение маточной гайке фартука, резьба винтов в тисках, резьба шпинделей в прессах и т. д.

Понятие о винтовой линии . В основе всякой резьбы лежит так называемая винтовая линия. Возьмем кусок бумаги в форме прямоугольного треугольника АБВ(рис. 237, а), у которого катет АВ равен длине окружности цилиндра диаметром D, т. е. АВ = πD, а второй катет БВ равен высоте подъема винтовой линии за один оборот. Навернем треугольник на цилиндрическую поверхность, как показано на рис. 237, а. Катет АВ обернется вокруг цилиндра один раз, а гипотенуза А Б навьется на цилиндр и образует на его поверхности винтовую линию с шагом S, равным БВ. Угол τ (тау) называется углом подъема винтовой линии .

Если треугольник расположен справа цилиндра, как на рис. 237, а, и наклонная линия А Б поднимается слева направо , то такая винтовая линия называется правой ; при обратном расположении треугольника и подъеме линии справа налево (рис. 237, б) получаем левую винтовую линию.

Образование резьбы . Если подвести вершину резца к цилиндрическому валику и затем дать вращение валику и одновременно равномерное продольное перемещение резцу, то на поверхности валика вначале образуется винтовая линия (рис. 238). При углублении вершины резца в обрабатываемый валик и повторном продольном перемещении резца на поверхности валика получится винтовая канавка, называемая резьбой (рис. 239), с профилем, соответствующим форме режущей части резца.

Профиль резьбы . Если режущей части резца придать треугольную форму, то и на поверхности обрабатываемого цилиндра при нарезании получится треугольная резьба (рис. 239, а). Если режущая часть резца имеет прямоугольную или трапецеидальную форму, то соответственно при нарезании получают прямоугольную или ленточную резьбу (рис. 239, б) или же трапецеидальную (рис. 239, в).

Основные элементы резьбы . Основные элементы, определяющие профиль резьбы, следующие:

шаг резьбы S (рис. 240)-расстояние между двумя одноименными (т. е. правыми или левыми) точками двух соседних витков, измеренное параллельно оси резьбы;

угол а профиля - угол между боковыми сторонами витка, измеренный в диаметральной плоскости;

вершина профиля Е - линия, соединяющая боковые стороны его по верху витка;

впадина профиля F - линия, образующая дно винтовой канавки.

Различают три следующих диаметра резьбы (рис. 241):

наружный диаметр d резьбы - диаметр цилиндра, описанного около резьбовой поверхности;

внутренний диаметр d 1 резьбы - диаметр цилиндра, вписанного в резьбовую поверхность;

средний диаметр d 2 резьбы - диаметр цилиндра, соосного с резьбой, образующие которого делятся боковыми сторонами профиля на равные отрезки.


Направление резьбы (правая и левая резьбы). Если посмотреть на резьбу с торца, то у правой резьбы подъем канавки направлен слева направо, а у левой, наоборот, - справа налево. Направление резьбы можно также обнаружить по направлению вращения винта при ввинчивании его в отверстие или гайки при навинчивании ее на болт: если ввинчивание идет по ходу часовой стрелки, то резьба правая, если против хода, - левая. Наиболее употребительная правая резьба.

2. Типы резьб и их назначение

В машиностроении наиболее часто применяются следующие типы резьб: треугольная - для соединения (скрепления) деталей между собой, трапецеидальная и прямоугольная - для передачи движения.

Треугольная резьба подразделяется на метрические, дюймовую и трубную.

Метрические резьбы . Наиболее широкое применение в СССР получили метрические резьбы. По ГОСТ 9150-59 они подразделяются на резьбы с крупными шагами (для диаметров 1-68 мм) и резьбы с мелкими шагами (для диаметров 1-600 мм). И те и другие резьбы отличаются между собой размерами шага (для одного и того же диаметра) и других элементов.

Метрические резьбы имеют треугольный профиль (рис. 242) с углом профиля α = 60°. Вершины профиля болта и гайки плоско-срезанные, впадина у болта может быть плоскосрезанной или закругленной по радиусу r.

Шаг метрических резьб измеряется в миллиметрах.

Дюймовая резьба (рис. 243) имеет угол а профиля, равный 55°, и плоскосрезанные вершины и впадины; между вершинами и впадинами имеются зазоры. Наружный диаметр дюймовой резьбы обозначается в дюймах. Шаг дюймовой резьбы выражается числом витков на длине в 1".

В СССР дюймовая резьба применяется редко: только при ремонте импортных машин.


Трубная цилиндрическая резьба (рис. 244) имеет профиль в виде треугольника с закругленными вершинами и впадинами, угол а профиля равен 55°. Шаг трубной цилиндрической резьбы выражается числом витков на длине в 1". Эта резьба применяется главным образом в газовых и водопроводных трубах, а также на муфтах, служащих для соединения этих труб.

3. Измерение резьбы

Резьбу можно измерять измерительной линейкой, резьбомером, резьбовыми калибрами, специальными шаблонами и др.

Измерительную линейку и резьбомер применяют преимущественно для измерения шага наружной резьбы. Измерительной линейкой измеряют длину определенного количества витков, например, десяти; разделив полученную длину на число витков, находят размер одного шага. При измерении дюймовой резьбы определяют число витков, которое приходится на длину одного дюйма (25,4 мм).

Резьбомер (рис. 245) служит для проверки шага резьбы. Он состоит из набора стальных пластинок, из которых каждая снабжена вырезами, точно соответствующими профилю резьбы определенного шага. На каждой пластинке выбиты цифры, указывающие шаг резьбы в миллиметрах или число витков на 1". При проверке шага резьбы прикладывают пластинку к проверяемой резьбе параллельно ее оси (рис. 245). Совпадение пластинки резьбомера с резьбой проверяется на просвет.

Одним из измерительных инструментов для проверки резьб являются нормальные резьбовые калибры. Наружная резьба проверяется нормальным резьбовым кольцом (рис. 246), а внутренняя - нормальной резьбовой пробкой (рис. 247). Правый гладкий конец пробки служит для проверки диаметра отверстия под резьбу, а левый резьбовой конец - для проверки самой резьбы. Правильность резьбы нормальными калибрами определяют на ощупь по отсутствию качания и трудности свинчивания калибра и детали.

Значительно более точна и производительна проверка резьбы предельными калибрами.

Наружную резьбу проверяют предельными резьбовыми скобами .

Скоба (рис. 248) имеет две пары роликов: передняя пара является проходной, а задняя - непроходной.

Способ измерения предельной резьбовой скобой такой же, как и при измерении гладких размеров, т. е. резьба должна свободно пройти через проходную сторону калибра, а непроходная сторона калибра должна задержать резьбу.

Внутреннюю резьбу проверяют предельными резьбовыми пробками (рис. 249). Проходной конец пробки имеет длинную резьбу полного профиля; он должен полностью ввинчиваться в резьбовое отверстие по всей длине. Непроходной конец пробки имеет дватри витка срезанного профиля, он не должен ввинчиваться в измеряемое отверстие.

Как гладкие, так и резьбовые предельные калибры применяются обычно при изготовлении большого количества одинаковых деталей и вообще в тех случаях, когда детали должны, иметь точные размеры с определенными допусками.

4. Нарезание треугольной резьбы плашками

Наружную треугольную резьбу небольших размеров можно нарезать плашками. Плашка (рис. 250) представляет собой цельное или разрезное кольцо с резьбой на внутренней поверхности и стружечными канавками 1; канавки служат для образования режущих кромок 2, а также для выхода стружки.

Плашки изготовляют из углеродистой или легированной стали. Круглые плашки изготовляют цельными (рис. 250, а) или разрезными (рис. 250, б). Диаметр разрезных плашек можно регулировать в небольших пределах и таким образом несколько восстанавливать размер инструмента после износа, что удлиняет срок его службы. Разрезные плашки применяют для нарезания резьб невысокой точности. Более точную резьбу дают цельные плашки, так как они обладают большей жесткостью. Срок службы цельных плашек меньше.

Приемы нарезания резьбы плашками . Для работы плашку вставляют в специальный плашкодержатель (рис. 251) и закрепляют винтами, которые входят в углубления на боковой поверхности плашки.

Нарезаемую деталь закрепляют в патроне; она должна быть предварительно обточена по наружному диаметру резьбы болта. На торце детали нужно снять фаску, чтобы плашка легче врезалась. Если диаметр детали слишком мал, резьба получается недостаточно глубокой, неполного профиля. Если же диаметр заготовки слишком велик, то в процессе нарезания резьба может быть сорвана, так как плашка будет срезать много металла; в лучшем случае резьба получится нечистой.

Нарезание резьбы плашкой часто начинают с нарезания вручную нескольких ниток на неподвижной заготовке при помощи плашкодержателя с двумя рукоятками (рис. 252, а). После этого включают станок и ведут нарезание дальше, упирая рукоятку плашкодержателя в суппорт (рис. 252, б). При нарезании резьбы плашкой придерживать рукоятку руками после пуска станка не разрешается. Чтобы при дать правильное направление плашке, нужно в начале нарезания прижимать ее пинолью задней бабки, подаваемой вручную.

Режимы резания при нарезании резьбы плашками . При нарезании резьбы плашками скорость резания должна быть малой, это увеличивает срок службы плашки. Рекомендуются следующие скорости резания: для стали - 3-4 м/мин; чугуна - 2,5 м/мин; латуни - 9-15 м/мин. В качестве смазочно-охлаждающих веществ при нарезании стальных деталей рекомендуются осерненные масла, вареное масло, при нарезании деталей из чугуна - керосин. Охлаждение должно быть обильным.

5. Нарезание треугольной резьбы метчиками

Внутреннюю резьбу небольших размеров нарезают метчиками. Метчик представляет собой винт с несколькими продольными канавками, которые образуют режущие кромки и одновременно служат для выхода стружки.

Конструкция и элементы метчика показаны на рис. 253. Основными частями его являются: коническая заборная часть 1, калибрующая часть 2, канавки 5, гладкая часть 4, называемая шейкой, квадрат 5 для закрепления метчика в воротке или в патроне.


Основную работу при нарезании резьбы производит заборная часть 1, верхушки зубьев которой срезаны и имеют переменный профиль. Вслед за заборной частью в отверстие входит калибрующая часть 2, которая служит для зачистки (калибрования) нарезаемой резьбы.

На шейке метчика всегда клеймят диаметр резьбы: для метрических резьб с буквой М или без нее, а для дюймовой - с прибавлением значка " (дюйм).

Метчики изготовляют из углеродистой, легированной, а также быстрорежущей стали.

Для ручного нарезания метрической или дюймовой резьбы пользуются комплектом ручных метчиков , состоящим обычно из трех штук (рис. 254), которыми последовательно проходят нарезаемое отверстие. Первым и вторым метчиками нарезают резьбу предварительно, третьим зачищают резьбу, придавая ей окончательные размеры и форму. Номер каждого метчика комплекта узнают по числу рисок на хвостовой части: № 1 имеет одну риску, № 2 - две риски и № 3 - три риски. Иногда для нарезания мелких резьб в сквозных отверстиях применяют комплект из двух метчиков, из которых № 1 служит для предварительного, а № 2 - для окончательного нарезания.

Для нарезания резьбы в сквозных отверстиях длиной не более диаметра рельбы применяют гаечные метчики (рис. 255) с длинной заборной частью, которыми нарезают резьбу за один проход.

Подготовка отверстия под резьбу . При изготовлении резьбы метчиками небольшие отверстия обычно нарезают сразу же после сверления; большие отверстия предварительно растачивают. Очень важно обеспечить надлежащий диаметр отверстия под резьбу, он должен быть несколько больше внутреннего диаметра резьбы. Материал нарезаемой гайки под действием усилия резания несколько затекает во впадины резьбы (рис. 256). Чем вязче материал детали, тем сильнее он течет и, следовательно, тем больше должен быть диаметр отверстия.

Диаметры отверстий под резьбу выбирают по таблицам. В табл. 12 указаны некоторые диаметры отверстия под метрическую резьбу.

Таблица 12

Диаметры отверстий под резьбу


Длина глухих отверстий под резьбу должна быть больше длины резьбы хотя бы на величину заборной части метчика, т. е. на две-три нитки.

Приемы нарезания резьбы метчиком . При нарезании резьбы метчиком на токарном станке нарезаемую деталь устанавливают и закрепляют в патроне так, чтобы ось отверстия детали совпала с осью вращения шпинделя. Метчик устанавливают так, как показано на рис. 257. Его заборную часть вводят в нарезаемое отверстие, а хвостовую часть закрепляют в приспособлении. Приспособление для закрепления метчика состоит из оправки 4 со шпонкой 3 и втулки 2 с пазом, в который входит шпонка 3. Метчик закрепляется двумя болтами в квадратном отверстии втулки 1. Оправка 5 имеет конический хвостовик, вставляемый в отверстие пиноли задней бабки.


При нарезании резьбы метчик подводят к отверстию детали с помощью маховичка, перемещающего пиноль; заборную часть метчика вводят в нарезаемые отверстия. Для нарезания первых витков резьбы нужно осторожно и равномерно нажимать на метчик, вращая, маховичок задней бабки.

Как только метчик врежется в отверстие на 1-1,5 витка, его дальнейшее перемещение будет осуществляться самозатягиванием благодаря вращению детали.

Приспособление, показанное на рис. 257, позволяет нарезать резьбу на заданную длину, по достижении которой нарезание резьбы автоматически прекратится. При нарезании резьбы в глухих отверстиях перед началом работы следующим по размеру метчиком необходимо удалить из отверстия стружку.

Режимы резания при нарезании резьбы метчиками . Скорость резания при нарезании резьбы метчиками должна быть малой; это удлиняет срок службы метчика и предотвращает заклинивание стружки. Рекомендуются следующие скорости резания: для стали 3-15 м/мин; для чугуна, бронзы и алюминия 6-22 м/мин. Охлаждение должно быть обильным. В качестве смазочно-охлаждающих жидкостей рекомендуется: для нарезания деталей из стали - масло (сульфофрезол), при нарезании деталей из чугуна, бронзы и алюминия - эмульсия или керосин.

6. Нарезание треугольной резьбы резцами

Наиболее распространенным способом нарезания треугольной резьбы на токарно-винторезных станках является нарезание резьбовыми резцами.

Конструкция резцов . Форма режущей части резьбового резца должна соответствовать профилю резьбы. Угол профиля режущей части должен быть для метрической резьбы 60°, для дюймовой и трубной резьб 55°. Чтобы избежать при нарезании резьбы искажения ее профиля, резьбовые резцы обычно затачивают с передним углом γ = 0 и устанавливают вершину резца на высоте линии центров станка.

Различают резьбовые резцы для нарезания наружной резьбы (рис. 258, а) и для нарезания внутренней резьбы (рис. 258, б). Те и другие могут быть цельными или вставными, стержневыми, призматическими и дисковыми, подобно фасонным резцам. Головка резьбового резца для внутренней резьбы должна быть перпендикулярна к оси стержня резца.

Для чистовых проходов при нарезании резьбы иногда применяют пружинящие державки, позволяющие получить чистую и гладкую резьбу. Такой резец, встречая на своем пути более твердую часть металла, слегка отжимается и не портит резьбу, однако последняя получается менее точной.

На рис. 259 показана пружинящая державка 1 с резцом. Болт 2 служит для крепления вставного резьбового резца 3 в державке. Особенность этой Державки заключается в том, что она может работать как пружинящая и как жесткая. Это достигается, при помощи винта 4; когда винт вставлен в прорезь, державка работает как жесткая, когда винт 4 вынут, она работает как пружинящая. Черновое нарезание производят резцом, закрепленным в жесткой державке, а чистовое - резцом, закрепленным в пружинящей державке.

Установка резьбового резца . Установка резца для нарезания резьбы требует большого внимания. Резец нужно установить точно на высоте центров , иначе профиль резьбы получится неправильным. Кроме того, средняя линия профиля резца должна быть перпендикулярна к оси детали (рис. 260, а). Это условие обязательно при нарезании как наружных, так и внутренних резьб. Если пренебречь этим, то профиль резьбы получится несимметричным (повернутым в сторону), как показано на рис. 260, б.

Резьбовой резец устанавливают при помощи шаблона, как показано на рис. 261 при нарезании наружной резьбы и на рис. 262 при нарезании внутренней резьбы. Для проверки прикладывают шаблон к цилиндрической (торцовой) поверхности детали в горизонтальной плоскости и вводят резец в вырез шаблона. По просвету между режущими кромками резца и вырезом шаблона судят о правильности установки. Если имеется большой просвет, то его устраняют перестановкой резца, после чего резец прочно закрепляют в резцедержателе.

7. Резьбовые гребенки

Наружную и внутреннюю треугольную резьбу можно нарезать также и резьбовыми гребенками.

Резьбовые гребенки в отличие от обычных резьбовых резцов имеют на режущей части не один, а несколько зубьев, выполненных по форме профиля резьбы.

Гребенки бывают плоские стержневые (рис. 263, а); призматические (рис. 263, б); круглые с винтовой резьбой (рис. 263, в).

Рабочая часть гребенки состоит из режущих и калибрующих зубьев. Режущие зубья (их бывает обычно два-три) срезаны под углом φ так, что каждый последующий зуб режет несколько глубже предыдущего (рис. 263, а и б). Калибрующая часть, которая следует за режущей, имеет также несколько зубьев (два-три) и предназначена для зачистки резьбы.

При нарезании резьбы гребенками благодаря распределению нагрузки между несколькими зубьями можно увеличить поперечную подачу и тем самым уменьшить число проходов по сравнению с резьбовыми резцами. Гребенки служат дольше, чем резьбовые резцы. Призматические гребенки закрепляют в специальных державках, как показано на рис. 263, б и устанавливают их в резцедержателе точно на высоте центров.

Значительно большее применение при нарезании треугольных резьб как наружных, так и внутренних, получили круглые винтовые гребенки (рис. 263, в) как более простые в изготовлении. Они состоят из нескольких винтовых витков. Рабочая часть этих гребенок так же имеет несколько режущих зубьев, срезанных под углом, и несколько калибрующих зубьев.

При нарезании наружной резьбы направление резьбы у круглой винтовой гребенки должно быть обратным направлению резьбы на детали, т. е. если нужно нарезать правую резьбу, то на гребенке должна быть левая резьба.

При нарезании внутренней резьбы направление резьбы круглой винтовой гребенки должно совпадать с направлением резьбы детали, т. е., например, при нарезании правой резьбы и на гребенке должна быть правая резьба.

Крепление круглых резьбовых гребенок производится на оправках подобно круглым фасонным резцам (см. рис. 224).

8. Настройка токарного станка для нарезания резьбы

Для нарезания резьбы на токарном станке необходимо, чтобы скорость вращения шпинделя была строго увязана со скоростью перемещения суппорта, так как продольная подача резца за один оборот шпинделя должна точно соответствовать шагу нарезаемой резьбы.

У токарных станков настройка на заданную подачу резца осуществляется в результате сцепления соответствующих зубчатых колес коробки подач и гитары подач. Различные комбинации сцепления этих колес осуществляются соответствующими рукоятками и рычагами. Перестановка их для получения нужной подачи производится в соответствии с таблицей, имеющейся на станке.

В качестве примера приводим таблицу (табл. 13, стр. 242-243) настройки токарно-винторезного станка 1А62 для нарезания метрических и дюймовых резьб.

Как видно из табл. 13, настройка станка 1А62 на нарезание резьб производится изменением положения рукояток 2 и 4 коробки скоростей (см. рис. 36б), накидного рычага и рукояток А, Б и В коробки подач.

Сменные зубчатые колеса а и в устанавливаются работающими венцами внутрь к торцу приклона гитары. Для нарезания резьб с метрическим и дюймовым шагом колеса устанавливают внутрь венцами z = 42 и z = 100; для нарезания модульных резьб - венцами z = 32 и z = 97.

Рассмотрим примеры настройки станка 1А62 на нарезание резьбы.

Пример 9. Требуется настроить станок на нарезание метрической резьбы с шагом 2,5 мм.
В соответствии с табл. 13 рукоятку 2 (рис. 36 б) устанавливаем на нормальный шаг, а рукоятку 4 - в любом положении.
Рукоятку А (см. табл. 13) коробки подач устанавливаем в положение метрическая резьба; рукоятку Б - в положение II, рукоятку В - в положение I, накидной рычаг - в положение 6.
Пример 10. Настроить станок 1А62 на нарезание дюймовой резьбы 16 ниток на 1".
По табл. 13 рукоятку 2 коробки скоростей (см. рис. 36 б) устанавливаем на нормальный шаг, рукоятку 4 устанавливаем в любом положении.
Рукоятку А (см. табл. 13) коробки подач устанавливаем в положение дюймовая резьба; рукоятку Б - в положение I, рукоятку В - в положение I; накидной рычаг - в положение 3.
Пример 11. Требуется настроить станок на нарезание ленточной резьбы с шагом 16 мм.
В соответствии с табл. 13 рукоятку 2 (см. рис. 36 б) устанавливаем в положение увеличенный шаг, рукоятку 4 - в положение оранжевый цвет.
Рукоятку А коробки подач устанавливаем в положение метрическая резьба; рукоятку Б - в положение II, рукоятку В - в положение I, накидной рычаг - в положение 3.



9. Правила подсчета числа зубьев сменных зубчатых колес

В тех случаях, когда на станке нет коробки подач, настройку станка на нарезание резьбы заданного шага производят соответствующим подбором сменных зубчатых колес, передающих вращение ходовому винту от шпинделя.

На рис. 264 приведена схема передачи такого движения. От шпинделя к ходовому винту с шагом 5 вращение передается через трензель и сменные колеса z 1 z 2 , z 3 и z 4 гитары, с помощью которых станок настраивают на нарезание резьбы заданного шага S p .

Чтобы правильно настроить станок, необходимо уметь подсчитать числа зубьев сменных зубчатых колес.

Если сменные колеса (рис. 264) подобрать так, чтобы шпиндель станка и ходовой винт делали одинаковое число оборотов, то на детали получится резьба того же шага, что и на ходовом винте. Действительно, если шаг ходового винта равен 6 мм, то за один оборот винт переместит суппорт с резцом тоже на 6 мм. Так как за это время и деталь сделает один оборот, то резец нарежет резьбу, шаг которой также будет равен 6 мм.

Допустим, что на том же токарном станке требуется нарезать резьбу с шагом 3 мм, т. е. в 2 раза меньше, чем шаг ходового винта. Если деталь будет вращаться вдвое быстрее винта, то за один ее оборот винт успеет сделать только пол-оборота. При этом суппорт с резцом переместится на полшага, т. е. на 3 мм, следовательно, на детали будет нарезана резьба с шагом 3 мм. Если же шпиндель будет вращаться втрое быстрее ходового винта, то на детали получится резьба с шагом 2 мм.

Следовательно, можно вывести такое правило: во сколько раз шпиндель станка будет вращаться быстрее ходового винта, во столько раз шаг нарезаемой резьбы будет меньше шага ходового винта .

Допустим, что на токарном станке с шагом ходового винта 6 мм требуется нарезать резьбу с шагом 12 мм, т. е. в 2 раза больше, чем шаг ходового винта. Рассуждая, как и прежде, увидим, что деталь должна вращаться вдвое медленнее ходового винта. Действительно, если за один оборот детали ходовой винт сделает два оборота, то он переместит суппорт с резцом на два шага, т. е. на 12 мм, и на детали будет нарезана резьба с шагом 12 мм.

На основании сказанного можно сформулировать второе правило: во сколько раз шпиндель станка будет вращаться медленнее ходового винта, во столько раз шаг нарезаемой резьбы будет больше шага ходового винта .

Пользуясь приведенными выше рассуждениями, можно установить, что передаточное отношение сменных колес равно шагу нарезаемой резьбы S p , деленному на шаг ходового винта S, т. е.

Это передаточное отношение может быть осуществлено одним из способов, изображенных на рис. 265.


В том случае, если для осуществления передачи достаточно одной пары зубчатых колес, как показано на рис. 265, а, передаточное отношение для рассмотренного случая определяется следующим образом.

Пример 12. Определить передаточное отношение сменных колес для нарезания на токарном станке резьбы с шагом 1,5 мм, если шаг ходового винта равен 6 мм.
Согласно формуле (13) передаточное отношение По этому передаточному отношению подбираем сменные колеса и устанавливаем их в таком порядке от шпинделя к ходовому винту, чтобы отношение числа зубьев ведущего колеса к числу зубьев ведомого точно равнялось подсчитанному передаточному отношению.

Подбор сменных колес . Для нарезания резьб к каждому токарно-винторезному станку прилагается набор сменных колес, чаще всего с числом зубьев 20, 25, 30, 35 и т. д. через 5 до 120 и, кроме того, колесо с 127 зубьями. Такой набор называется пятковым. Задача токаря - подобрать такую пару или такие две пары колес из имеющихся в наборе, которые отвечают подсчитанному передаточному отношению.

Допустим, что на токарном станке с шагом ходового винта 6 мм требуется нарезать резьбу с шагом 2 мм. Для этого случая получаем передаточное отношение сменных колес . Следовательно, если соединить шпиндель и ходовой винт любой парой колес, передаточное отношение которых равно , то на детали получится резьба с шагом 2 мм.

Чтобы по передаточному отношению подобрать числа зубьев сменных колес, нужно числитель и знаменатель дроби умножить на одно и то же произвольное число таким образом, чтобы произведение получилось целым числом и равнялось числу зубьев колес, имеющихся в наборе. Например, если передаточное отношение , то, умножая числитель и знаменатель соответственно на 10, 15 или 20, получим:

Числа 20 и 60, 30 и 90, 40 и 120 обозначают числа зубьев отдельных пар колес, которые на данном станке обеспечивают получение резьбы с шагом 2 мм. Нужно запомнить, что в числителе стоит число зубьев ведущего колеса, а в знаменателе - ведомого. Таким образом, колеса с числом зубьев 20, 30 и 40 являются ведущими, а колеса с числом зубьев 60, 90 и 120 - ведомыми.

Первое ведущее колесо устанавливают на валу трензеля, выступающем из передней бабки; последнее из ведомых колес ставят на конец ходового винта.


Пример 13. На токарном станке с шагом ходового винта S x = 8 мм требуется нарезать резьбу с шагом S p = 1 мм.
По формуле (13) определяем передаточное отношение: Умножая числитель и знаменатель на 15, получаем: Колеса с 15 зубьями в наборе нет. Тогда умножаем числитель и знаменатель передаточного отношения на 20; Колесо с 20 зубьями есть в наборе, зато отсутствует колесо с 160 зубьями. Следовательно, при помощи одной пары сменных колес данную резьбу нарезать нельзя. В таких случаях необходимо передаточное отношение разложить на две такие дроби, перемножение которых даст то же передаточное отношение. Для нашего примера это можно представить так: Умножая числитель и знаменатель первой дроби на 20, а второй дроби на 25, находим: или Таким образом, чтобы на данном станке с шагом ходового винта S x = 8 мм нарезать резьбу с шагом S p = 1 мм, можно взять имеющиеся в наборе станка две пары колес 20 и 40; 25 и 100. Колеса z 1 = 20 и z 3 = 25 должны быть ведущими, а колеса z 2 = 40 и z 4 = 100 - ведомыми.
Подобранные колеса можно установить и в другом порядке.
1. Можно поменять местами ведущие колеса, т. е. установить колесо z 1 = 25 на место колеса z 1 = 20, а колесо z 1 = 20 - на место колеса z3 = 25.
2. Таким же образом можно поменять ведомые колеса z 2 = 40 и z 4 = 100.
От таких перестановок передаточное отношение не изменится. Но ведущее и ведомое колеса переставлять нельзя, так как передаточное отношение в этом случае примет совсем иное значение.
3. Возможна перестановка первой пары колес вместо второй, а второй пары вместо первой, т. е.

Проверка правильности подсчета сменных колес . Чтобы проверить правильность подсчета сменных колес, нужно полученное передаточное отношение умножить на шаг ходового винта, при этом результат умножения должен дать шаг нарезаемой резьбы; это следует из формулы (13)

Если же по формуле (14) будет получен шаг резьбы, не соответствующий требуемому, это покажет, что подсчет колес сделан неверно.

Проверим правильность подсчета сменных колес в примере на стр. 244, где


т. е. колеса подобраны правильно.

Проверка сцепления сменных колес

Подобранные расчетом колеса не всегда могут быть между собой сцеплены, может случиться, что одно из них упрется в палец гитары. Чтобы сменные колеса можно было установить на гитаре, обеспечив их сцепление, необходимо выполнить следующее условие:
Сумма чисел зубьев первой пары колес (z 1 + z 2) должна быть больше числа зубьев второго ведущего колеса z 3 не менее чем на 15, а сумма чисел зубьев второй пары колес (z 3 + z 4) должна быть больше числа зубьев первого ведомого колеса z 2 тоже не менее чем на 15.
Проверим возможность сцепления колес, подобранных применительно к нашему примеру, где

Разность между суммой чисел зубьев первой пары колес z 1 + z 2 = 20 + 40 = 60 и числом зубьев z 3 = 25 больше 15 и равна 35. Сумма чисел зубьев второй пары колес z 3 + z 4 = 25 + 100 = 125 также много больше числа зубьев z 2 = 40 (разность равна 85). Следовательно, колеса могут быть сцеплены.

Если условия сцепления не были выдержаны, то нужно сначала попытаться поменять местами ведомые или ведущие колеса. Если и такая перестановка не удовлетворит условиям сцепления, необходимо заново сделать подсчет.

Пример 14. Пусть передаточное отношение сменных шестерен В этом случае z 1 + z 2 = 20 + 30 = 50 меньше, чем Z3 = 70, следовательно, условие сцепляемости не выдержано.
Если поменять местами числители отношения, т. е. написать передаточное отношение в таком виде: то условие сцепляемости будет выдержано
z 1 + z 2 = 70 + 30 = 100 будет больше z 3 = 20 на 80; z 3 + z 4 = 20 + 35 = 55 будет больше z 2 = 30 на 25.

10. Приемы нарезания треугольной резьбы резцами

После наладки станка начинают нарезать резьбу, незначительно углубив резец. На поверхности детали получается винтовая риска, шаг которой проверяют линейкой, штангенциркулем или резьбомером. Перед началом каждого следующего прохода резец углубляют по лимбу на требуемую величину.

Нарезание треугольной резьбы резцами можно производить следующими способами.

Первый способ . Резец устанавливают перпендикулярно к оси детали (рис 267, а), пользуясь шаблоном, как показано на рис. 261. Перед каждым новым проходом резец выводят из канавки, перемещая поперечную часть суппорта на себя. Затем рукояткой, расположенной для удобства у фартука (станки 1А62, 1Д62, 1K62), переключают фрикционную муфту на обратный ход шпинделя. Шпиндель получает вращение в противоположном направлении, а вместе с ним в противоположном направлении вращается и ходовой винт станка, возвращая продольные салазки суппорта в начальное положение. По возвращении продольных салазок суппорта резцу дают поперечное перемещение (рис. 267, б); отсчет ведут по лимбу винта поперечной подачи. Так повторяют все эти действия до тех пор, пока резьба не будет нарезана на полную глубину профиля.

Как видно из рис 267, резьба в этом случае нарезается равномерно обеими режущими кромками резца. При черновом нарезании отделяющиеся толстые стружки мешают друг другу, поэтому возможно заедание резца и получение шероховатой поверхности резьбы. При чистовом нарезании, когда снимается небольшая стружка, поверхность получается чистой.

Такой способ подачи резца применяется для нарезания резьб с шагом S p меньше 2 мм как на черновых, так и на чистовых проходах; резец подается за каждый проход на глубину t=0,05 - 0,2 мм.

Второй способ . Если шаг нарезаемой резьбы больше 2 мм, нарезание резьбы производится особым резцом (рис. 268). Его устанавливают в верхней части суппорта, повернутой на угол (рис. 268, а), равный половине угла профиля резьбы, и подают боковым врезанием, перемещая верхнюю часть суппорта под углом к оси детали. При такой установке резца резание производится только левой режущей кромкой (рис. 268, б); правая режущая кромка снимает очень тонкую стружку, а потому изнашивается медленно.

После каждого прохода резец выводят из канавки, перемещая поперечную часть суппорта на себя (верхнюю часть суппорта не трогают). Затем включают обратный ход станка и возвращают продольные салазки суппорта в их начальное положение. Перед каждым следующим проходом подают поперечную часть суппорта в прежнее положение по лимбу или по упору; углубление резца производится перемещением верхней части суппорта по лимбу.

Для получения более точной резьбы окончательное нарезание выполняется по первому способу.

Нарезание правой и левой резьб . При нарезании правой резьбы ходовой винт и шпиндель вращаются на токаря, а суппорт с резцом перемещается от задней бабки к передней. При нарезании левой резьбы ходовой винт должен вращаться в обратном направлении, т. е. от токаря при обычном направлении вращения шпинделя. Для изменения направления нарезаемой резьбы следует повернуть имеющуюся для этих целей рукоятку в положение «левая резьба» (см. рис. 35, а- рукоятка 26 и рис. 40 - рукоятка 3). При этом суппорт начнет перемещаться к задней бабке. Следовательно, нарезание левой резьбы должно начинаться с левого конца детали, т. е. от передней бабки.

Охлаждение . Применение смазывающе-охлаждающих жидкостей при нарезании резьбы является обязательным. Обильное охлаждение сохраняет резец от затупления и способствует получению чистых боковых поверхностей резьбы. В качестве охлаждающих жидкостей при нарезании резьбы на стали и латуни рекомендуются эмульсия, сурепное масло, сульфофрезол (дает лучшие результаты); чугунные детали можно нарезать всухую или с керосином.

11. Передовые методы нарезания треугольной резьбы

При нарезании резьбы новаторы производства широко используют новые методы труда; они применяют твердосплавные резьбовые резцы со специальной заточкой, значительно повышают режимы резания, используют для нарезания резьбы не только прямой, но и обратный ход резца, используют автоматические выключатели, благодаря чему значительно повышают производительность труда. Например, токарь Г. Борткевич нарезает метрическую резьбу с шагом 2 мм за три прохода; нарезание ведется со скоростью резания 100-270 м/мин. Токарь т. Бирюков нарезает резьбу с шагом до 2 мм одним резцом, а с шагом больше 2 мм - двумя (черновым и чистовым). Глубина резания при черновых проходах берется 0,5-0,6 мм; для первых двух-трех чистовых проходов - приблизительно 0,3 мм; для остальных проходов - 0,15-0,2 мм. Нарезание резьбы производится при скорости 100-300 м/мин.

Резьбовые резцы конструкции т. Бирюкова (рис. 269) отличаются от обычных резьбовых резцов; они имеют отогнутую головку, что придает им некоторую упругость, не лишая прочности. Передний угол резца равен 3°, задний угол - 5°.

При скоростном нарезании резьбы происходит небольшое разваливание ее профиля: угол профиля нарезаемой резьбы получается всегда больше угла при вершине резца на 30"-1°30". Поэтому т. Бирюков рекомендует в этих условиях применять резцы с углом профиля, равным углу профиля нарезаемой резьбы, уменьшенному на 1°. Например, для нарезания метрической резьбы с углом профиля 60° угол профиля чистового резца принят 59° (рис. 269, б).

Тов. Бирюков производит нарезание резьбы также и за один проход, используя одновременно три резца, оснащенные твердым сплавом (рис. 270) и представляющие собой как бы гребенку: черновой резец имеет угол профиля 70°, получистовой-65°, чистовой - 59°.

Для нарезания внутренних резьб токарь-новатор В. Семинский применяет твердосплавные резцы своей конструкции (рис. 271).


Эти резцы характеризуются тем, что у них головка повернута относительно державки на 45°. Это придает им повышенную жесткость, обеспечивает получение более чистой поверхности резьбы по сравнению с обычными резьбовыми резцами (см. рис. 258, б) и позволяет работать на высоких скоростях резания (до 160 м/мин).

12. Брак при нарезании треугольной резьбы резцами и меры его предупреждения

Наиболее часто при нарезании резьбы резцами получается брак следующих видов:
1) неточный шаг резьбы;
2) неточные размеры среднего диаметра резьбы;
3) неправильный профиль резьбы;
4) неудовлетворительная чистота поверхности резьбы.

1. Неточный шаг резьбы является результатом неправильного подбора сменных зубчатых колес или неправильной установки рукояток коробки подач. Этот вид брака может быть предупрежден большим вниманием токаря при настройке станка. Брак неисправим.

2. Неточные размеры среднего диаметра получаются вследствие недостаточного или излишнего съема металла при нарезании резьбы. Устраняются более частыми измерениями элементов резьбы штангенциркулем или кронциркулем с острыми ножками, установленными по резьбовым калибрам, особенно при последних проходах, или установкой жесткого упора на глубину.

3. Неправильный профиль резьбы получается при неправильном профиле резца и неточной установке его. Предупредить брак такого вида можно тщательной проверкой профиля резца и его установки.

4. Недостаточная чистота поверхности (риски, задиры на резьбе) имеет место при неправильной заточке резца, завышенной глубине резания, неправильно выбранной скорости резания, большом затуплении резца, недостаточно жестком закреплении детали или инструмента, отсутствии охлаждения или неправильном выборе его и др. Чтобы избавиться от такого вида брака, необходимо установить причины, вызвавшие брак, и устранить их.

13. Нарезание прямоугольной и трапецеидальной резьб

Нарезание прямоугольной и трапецеидальной резьб считается одной из наиболее сложных работ в практике токаря. Угол τ (рис, 272), называемый углом подъема винтовой линии , как у прямоугольной, так и у трапецеидальной резьб значительно больше, чем у треугольной; это создает трудности при заточке резьбовых резцов, их установке и при нарезании резьбы и требует высокой квалификации токаря.

Нарезание прямоугольной резьбы . Рис. 273 дает представление о резце для нарезания прямоугольной резьбы. Прямоугольный профиль его режущей части (если смотреть на резец сверху) должен быть заточен по шаблону строго по профилю резьбы (рис. 274). Передний угол γ резца должен равняться нулю, главный задний угол α = 6 - 8°. Боковые поверхности резца должны быть скошены так, чтобы ни одна из них не терлась о боковые поверхности канавки резьбы. Чем круче резьба, тем больше должен быть скос у боковых поверхностей резца.

Существует два способа установки резьбового резца при нарезании прямоугольной резьбы.

Первый способ . Главная режущая кромка аб резца может быть установлена параллельно оси детали (рис. 272, слева) точно по линии центров станка. В этом случае получаемый профиль резьбы будет точно совпадать с формой режущей части резца, и винт получит правильную форму. Однако углы резания у левой и правой боковых режущих кромок окажутся разными. У правой кромки угол резания δ 1 получится тупым, и резец в этом месте будет не резать металл, а скоблить его; у левой кромки условия резания более благоприятны, так как угол резания δ 2 будет значительно меньше 90°, зато эта кромка будет сильно ослаблена и быстро затупится.

Второй способ . Главная режущая кромка а"б" может быть установлена перпендикулярно к боковым стенкам резьбы, как показано на рис. 272, справа. В этом случае обе боковые режущие кромки будут резать одинаково хорошо, но профиль резьбы не будет точно совпадать с профилем резца, дно канавки получится не плоским, а вогнутым. По этой причине такой установкой обычно пользуются только для чернового нарезания канавки. При чистовых же проходах резец должен быть установлен, как на рис. 272, слева.

Нарезание прямоугольной резьбы производится или одним резцом, заточенным на полную ширину канавки, или несколькими резцами. Резьбу с шагом до 3-4 мм можно нарезать одним резцом с мерной шириной режущей кромки. Крупную (с шагом больше 4 мм) и точную резьбу лучше прорезать сначала черновым резцом с шириной, равной ¾ ширины полного профиля резьбы, а затем окончательно пройти ее чистовым резцом во всю ширину канавки рис. 275, а). Можно поступить и таким образом: прорезать резьбу тем же черновым резцом, а затем каждую боковую поверхность канавки отделать отдельным отрезным резцом (рис. 275, б). Этот способ дает более чистую и точную резьбу.

Нарезание трапецеидальной резьбы . Трапецеидальная резьба имеет профиль трапеции с углом при вершине 30°. Наклон боковых сторон профиля облегчает сход стружки и позволяет нарезать трапецеидальную резьбу более чисто и точнее, чем прямоугольную.

Трапецеидальную резьбу с большим углом подъема нарезают, как и прямоугольную резьбу, резцами со скошенными боковыми поверхностями. Углы заточки у этих резцов и способы их установки остаются такими же, как и у прямоугольных резьб (см. рис. 272); преимущества и недостатки такой установки одинаковы у обоих типов резцов.

В зависимости от размеров, точности и чистоты трапецеидальную резьбу можно нарезать одним, двумя и тремя резцами. Мелкая и менее точная резьба нарезается одним резцом с режущей частью, соответствующей профилю резьбы. Крупная, а также более точная резьба нарезается двумя или тремя резцами. Прорезным резцом, имеющим ширину, равную ширине канавки на внутреннем диаметре, предварительно прорезают впадину (канавку) на глубину до внутреннего диаметра резьбы (рис. 276, а). После этого устанавливают трапецеидальный резец с кромкой, несколько меньшей ширины профиля нарезаемой резьбы, и нарезают им сначала правую (рис. 276, б), а затем левую сторону впадины (рис. 276, в). Окончательная отделка профиля производится нормальным трапецеидальным резьбовым резцом (рис. 276, г), т. е. резцом, профиль режущей части которого соответствует профилю резьбы. Этот способ требует большой затраты времени.

Токарь Н. Чикирев добился значительного повышения производительности труда при нарезании трапецеидальной и треугольной резьб путем внедрения скоростного резания. Для нарезания трапецеидальной резьбы они применяют резцы с пластинками твердого сплава Т15К6. Нарезание производится двумя специально заточенными резцами - черновым и чистовым (рис. 277). Черновой резец (а) имеет угол профиля 50°, чистовой (б) имеет профиль резьбы. Черновой резец не только прорезает канавку, но и расширяет ее, чистовой же резец придает канавке нужный профиль.

Нарезание резьбы производится за 6-7 проходов с глубиной врезания 0,6-0,7 мм, причем последний проход зачистной. Скорости резания - от 155 до 450 м/мин при обработке стали резцами, оснащенными твердым сплавом Т15К6.

Для ускорения обработки при нарезании резьбы на длинных валах новаторы иногда используют обратный холостой ход суппорта для работы резания. Для этого на задней части салазок поперечного суппорта устанавливают дополнительно суппорт с резцедержателем. Резец в резцедержателе устанавливается передней поверхностью вниз.

14. Основные сведения о нарезании резьбы вращающимися резцами

В последнее время широкое применение получил новый высокопроизводительный метод нарезания наружных и внутренних резьб - вращающимися резцами. Сущность этого метода заключается в следующем. На каретке токарно-винторезного станка вместо суппорта с резцедержателем устанавливается особое приспособление (рис. 278), состоящее из быстровра-щающегося шпинделя 5 и резцовой головки 4, в которой закрепляется резьбовой резец 6, оснащенный пластинкой твердого сплава. Резцовая головка получает вращение от электродвигателя 1 мощностью 1,5 - 3,5 квт, установленного на каретке, через ременную передачу 3 и ступенчатый шкив 2.

Головка вращается со скоростью 1000-3000 об/мин.

Деталь 7, на которой нарезается резьба, закрепляется в патроне 8, а при большей длине устанавливается в центрах станка. Деталь получает сравнительно медленное вращение (3-30 об/мин), т. е. на один оборот детали приходится примерно от 100 до 300 оборотов резцовой головки. Резец устанавливают на полную глубину резьбы, и головка приводится во вращение в направлении, обратном направлению вращения детали. Одновременно головка вместе с суппортом получает движение продольной подачи; за один оборот детали она перемещается на величину, равную шагу резьбы.

Схема нарезания наружной резьбы вращающейся резцовой головкой показана на рис. 279. Как видно из схемы, ось резцовой головки смещена относительно оси детали на некоторую величину b. Благодаря этому резец в течение одного оборота детали соприкасается с ней не по всей окружности, а только на небольшой ее части, срезая тонкую короткую стружку. Так как за один оборот детали резец делает от 100 до 300 оборотов, то вместо одной сплошной стружки, равной длине окружности детали, он срезает несколько сот коротких, тонких стружек. Эти мелкие стружки вихрем отлетают от резца. Такой метод нарезания резьбы иногда называют вихревым методом резьбонарезания.

На рис. 280 дана схема вихревого нарезания внутренней резьбы.

Преимуществом данного метода нарезания по сравнению с обычным являются: высокие скорости резания и производительность, благодаря чему машинное время уменьшается в 5-7 раз, высокая точность нарезаемой резьбы, чистота поверхности резьбы, работа без охлаждения.

Контрольные вопросы 1. Как образуется винтовая линия при нарезании резьбы на токарном станке?
2. Перечислите основные элементы резьбы.
3. Что называется шагом резьбы? Профилем резьбы?
4. Чем отличается метрическая резьба от дюймовой?
5. Какие виды резьб вы знаете и какая разница между ними?
6. Как отличить правую резьбу от левой?
7. Какими инструментами можно нарезать резьбу?
8. Как устроен метчик?
9. Перечислите основные части метчика.
10. Как нарезается резьба метчиками?
11. Как устроена плашка?
12. Как нарезается резьба плашкой?
13. Как устанавливают резьбовой резец при нарезании наружной и внутренней резьб?
14. Как нарезается резьба гребенкой?
15. Как настраивается станок для нарезания резьбы резцом?
16. Что называется передаточным отношением зубчатой передачи?
17. По какой формуле определяется передаточное отношение сменных зубчатых колес?
18. Как подобрать сменные зубчатые колеса, если известно передаточное отношение?
19. Укажите правило сцепляемости сменных колес на гитаре токарного станка.
20. При нарезании правой резьбы ходовой винт должен вращаться на токаря. При постановке сменных колес ходовой винт стал вращаться от токаря. Как это исправить?
21. Какие существуют способы нарезания резцом треугольной резьбы?
22. Чем отличается нарезание правой резьбы от нарезания левой резьбы?
23. Перечислите виды брака при нарезании резьбы. Какие меры нужно принять для предупреждения каждого из видов брака?
24. Какие инструменты применяют для измерения элементов резьбы?
25. Расскажите о приемах нарезания прямоугольной резьбы.
26. Расскажите о приемах нарезания трапецеидальной резьбы.
27. В чем заключается принцип нарезания резьбы вращающимися резцами (вихревое нарезание резьбы)?

«Строение древесины» - Содержание связанного углерода. Жирные кислоты. Низкомолекулярные вещества. Влажность древесины. Второстепенные полимерные вещества. Животная и бактериальная целлюлозы. Микроскопическое строение древесины. Компоненты твердого топлива. Полиозы. Аморфное вещество. Древесина и её топливные свойства. Элементный состав древесины.

«Разделочная доска» - Пример проекта «Разделочная доска». Экономическое и экологическое обоснование. Сколько понравившихся мне вариантов досок. Сейчас можно встретить доски различной формы. Историческая справка. Список использованной литературы. Что такое творческий проект. Проектные работы. Выводы по итогам работы. Береста - защитный покров дерева, который защищает живые ткани ствола.

«Станки по дереву» - Фрезерные станки по дереву. Ленточные пилы по дереву. Станки по дереву. Токарные станки по дереву. Круглопильные станки. В данной группе оборудования представлены циркулярные и торцовочные станки. Презентация по технологии. Строгальные станки. Копировальное устройство позволяет изготавливать большое количество одинаковых деталей.

«Древесина» - Светопроводность. Газопроницаемость. Для выявления дефектов древесины в фанерном производстве пользуются просвечиванием. Сучки- неизбежный порок, биологически обусловлен ростом дерева. Кора состоит из наружной пробковой ткани-корки и внутренней -луба. Для усиления электроизолирующих свойств древесину пропитывают маслом, лаком, парафином.

«Свойства древесины» - Физические свойства древесины. Текстура. Производства искусственных древесных материалов. Пороки древесины. Цвет. Наросты. Плотность. Сучки. Кривизна. Влажность. Свойства древесины. Строение ствола. Разрезы. Червоточины. Трещины. Организация рабочего места. Косослой. Основные разрезы. Смоляные кармашки.

«Шиповые соединения» - Выбор числа шипов на заготовке зависит то толщины соединяемых деталей. Размечают шипы и проушины с обеих сторон заготовки. Пиление древесины вдоль волокон. По отношению к плоскости рамки полотно пилы можно поворачивать на нужный угол. Изделие закрепляют в переднем зажиме верстака с подкладной доской.

Всего в теме 12 презентаций

Наиболее часто при нарезании резьбы резцами получается брак следующих видов:

  1. неточный шаг
  2. неточные диаметры резьбы
  3. неправильный профиль резьбы
  4. недостаточная чистота поверхности резьбы

Меры предупреждения

  1. Неточный шаг резьбы является результатом неправильного подбора сменных зубчатых колес или неправильной установки рукояток коробки подач. Предупредить брак можно правильной настройкой станка .
  2. Неточные размеры получаются вследствие недостаточного или излишнего съема металла при нарезании резьбы; устраняются частыми промерами, особенно при последних проходах, или установкой жесткого упора на глубину.
  3. Неправильный профиль резьбы получается при неправильном профиле резца и неточной установке его. Предупредить такой брак, можно тщательной проверкой профиля резца и его установки.
  4. Недостаточная чистота поверхности (риски, задиры на резьбе) бывает при неправильной заточке резца , завышенной глубине резания, неправильно выбранной скорости резания, сильном затуплении инструмента, недостаточно жестком креплении детали или инструмента, отсутствии или неправильно выбранном охлаждении и др. Чтобы избавиться от такого брака, необходимо устранить причины, вызвавшие его.

При нарезании резьбы встречаются различные виды брака. Наиболее распространенные из них - поломка метчика в отверстии, рваная резьба, непол­ная резьба, срыв резьбы и др.

Поломка метчика в отверстии может происходить от невнимательности работающего, от работы зату­пившимся метчиком и от забивания канавок метчи­ка отходящей стружкой. Поломка метчика требует большой затраты времени на его извлечение и, кро­ме того, портит резьбу, а иногда даже приводит к браку детали. Для предотвращения поломки необхо­димо работать внимательно, пользоваться исправным и острым метчиком, чаще вынимать метчик для уда­ления стружки.

Рваная резьба обычно получается при работе ту­пым метчиком или плашкой, при отсутствии смазки и неправильной установке метчика или плашки от­носительно нарезаемой детали. Для устранения этого вида брака следует применять правильно заточенные острые метчики и плашки, пользоваться смазкой, и правильно, без перекосов устанавливать режущий ин­струмент.

Неполная резьба получается, когда диаметр от­верстия под резьбу больше, чем это требуется для данных условий работы (материала детали и размера резьбы), а также, когда диаметр стержня под резьбу меньше установленного по чертежу. Правильно выб­

Ранный и выполненный диаметр отверстия для внут­ренней резьбы и диаметр стержня для наружной резь­бы исключают этот вид брака.

Срыв резьбы происходит в тех случаях, когда ди­аметр просверленного отверстия под резьбу меньше требуемого, либо диаметр стержня под наружную резьбу больше, чем это предусмотрено, когда при­меняется тупой метчик или тупые плашки и когда стружка забивается в канавки. Для устранения срыва резьбы необходимо выбирать правильный диаметр от­верстия и стержня, применять метчики и плашки с острыми режущими кромками, чаще очищать их от стружки.

Для контроля внутренних резьб применяют пре­дельные резьбовые калибры-пробки. Если в отверстие не проходит проходная калибр-пробка или проходит непроходная калибр-пробка, то деталь считается бра­ком. В первом случае брак является исправимым и может быть устранен, если резьбовое отверстие прой­дут новым исправным метчиком, который увеличит диаметр резьбы. Во втором случае брак является не­исправимым.

Качество наружной резьбы проверяют резьбовы­ми калибрами-кольцами, резьбовыми микрометрами или резьбомерами.

Шаги резьбы проверяют резьбомерами. Резьбоме­ры для метрической резьбы состоят из набора плас­тинок для измерения резьб с шагами от 0,4 до 6 мм и для дюймовой резьбы с числом ниток в одном дюйме от 4 до 28.

Итак, вы приобрели массивную доску для покрытия пола, теперь следует ознакомиться с способами ее укладки на пол. Ведь правильно уложенная массивная доска обеспечит вам красивый и надежный пол на долгое …

Какой должна быть ванная комната для ребенка? В первую очередь, безопасной, интересной и оригинальной. На это следует ориентироваться, выбирая не только мебель и аксессуары, но и сантехнику для детского санузла. …

На что обратить внимание при оформлении кухни? Привычная обстановка кухни может надоедать. Тогда появляется желание изменить ее. Для этого приобретаются кухни Киев, но мебели недостаточно. Необходимо правильно оформить окно, подобрать …

Накатывание — процесс обработки металлов и других материалов поверхностным пластическим деформированием при помощи накатывающего инструмента (ролики, зубчатые накатники, плашки) с соответствующим резьбовым или иным профилем.

Накатывание как метод пластического деформирования металла существует более 150 лет. На первом оборудовании, предназначенном для холодного накатывания наружной резьбы на болтах для крепления железнодорожных шпал, применялись плоские плашки.

Теоретически резьбы и профили могут быть накатаны на любом пластически деформируемом материале. Однако стабильность процесса накатывания, выполнение требований, предъявляемых к качеству, точности и прочности накатываемых изделий, обеспечение экономически целесообразной стойкости инструмента, надежности и производительности оборудования определяют необходимые требования к свойствам материала заготовки.

Возрастающие требования к точности изготовления резьбовых профилей связаны с необходимостью улучшения функциональной надежности резьбовых соединений, с расширяющейся автоматизацией сборочных производств, где используются резьбовые детали.

Прогнозирование и классификация возникающих дефектов при накатывании резьбы — один из основных элементов современной технологии производства крепежных изделий, позволяющих обеспечить необходимое качество.

При накатывании резьбы цилиндрическая заготовка наружным диаметром, примерно равным среднему диаметру резьбы, вращается между рабочими поверхностями инструмента, имеющими заданный профиль. Резьбовые гребни накатного инструмента внедряются в поверхность заготовки и образуют на ней впадины, а вытесненный металл перемещается в радиальном направлении, образуя на заготовке гребни резьбы.

При накатывании резьбы в процессе пластической деформации изменяются физико-механические свойства поверхностного слоя металла. Образуется наклеп, повышающий твердость и прочность, появляются остаточные сжимающие напряжения с благоприятным распределением по сечению детали, видоизменяется форма и ориентация кристаллов (волокнистая текстура), протекает процесс образования карбидов, блокирующих дислокационные сдвиги и другие изменения. В результате этих превращений увеличивается сопротивление поверхностного слоя пластической деформации и разрушению, значительно повышается усталостная прочность деталей.

В процессе накатывания происходит непрерывное относительное проскальзывание металла заготовки относительно рабочей поверхности инструмента. По этой причине резьбы, полученные методом пластической деформации, имеют более высокий класс шероховатости поверхности профиля, чем шероховатость профиля резьбы, полученного методом шлифования.

Для получения резьбового профиля на крепежных деталях применяется разнообразный резьбообразующий инструмент: резьбонакатные плоские плашки, ролик-ролик и ролик-сегмент. Конструкции резьбообразующего инструмента также разнообразны и зависят от типа, а также производителя инструмента.

В плоских плашках используется, как правило, три рабочие зоны: заборная зона, обеспечивающая захват заготовки и предварительное профилирование; калибрующая зона, обеспечивающая получение окончательных геометрических размеров резьбы; зона сброса, позволяющая без залипания освободить заготовку из резьбообразующего инструмента.

В резьбонакатных роликах и ролик-сегментах может отсутствовать строгое разделение на рабочие зоны.

Накатывание резьбы сопровождается формоизменением поверхностного слоя заготовки, в результате чего на первом этапе получается овальное сечение; на втором этапе формирования резьбы, происходящей в калибрующей части инструмента, она приобретает форму окружности.

При использовании в качестве инструмента ролик-ролика или ролик-сегмента овальность устраняют на конечном участке резьбообразующей поверхности.

Режимы накатывания и степень заполнения контура оказывают решающее влияние на образование внутренних и поверхностных дефектов накатываемой резьбы.

Поверхностные дефекты, неизбежно сопутствующие на практике при накатывании резьбы, связаны с механикой этого процесса. Известно, что при накатывании резьбы может происходить шелушение, выкрашивание, отслаивание, растрескивание, вырывы поверхностных слоев металла или могут образовываться поверхностные дефекты, называемые закатами, складками, наслоениями, заусенцами и т.п., которые в зависимости от места расположения и глубины залегания способны влиять на статическую и циклическую прочность резьбового соединения.

Условия формирования профиля резьбы являются одной из основных причин образования поверхностных дефектов, связанных с механикой процесса накатывания. Профиль резьбы образуется, как правило, путем многократного и последовательного копирования профиля инструмента (подвижной и неподвижной плашек, роликов, ролика и сегмента).

Выдавливание профиля происходит за счет перераспределения элементарных объемов металла заготовки, вытесняемого рабочими витками резьбообразующего инструмента. При этом поверхность выдавливаемой резьбы соприкасается с рабочей поверхностью одной, а через каждые пол-оборота другой частью инструмента.

Можно предположить, что в процессе выдавливания пути прохождения рабочих витков инструментов по поверхности накатываемой резьбы либо совпадают (симметричная деформация), либо не совпадают (асимметричная деформация).

Симметричная деформация может привести к образованию дефекта в вершине полного профиля резьбы. Если в каждом цикле деформации тела заготовки вершина профиля инструмента смещается по новому пути на величину а, то возникновение дефектов возможно в любом месте профиля резьбы.

В реальном процессе накатывания резьбы нарушение симметрии деформирования металла может происходить в следующих случаях:

— вследствие неточной наладки резьбообразующего инструмента, то есть установки инструмента с неправильным смещением по шагу резьбы;

— из-за низкого качества изготовления резьбообразующего инструмента как по шагу резьбы, так и по форме профиля и углу наклона витков;

— в результате накатывания с полным заполнением профиля витков резьбообразующего инструмента;

— при недостаточной точности и жесткости конструкции резьбонакатного станка.

Неточная наладка станка, особенно установка резьбообразующего инструмента по торцевому биению и шагу, нарушает симметричность деформации металла из-за несовпадения путей прохождения витков инструментов. Это приводит к появлению наиболее массовых дефектов, называемых закатами, складками, наслоениями и т.п. Существенно, что режим накатывания лишь в большей или меньшей степени способствует их контрастному проявлению.

Практика показала, что резьбообразующий инструмент, который имеет погрешности по углу подъема рабочих витков или по шагу, независимо от степени заполнения контура инструмента, формирует поверхностные дефекты в виде различных складок.

Это объясняется тем, что на каждом цикле формирования профиля резьбы вершина витка одного резьбообразующего инструмента из пары смещается относительно другого.

В результате накатывания резьбы в заполненном контуре происходит течение поверхностных слоев металла в осевом направлении, что приводит к прерыванию волокон и появлению поверхностных дефектов типа наслоений в основании витков резьбы.

Эти дефекты имеют место и при устранении любых причин, которые вызывают асимметричное деформирование металла в процессе формирования профиля резьбы.

Таким образом, основными причинами образования поверхностных дефектов, связанных с механикой процесса накатывания, являются несовпадение путей прохождения рабочих витков инструментов по поверхности заготовки, нарушающее симметрию деформирования металла, и накатывание в заполненном контуре рабочих витков инструмента, что приводит к осевому смещению поверхностных слоев металла.

Перекатка и складки на боковых поверхностях профиля резьбы и по внутреннему диаметру резьбы возникают в большинстве случаев потому, что настройка резьбонакатного инструмента не обеспечивает одинаковой врезки частей инструмента в поверхность заготовки.

Этот дефект возникает как при использовании плоских плашек, так и при формировании резьбы с использованием роликов и ролик-сегментов.

Вследствие этого предварительно накатанный одной частью инструмента профиль резьбы подвергается боковому смещению другой частью инструмента.

В процессе накатки резьбы подобный дефект может постоянно повторяться, так как возникающая на боковых сторонах профиля резьбы перекатка распространяется спиралеобразно вплоть до радиуса основы.

Возникновение подобного дефекта связано со следующими причинами:

— неточная настройка резьбообразующего инструмента;

— различные углы наклона резьбы на применяемом резьбообразующем инструменте;

— большой люфт в суппортах крепления резьбообразующего инструмента;

— несоответствие диаметров работающих в паре резьбообразующих роликов.

Перекатка, иначе говоря образование складок на боковых сторонах и на основе профиля резьбы, снижает ее усталостную прочность. Вследствие этого дефекты подобного рода, возникающие на резьбовых соединениях, не могут быть пронормированы только полем допусков.

Одним из наиболее важных условий обеспечения качества при накатывании резьбы является правильный выбор режимов накатывания: усилия, скорости и величины подачи. Эти параметры в большей степени зависят от размеров накатываемой резьбы и механических свойств накатываемого материала.

Точность и качество накатываемой резьбы зависят от времени накатывания — от окружной скорости и радиальной скорости подачи инструмента.

Из опыта накатывания резьб круглыми роликами для сталей с временным сопротивлением разрыву Св < 60 кг/кв. мм составляет 20-25 м/мин, а для легированных сталей 10-12 м/мин.

При увеличенной скорости и величине подачи наблюдается шелушение и даже отслоение резьбы от тела детали при механических испытаниях.

Причины образования поверхностных дефектов, не связанных с механикой процесса пластической деформации при накатывании резьбы, целесообразно выделить в особую группу. Прежде всего это повреждения резьбы, образующиеся при внешнем воздействии в процессе изготовления.

Подобные дефекты образуются при выкрашивании вершин витков резьбообразующего инструмента. Мелкие выкрашивания заметно увеличивают шероховатость поверхности впадин накатанной резьбы, крупные образуют критические поверхностные дефекты.

Механические повреждения возможны при попадании в зону контакта заготовки и резьбообразующего инструмента различных твердых частиц (мелкая стружка, абразивы и др.), которые могут находиться в СОЖ или на поверхности заготовки или инструмента.

Царапины, забоины и другие дефекты, как правило, образовываются в результате соударения деталей при падении с большой скоростью в технологическую тару.

Следует обратить внимание и на поверхностные дефекты, присутствующие на заготовке: хотя и в несколько измененном виде (за счет деформирования металла в процессе накатывания), они неизбежно остаются на резьбе готового изделия.

При значительных дефектах на поверхности заготовки, таких как штамповочные трещины, волосовины, закаты и др., качественное изготовление резьбы может быть невозможным. Из вышесказанного можно сделать вывод, что основными факторами, оказывающими влияние на качество изделия при накатывании резьбы, являются:

1. Качество используемого материала;

2. Качество заготовки для накатывания резьбы;

3. Качество изготовления применяемого резьбообразующего инструмента;

4. Качество настройки резьбонакатного автомата и качество наладки резьбообразующего инструмента (квалификация работников);

5. Выбор оптимальных режимов накатывания резьбы, зависящих от параметров применяемого материала и качества изготовления заготовки;

6. Техническое состояние оборудования.