В частном доме

Косвенным показателем чистоты воздуха в помещении является. Стандарты на чистоту воздуха в лечебных учреждениях

Косвенным показателем чистоты воздуха в помещении является. Стандарты на чистоту воздуха в лечебных учреждениях

Основными источниками загрязнения воздуха закрытых помещений являются атмосферный воздух, проникающий в помещение через оконные проемы и неплотности строительных конструкций, строительные и отделочные полимерные материалы, выделяющие в воздух разнообразные, токсичные для человека вещества, многие из которых являются высокоопасными (бензол, толуол, циклогексан, ксилол, ацетон, бутанол, фенол, формальдегид, ацетальдегид, этиленгликоль, хлороформ), продукты жизнедеятельности человека и его бытовых занятий (антропотоксины: угарный газ, аммиак, ацетон, углеводороды, сероводород, альдегиды, органические кислоты, диэтиламин, метилацетат, крезол, фенол и др.), накапливающиеся в воздухе невентилируемых помещений с большим числом людей. Многие вещества являются высокоопасными, относящимися ко 2-му классу опасности. Это диметиламин, сероводород, диоксид азота, окись этилена, индол, скатол, меркаптан. Наибольший суммарный риск имеют бензол, хлороформ, формальдегид. Присутствующие одновременно даже в небольших количествах, они свидетельствуют о неблагополучии воздушной среды, оказывающей отрицательное воздействие на состояние умственной трудоспособности людей, находящихся в этих помещениях.

Кроме того, выдыхаемый людьми воздух по сравнению с атмосферным содержит меньше кислорода (до 15,1-16%), в 100 раз больше углекислого газа (до 3,4-4,7%), насыщен водяными парами, нагрет до температуры тела человека и деионизирован в процессе его прохождения через системы приточной вентиляции из-за задержки легких положительных и отрицательных аэроионов в воздуховодах.

В воздух поступает значительное количество микробов, среди которых могут быть и патогенные. Чем больше в воздухе поме- щений пыли, тем обильнее в нем микробное загрязнение. Пыль является фактором передачи инфекционных болезней с аэрозольным механизмом распространения и бактериальных инфекций (например, туберкулеза). Пыль, содержащая плесневые грибы родов Penicillium и Mukor, вызывает аллергические заболевания.

Воздействие различных факторов на человека внутри помещения может вызвать нарушения состояния его здоровья, т.е. заболевания, связанные со зданием», например, парами формальдегида, выделяющегося из полимерных и древесно-стружечных материалов.

Симптомы заболевания сохраняются долго, даже после устранения источника вредного воздействия. «Синдром больного здания» проявляется в виде острых нарушений состояния здоровья и дискомфорта (головной боли, раздражения глаз, носа и органов дыхания, сухого кашля, сухости и зуде кожи, слабости, тошноте, повышенной утомляемости, восприимчивости к запахам), возникающих в конкретных помещениях и почти полностью исчезающих при выходе из него. Развитие этого синдрома связывается с комбинированными и сочетанными действиями химических, физических (температура, влажность) и биологических (бактерии, неизвестные вирусы и др.) факторов. Его причинами чаще всего является недостаточная естественная и искусственная вентиляция помещений, строительные и отделочные полимерные материалы, выделяющие в воздух разнообразные токсичные для человека вещества, нерегулярная уборка помещений.

Качество воздушной среды принято оценивать косвенно по интегральному санитарному показателю чистоты воз- духа - содержанию углекислого газа (показателю Петтенкофера), а в качестве предельно допустимого норматива (ПДК) использовать его концентрацию в помещениях - 1,0%с или 0,1% (1000 см3 в 1 м3). Углекислый газ постоянно выделяется в воздух закрытых помещений при дыхании, наиболее доступен простому определению и имеет достоверную прямую корреляцию с суммарным загрязнением воздуха. Показатель Петтенкофера является не предельно допустимой концентрацией самого диоксида углерода, а показателем вредности концентраций многочисленных метаболитов человека, накопившихся в воздухе параллельно с диоксидом углерода. Более высокое содержание СО2 (>1,0%о) сопровождается суммарным изменением химического состава и физическим свойством воздуха в помещении, которые неблагоприятно влияют на состояние находящихся в нем людей, хотя сам по себе диоксид углерода и в значительно более высоких концентрациях не проявляет токсические для человека свойства. При оценке качества воздуха и проектировании систем вентиляции помещений с большим количеством людей содержание диоксида углерода служит основной расчетной величиной.

Мерами предупреждения загрязнения воздуха помещений является их проветривание, если это возможно, соблюдение чистоты путем регулярной влажной уборки помещений, соблюдение установленных норм площади и кубатуры помещений, санация воздуха с помощью дезинфицирующих средств и бактерицидных ламп.

В результате в воздухе увеличивается концентрация углекислоты, появляются аммиак, альдегиды, кетоны и другие дурно пахнущие газы, увеличивается влажность, пылевая и микробная загрязненность воздуха, что в целом характеризуется как душный (жилой) воздух, оказывающий влияние на самочувствие, работоспособность и здоровье людей. Поконцентрации углекислоты в таком воздухе можно определить степень общей его загрязненности. Поэтому углекислый газ служит санитарным показателем чистоты воздуха в жилых и общественных помещениях. Воздух считается свежим, если концентрация углекислоты в нем не превышает 0,1%. Эта величина и считается предельно допустимой для воздуха в жилых и общественных помещениях.

Кроме того, следует учитывать тот фактор, что углекислый газ тяжелее воздуха и может скапливаться в нижних частях замкнутых пространств, не подвергающихся интенсивной вентиляции. Наиболее важно это для тех мест, где происходят усиленные окислительные процессы (бродильные чаны, заброшенные шахты или колодцы, на дне которых находятся гниющие или бродящие отбросы и т. д.). В таких местах концентрация углекислоты может достигать больших величин и представлять опасность для здоровья и существования человека. Если концентрация углекислого газа во вдыхаемом воздухе превышает 3% то существование в такой атмосфере становится опасным для здоровья. Концентрация СО2 порядка 10 % считается опасной для жизни (потеря сознания наступает через несколько минут дыхания таким воздухом). При концентрации 20 % происходит паралич дыхательного центра в течение нескольких секунд.

Нормативы воздухообмена в жилых зданиях

Для оценки степени чистоты воздуха используются концентрация углекислого газа в воздухе, окисляемость воздуха, общее содержание микроорганизмов и содержание стрептококков и стафилококков (табл. 7.5).

Таблица 7.5.

3.4 Освещение. Ра­циональное освещение необходимо прежде всего для оптимальной функции зрительного анализатора. Свет обладает и психофизиологическим действием. Рациональное освещение положительно сказывается на функциональном состоянии коры большого мозга, улучшает функцию других анализаторов. В целом световой комфорт, улучшая функциональное состояние центральной нервной системы и повышая работоспособность глаза, приводит к повышению производительности и качества труда, отдаляет утомление, способствует уменьшению производственного травматизма. Изложенное относится как к естественному, так и к искусственному освещению. Но естественное освещение, помимо того, оказывает выраженное общебиологическое действие, является синхронизатором биологических ритмов, обладает тепловым и бактерицидным действием (см. главу III). Поэтому жилые, производственные и общественные здания должны быть обеспечены рациональным дневным освещением.

С другой стороны, с помощью искусственного освещения можно создать в любом месте помещения заданную и стабильную в течение дня освещенность. Роль искусственного освещения в настоящее время высока: вторые смены, ночной труд, подземные работы, вечерние домашние занятия, культурный досуг и др.

К основным показателям, характеризующим освещение, относятся: 1) спектральный состав света (от источника и отраженного), 2) освещенность, 3) яркость (источника света, отражающих поверхностей), 4) равномерность освещения.



Спектральный состав света. Наибольшая производительность труда и наименьшая утомляемость глаза бывает при освещении стандартным дневным светом. За стандарт дневного света в светотехнике принят спектр рассеянного света с голубого небосвода, т. е. поступающего в помещение, окна которого ориентированы на север. Наилучшее цветоразличение отмечается при дневном свете. Если размеры рассматриваемых деталей один миллиметр и более, то для зрительной работы примерно одинаково освещение источниками, генерирующими белый дневной свет и желтоватый.

Спектральный состав света важен и в психофизиологическом аспекте. Так, красный, оранжевый и желтый цвета по ассоциации с пламенем, солнцем вызывают ощущение теплоты. Красный цвет возбуждает, желтый - тонизирует, улучшает настроение и работоспособность. Голубой, синий и фио­летовый кажутся холодными. Так, окраска стен горячего цеха в синий цвет создает ощущение прохлады. Голубой цвет - успо­каивает, синий и фиолетовый - угнетают. Зеленый цвет - нейтральный - приятный по ассоциации с зеленой растительностью, он меньше других утомляет зрение. Окраска стен, машин, крышек парт в зеленые тона благоприятно сказывается на самочувствии, работоспособности и зрительной функции глаза.

Окраска стен и потолков в белый цвет издавна считается гигиенической, так как обеспечивает наилучшую освещенность помещения из-за высокого коэффициента отражения 0,8-0,85. Поверхности, окрашенные в другие цвета, имеют меньший коэффициент отражения: светло-желтый - 0,5-0,6, зеленый, серый - 0,3, темно-красный- 0,15, темно-синий - 0,1, черный -- 0,01. Но белый цвет (из-за ассоциации со снегом) вызывает ощущение холода, он как бы увеличивает размер помещения, де­лает его неуютным. Поэтому стены чаще окрашивают в светло-салатовый, светло-желтый и близкие к ним цвета.

Следующий показатель, характеризующий освещение,- освещенность. Освещенностью называют поверхностную плотность светового потока. Единицей освещенности является 1 люкс - освещенность поверх­ности 1 м 2 , на которую падает и равномерно распределяется световой поток в один люмен. Люмен - световой поток, который испускается полным излучателем (абсолютно черным телом) при температуре затвердения платины с площади 0,53 мм 2 . Освещенность обратно пропорциональна квадрату расстояния между источ­ником света и освещаемой поверхностью. Поэтому, чтобы экономно создать высокую освещенность, приближают источник к освещаемой поверхности (местное освеще­ние). Освещенность определяют люксметром.

Гигиеническое нормирование освещенности сложно, так как она влияет на функцию центральной нервной системы и на функцию глаза. Эксперименты показали, что с увеличением освещенности до 600 лк значительно улучшается функциональное состояние центральной нервной системы; дальнейшее увеличение освещенности до 1200 лк в меньшей мере, но также улучшает ее функцию, освещенность выше 1200 лк почти не оказывает влияния. Таким образом, везде, где работают люди, желательна освещенность порядка 1200 лк, минимум 600 лк.

Освещенность влияет на зрительную функцию глаза при различной величине рассматриваемых предметов. Если рассматриваемые детали имеют размер менее 0,1 мм, при освещении лампами накаливания нужна освещенность 400-1500 лк", 0,1-0,3 мм -300- 1000 лк, 0,3-1 мм -200-500 лк, 1 - 10 мм - 100-150 лк, более 10 мм – 50- 100 лк. При этих нор­мативах освещенность достаточна для функции зрения, но в ряде случаев она ме­нее 600 лк, т. е. недостаточна с психофизиологической точки зрения. Поэтому при освещении люминесцентными лампами (поскольку они экономичней) все перечисленные нормы увеличиваются в 2 раза и тогда освещенность приближается к оптимальной и в психофизиологическом отношении.

При письме и чтении (школы, библиотеки, аудитории) освещенность на рабочем месте должна быть не менее 300 (150) лк, в жилых комнатах 100 (50), кухнях 100 (30).

Для характеристики освещения большое значение имеет яркость . Яркость - сила света, излучаемого с единицы поверхности. Фактически при рассматривании предмета мы видим не освещенность, а яркость. Единица яркости - кандела на квадратный метр (кд/м 2) - яркость равномерно светящей плоской поверхности, излучающей в перпендикулярном направлении с каждого квадратного метра силу света, равную одной канделе. Яркость определяют яркомером.

При рациональном освещении в поле зрения человека не должно быть ярких источников света или отражающих поверхностей. Если рассматриваемая поверхность чрезмерно яркая, то это негативно отразится на работе глаза: появляется ощущение зрительного дискомфорта (с 2000 кд/м 2), падает производительность зрительной работы (с 5000 кд/м 2), вызывает слепимость (с 32 000 кд/м 2) и даже болевое ощущение (с 160 000 кд/ м 2). Оптимальная яркость рабочих поверхностей - несколько сот кд/ м 2 . Допустимая яркость источников освещения, находящихся в поле зрения человека, желательна не более 1000-2000 кд/ м 2 , а яркость источников, редко попадающих в поле зрения человека, не более 3000-5000 кд/ м 2

Освещение должно быть равномерным и не создавать теней . Если в поле зрения человека часто меняется яркость, то наступает утомление мышц глаза, принимающих участие в адаптации (сужение и расширение зрачка) и синхронно с ней происходящей аккомодации (изменение кривизны хрусталика). Равномерной должна быть освещенность по помещению и на рабочем месте. На расстоянии 5 м пола помещения отношение наибольшей освещенности к наименьшей не должно превышать 3:1, на расстоянии 0,75 м рабочего места - не больше 2:1. Яркость двух соседних поверхностей (например, тетрадь - парта, школьная доска - стена, рана - операционное белье) не должна отличаться больше, чем 2:1-3:1.

Освещенность, создаваемая общим освещением, должна быть не менее 10% величины, нормируемой при комбинированном, но не менее 50 лк при лампах накаливания и 150 лк при люминесцентных лампах.

Естественное освещение. Солнце создает освещенность вне помещений обычно порядка де­сятков тысяч люкс. Естественное освещение помещений зависит от светового климата местности, ориентации окон зданий, наличия затеняющих объектов (здания, деревья), устройства и размеров окон, ширины межоконных простенков, отражающей способности стен, потолка, пола, чистоты стекол и др.

Для хорошего дневного освещения площадь окон должна соответствовать площади помещений. Поэтому распространенным способом оценки естественного освещения помещений является геометрический, при котором вычисляют так называемый световой коэффициент , т. е. отношение застекленной площади окон к площади пола. Чем больше величина светового коэффициента, тем лучше освещение. Для жилых помещений световой коэффициент должен быть не меньше 1/8-1/10, для классов и больничных палат 1/5- 1/6, для операционных 1/4-1/5, для подсобных помещений 1/10-1/12.

Оценка естественного освещения только по световому коэффициенту может оказаться неточной, так как на освещенность оказывает влияние наклон световых лучей к освещаемой поверхности (угол падения лучей). В том случае если из-за противостоящего здания или деревьев в комнату попадает не прямой солнечный свет, а только отраженные лучи, их спектр лишен коротковолновой, самой эффективной в биологическом отношении части – ультрафиолетовых лучей. Угол, в пределах которого в определенную точку помещения попадают прямые лучи с небосвода, носит название угла отверстия.

Угол падения образован двумя линиями, одна из которых идет от верхнего края окна к точке, где определяются условия освещения, вторая – линия на горизонтальной плоскости, соединяющая точку измерения со стеной, на которой расположено окно.

Угол отверстия образуется двумя линиями, идущими от рабочего места: одна – к верхнему краю окна, другая – к самой верхней точке противостоящего здания или какого-либо ограждения (забор, деревья и т.п.). Угол падения должен быть не менее 27º, а угол отверстия – не менее 5 º. Освещенность у внутренней стены помещения зависит также от глубины помещения, в связи с чем для оценки условий дневного освещения определяют также коэффициент заглубления - отношение расстояния от верхнего края окна до пола к глубине комнаты. Коэффициент заглубления должен быть не менее 1:2.

Ни один из геометрических показателей не отражает полноту влияния на естественное освещение всех факторов. Влияние всех факторов учитывается светоте­ническми показателем- коэффициентом естественной освещенности (КЕО). КЕО = Е п: Е 0 *100%, где Е п - освещенность (в лк) точки, находящейся внутри помещения в 1 м от стены, противоположной окну, : Е 0 - освещенность (в лк) точки, расположенной вне помещения, при условии ее освещения рассеянным светом (сплошная облачность) всего небосвода. Таким образом, КЕО определяется как отношение освещенности внутри помещения к одновременной освещенности вне помещения, выраженное в процентах.

Для жилых помещений КЕО должен быть не менее 0,5%, для больничных палат- не менее 1%, для школьных классов- не менее 1,5%, для операционных - не менее 2,5%.

Искусственное освещение должно отвечать следующим требованиям: быть достаточно интенсивным, равномерным; обеспечивать правильное тенеобразование; не ослеплять и не искажать цвета: не нагревать; по спектральному составу приближаться к дневному.

Существует две системы искусственного освещения: общее и комбинированное , когда общее дополняют местным, концентрирующим свет непосредственно на рабочих местах..

Основными источниками искусственного освещения являются лампы накаливания и люминесцентные. Лампа накаливания- - удобный и без­отказный источник света. Одними из ее недостатков являются небольшая светоотдача, преобладание в спектре желтых и красных лучей и меньшее содержание синего и фиолетового. Хотя в психофизиологическом отношении такой спектральный состав делает излучение приятным, теплым. В отношении зрительной работы свет лампы накаливания уступает дневному лишь при необходимости рассматривания очень мелких деталей. Он непригоден в тех случаях, когда требуется хорошее цветоразличение. Поскольку поверхность нити накала ничтожно мала, я­кость ламп накаливания значительно превышает ту, которая слепит . Для борьбы с яркостью применяют защищающую от ослепляющего действия прямых лучей света осветительную арматуру и подвешивают светильники вне поля зрения людей.

Различают осветительную арматуру прямого света, отраженного, полуотраженного и рассеянного . Арматура прямого света направляет свыше 90% света лампы на освещаемое место, обеспечивая его высокую освещенность. В то же время создается значительный контраст между освещенными и неосвещенными участками помещения. Образуются резкие тени, и не исключено ослепляющее действие. Эта арматура применяется для освещения вспомогательных помещений и санитарных узлов. Арматура отраженного света характеризуется тем, что лучи от лампы направляются на потолок и на верхнюю часть стен. Отсюда они отражаются и равномерно, без образования теней, распределяются по помещению, освещая его мягким рассеянным светом. Этот вид арматуры создает наиболее приемлемое с ги­гиенической точки зрения освещение, но оно не экономично, так как при этом теряется свыше 50% света. Поэтому для освещения жилищ, классов, палат часто применяют более экономную арматуру полуотраженного и рассеянного света. При этом часть лучей освещает помещение, пройдя через молочное или матовое стекло, а часть - после отражения от потолка и стен. Подобная арматура создает удовлетворительные условия освещения, она не слепит глаза и при ней не образуется резких теней.

Люминесцентные лампы отвечают большинству требований, приведенных выше. Люминесцентная лампа представляет собой трубку из обычного стекла, внутренняя поверхность которой покрыта люминофором. Трубка заполнена парами ртути, с обеих концов ее впаяны электроды. При включении лампы в электрическую сеть между электродами возникает электрический ток («газовый разряд»), генерирующий ультрафиолетовое излучение. Под воздействием ультрафиолетовых лучей начинает светиться люминофор. Путем подбора люминофоров изготавливают люминесцентные лампы с различным спектром видимого излучения. Наиболее часто применяют лампы дневного света (ЛД), лампы белого света (ЛБ) и тепло-белого света (ЛТБ). Спектр излучения лампы ЛД приближается к спектру естественного освещения помещений северной ориентации. При нем глаза утомляются наименьше даже при рассматривании деталей небольшого размера. Лампа ЛД незаменима в помещениях, где требуется правильное цветоразличение. Недостатком лампы является то, что кожа лица людей выглядит при этом свете, богатом голубыми лучами, нездоровой, цианотичной, из-за чего эти светильники не применяют в больницах, школьных классах и ряде подобных помещений. По сравнению с лампами ЛД спектр ламп ЛБ богаче желтыми лучами. При освеще­нии этими лампами сохраняется высокая работоспособность глаза и лучше выглядит цвет кожи лица. Поэтому лампы ЛБ применяют в школах, аудиториях, жилищах, палатах больниц и т. п. Спектр ламп ЛТБ богаче желтыми и розовыми лучами, что несколько снижает работоспособность глаза, но значительно оживляет цвет кожи лица. Эти лампы применяют для освещения вокзалов, вестибюлей ки­нотеатров, помещений метро и т. п.

Разнообразие спектра является одним из гигиенических п реимуществ этих ламп. Светоотдача люминесцентных ламп в 3-4 раза больше ламп накаливания (с 1 Вт 30-80 лм), поэтому они экономичней . Яркость люминесцентных ламп 4000- 8000 кд/м 2 , т. е. выше допустимой. Поэтому и их применяют с защитной арматурой. При многочисленных сравнительных испытаниях с лампами накаливания на производстве, в школах, аудиториях объективные показатели, характеризующие состояние нервной системы, утомление глаза, работоспособность, почти всегда свидетельствовали о гигиеническом преимуществе люминесцентных ламп. Однако для этого требуется квалифицированное применение их. Необходим правильный выбор ламп по спектру в зависимости от назначения помещения. Так как чувствительность зрения к свету люминесцентных ламп, так же, как и к дневному свету, ниже, чем к свету ламп накаливания, нормы освещенности для них устанавливают в 2-3 раза выше, чем для ламп накаливания (табл. 7.6.).

Если при люминесцентных лампах освещенность ниже 75-150 лк, то наблюдается «сумеречный эффект», т.е. освещенность воспринимается как недостаточная даже при рассматривании крупных деталей. Поэтому при люминесцентных лампах освещенность должна быть не ниже 75-150 лк.

> Углекислота

Ученые обнаружили, что избыток углекислого газа в помещении очень вреден для здоровья. Углекислота сегодня чуть ли не главное действующее лицо многих катастрофических сценариев, которыми нас пугают многие ученые. Ему приписывают вину за глобальное потепление и все связанные с этим грядущие катаклизмы.

Но, как выяснилось, данный газ уже давно делает свое "черное дело". И вовсе не в масштабе планеты, а в любой душной комнате. Не хватает кислорода, говорим мы в таком случае. Особенно если начинает болеть голова, краснеют глаза, резко снижается внимание, появляется чувство усталости. Однако, как показали последние исследования зарубежных ученых, причина вовсе не в недостатке кислорода. Виноват избыток углекислого газа, который каждый из нас выдыхает. Кстати, от 18 до 25 литров этого газа в час.

Чем же опасна углекислота? Индийские ученые пришли к совершенно неожиданным выводам. Даже в относительно низких концентрациях этот газ является токсичным и по своей "ядовитости" близок к двуокиси азота, что может привести к заболеванию сердечно-сосудистой системы, гипертонии, усталости и т.д.

Чистый воздух за городом содержит около 0,04 процента углекислого газа. Еще недавно в Европе и США считалось, что газ опасен для человека только в больших концентрациях. Однако в последнее время начали изучать, как он влияет на человека при концентрации выше чем 0,1 процента. Оказалось, если содержание превышает этот уровень, то, например, у многих учеников снижается внимание, ухудшается успеваемость, они пропускают уроки из-за болезней легких, бронхов, носоглотки и т.д. Особенно это касается детей, больных астмой. Поэтому требования к воздуху во многих странах очень высоки. В России подобные исследования источников загрязнения воздуха никогда не проводились. Однако комплексное обследование московских детей и подростков показало, среди обнаруженных болезней преобладают заболевания органов дыхания.

Очень важно поддерживать высокие показатели качества воздуха в спальне, где люди проводят треть своей жизни. Чтобы хорошо выспаться, гораздо важнее качественный воздух в спальне, чем продолжительность сна, а уровень углекислоты в спальнях и детских комнатах должен быть ниже 0,08 процента.

Финские ученые нашли способ решения проблемы. Ими создан прибор, который удаляет из воздуха помещений избыток углекислого газа. В итоге содержание газа не больше, чем за городом. Принцип основан на абсорбции (поглощении) углекислого газа специальным веществом. В России о существовании проблемы негативного влиянии повышенного уровня углекислоты в помещении знают пока единицы.

Ирина Меднис

19.03.2008 | Российская газета

Другие интересные статьи раздела:


3.4 Освещение. Ра­циональное освещение необходимо прежде всего для оптимальной функции зрительного анализатора. Свет обладает и психофизиологическим действием. Рациональное освещение положительно сказывается на функциональном состоянии коры большого мозга, улучшает функцию других анализаторов. В целом световой комфорт, улучшая функциональное состояние центральной нервной системы и повышая работоспособность глаза, приводит к повышению производительности и качества труда, отдаляет утомление, способствует уменьшению производственного травматизма. Изложенное относится как к естественному, так и к искусственному освещению. Но естественное освещение, помимо того, оказывает выраженное общебиологическое действие, является синхронизатором биологических ритмов, обладает тепловым и бактерицидным действием (см. главу III). Поэтому жилые, производственные и общественные здания должны быть обеспечены рациональным дневным освещением.

С другой стороны, с помощью искусственного освещения можно создать в любом месте помещения заданную и стабильную в течение дня освещенность. Роль искусственного освещения в настоящее время высока: вторые смены, ночной труд, подземные работы, вечерние домашние занятия, культурный досуг и др.

К основным показателям, характеризующим освещение, относятся: 1) спектральный состав света (от источника и отраженного), 2) освещенность, 3) яркость (источника света, отражающих поверхностей), 4) равномерность освещения.

Спектральный состав света. Наибольшая производительность труда и наименьшая утомляемость глаза бывает при освещении стандартным дневным светом. За стандарт дневного света в светотехнике принят спектр рассеянного света с голубого небосвода, т. е. поступающего в помещение, окна которого ориентированы на север. Наилучшее цветоразличение отмечается при дневном свете. Если размеры рассматриваемых деталей один миллиметр и более, то для зрительной работы примерно одинаково освещение источниками, генерирующими белый дневной свет и желтоватый.

Спектральный состав света важен и в психофизиологическом аспекте. Так, красный, оранжевый и желтый цвета по ассоциации с пламенем, солнцем вызывают ощущение теплоты. Красный цвет возбуждает, желтый - тонизирует, улучшает настроение и работоспособность. Голубой, синий и фио­летовый кажутся холодными. Так, окраска стен горячего цеха в синий цвет создает ощущение прохлады. Голубой цвет - успо­каивает, синий и фиолетовый - угнетают. Зеленый цвет - нейтральный - приятный по ассоциации с зеленой растительностью, он меньше других утомляет зрение. Окраска стен, машин, крышек парт в зеленые тона благоприятно сказывается на самочувствии, работоспособности и зрительной функции глаза.

Окраска стен и потолков в белый цвет издавна считается гигиенической, так как обеспечивает наилучшую освещенность помещения из-за высокого коэффициента отражения 0,8-0,85. Поверхности, окрашенные в другие цвета, имеют меньший коэффициент отражения: светло-желтый - 0,5-0,6, зеленый, серый - 0,3, темно-красный- 0,15, темно-синий - 0,1, черный -- 0,01. Но белый цвет (из-за ассоциации со снегом) вызывает ощущение холода, он как бы увеличивает размер помещения, де­лает его неуютным. Поэтому стены чаще окрашивают в светло-салатовый, светло-желтый и близкие к ним цвета.

Следующий показатель, характеризующий освещение,- освещенность. Освещенностью называют поверхностную плотность светового потока. Единицей освещенности является 1 люкс - освещенность поверх­ности 1 м 2 , на которую падает и равномерно распределяется световой поток в один люмен. Люмен - световой поток, который испускается полным излучателем (абсолютно черным телом) при температуре затвердения платины с площади 0,53 мм 2 . Освещенность обратно пропорциональна квадрату расстояния между источ­ником света и освещаемой поверхностью. Поэтому, чтобы экономно создать высокую освещенность, приближают источник к освещаемой поверхности (местное освеще­ние). Освещенность определяют люксметром.

Гигиеническое нормирование освещенности сложно, так как она влияет на функцию центральной нервной системы и на функцию глаза. Эксперименты показали, что с увеличением освещенности до 600 лк значительно улучшается функциональное состояние центральной нервной системы; дальнейшее увеличение освещенности до 1200 лк в меньшей мере, но также улучшает ее функцию, освещенность выше 1200 лк почти не оказывает влияния. Таким образом, везде, где работают люди, желательна освещенность порядка 1200 лк, минимум 600 лк.

Освещенность влияет на зрительную функцию глаза при различной величине рассматриваемых предметов. Если рассматриваемые детали имеют размер менее 0,1 мм, при освещении лампами накаливания нужна освещенность 400-1500 лк", 0,1-0,3 мм -300- 1000 лк, 0,3-1 мм -200-500 лк, 1 - 10 мм - 100-150 лк, более 10 мм – 50- 100 лк. При этих нор­мативах освещенность достаточна для функции зрения, но в ряде случаев она ме­нее 600 лк, т. е. недостаточна с психофизиологической точки зрения. Поэтому при освещении люминесцентными лампами (поскольку они экономичней) все перечисленные нормы увеличиваются в 2 раза и тогда освещенность приближается к оптимальной и в психофизиологическом отношении.

При письме и чтении (школы, библиотеки, аудитории) освещенность на рабочем месте должна быть не менее 300 (150) лк, в жилых комнатах 100 (50), кухнях 100 (30).

Для характеристики освещения большое значение имеет яркость . Яркость - сила света, излучаемого с единицы поверхности. Фактически при рассматривании предмета мы видим не освещенность, а яркость. Единица яркости - кандела на квадратный метр (кд/м 2) - яркость равномерно светящей плоской поверхности, излучающей в перпендикулярном направлении с каждого квадратного метра силу света, равную одной канделе. Яркость определяют яркомером.

При рациональном освещении в поле зрения человека не должно быть ярких источников света или отражающих поверхностей. Если рассматриваемая поверхность чрезмерно яркая, то это негативно отразится на работе глаза: появляется ощущение зрительного дискомфорта (с 2000 кд/м 2), падает производительность зрительной работы (с 5000 кд/м 2), вызывает слепимость (с 32 000 кд/м 2) и даже болевое ощущение (с 160 000 кд/ м 2). Оптимальная яркость рабочих поверхностей - несколько сот кд/ м 2 . Допустимая яркость источников освещения, находящихся в поле зрения человека, желательна не более 1000-2000 кд/ м 2 , а яркость источников, редко попадающих в поле зрения человека, не более 3000-5000 кд/ м 2

Освещение должно быть равномерным и не создавать теней . Если в поле зрения человека часто меняется яркость, то наступает утомление мышц глаза, принимающих участие в адаптации (сужение и расширение зрачка) и синхронно с ней происходящей аккомодации (изменение кривизны хрусталика). Равномерной должна быть освещенность по помещению и на рабочем месте. На расстоянии 5 м пола помещения отношение наибольшей освещенности к наименьшей не должно превышать 3:1, на расстоянии 0,75 м рабочего места - не больше 2:1. Яркость двух соседних поверхностей (например, тетрадь - парта, школьная доска - стена, рана - операционное белье) не должна отличаться больше, чем 2:1-3:1.

Освещенность, создаваемая общим освещением, должна быть не менее 10% величины, нормируемой при комбинированном, но не менее 50 лк при лампах накаливания и 150 лк при люминесцентных лампах.

Естественное освещение. Солнце создает освещенность вне помещений обычно порядка де­сятков тысяч люкс. Естественное освещение помещений зависит от светового климата местности, ориентации окон зданий, наличия затеняющих объектов (здания, деревья), устройства и размеров окон, ширины межоконных простенков, отражающей способности стен, потолка, пола, чистоты стекол и др.

Для хорошего дневного освещения площадь окон должна соответствовать площади помещений. Поэтому распространенным способом оценки естественного освещения помещений является геометрический, при котором вычисляют так называемый световой коэффициент , т. е. отношение застекленной площади окон к площади пола. Чем больше величина светового коэффициента, тем лучше освещение. Для жилых помещений световой коэффициент должен быть не меньше 1/8-1/10, для классов и больничных палат 1/5- 1/6, для операционных 1/4-1/5, для подсобных помещений 1/10-1/12.

Оценка естественного освещения только по световому коэффициенту может оказаться неточной, так как на освещенность оказывает влияние наклон световых лучей к освещаемой поверхности (угол падения лучей). В том случае если из-за противостоящего здания или деревьев в комнату попадает не прямой солнечный свет, а только отраженные лучи, их спектр лишен коротковолновой, самой эффективной в биологическом отношении части – ультрафиолетовых лучей. Угол, в пределах которого в определенную точку помещения попадают прямые лучи с небосвода, носит название угла отверстия.

Угол падения образован двумя линиями, одна из которых идет от верхнего края окна к точке, где определяются условия освещения, вторая – линия на горизонтальной плоскости, соединяющая точку измерения со стеной, на которой расположено окно.

Угол отверстия образуется двумя линиями, идущими от рабочего места: одна – к верхнему краю окна, другая – к самой верхней точке противостоящего здания или какого-либо ограждения (забор, деревья и т.п.). Угол падения должен быть не менее 27º, а угол отверстия – не менее 5 º. Освещенность у внутренней стены помещения зависит также от глубины помещения, в связи с чем для оценки условий дневного освещения определяют также коэффициент заглубления - отношение расстояния от верхнего края окна до пола к глубине комнаты. Коэффициент заглубления должен быть не менее 1:2.

Ни один из геометрических показателей не отражает полноту влияния на естественное освещение всех факторов. Влияние всех факторов учитывается светоте­ническми показателем- коэффициентом естественной освещенности (КЕО). КЕО = Е п: Е 0 *100%, где Е п - освещенность (в лк) точки, находящейся внутри помещения в 1 м от стены, противоположной окну, : Е 0 - освещенность (в лк) точки, расположенной вне помещения, при условии ее освещения рассеянным светом (сплошная облачность) всего небосвода. Таким образом, КЕО определяется как отношение освещенности внутри помещения к одновременной освещенности вне помещения, выраженное в процентах.

Для жилых помещений КЕО должен быть не менее 0,5%, для больничных палат- не менее 1%, для школьных классов- не менее 1,5%, для операционных - не менее 2,5%.

Искусственное освещение должно отвечать следующим требованиям: быть достаточно интенсивным, равномерным; обеспечивать правильное тенеобразование; не ослеплять и не искажать цвета: не нагревать; по спектральному составу приближаться к дневному.

Существует две системы искусственного освещения: общее и комбинированное , когда общее дополняют местным, концентрирующим свет непосредственно на рабочих местах..

Основными источниками искусственного освещения являются лампы накаливания и люминесцентные. Лампа накаливания- - удобный и без­отказный источник света. Одними из ее недостатков являются небольшая светоотдача, преобладание в спектре желтых и красных лучей и меньшее содержание синего и фиолетового. Хотя в психофизиологическом отношении такой спектральный состав делает излучение приятным, теплым. В отношении зрительной работы свет лампы накаливания уступает дневному лишь при необходимости рассматривания очень мелких деталей. Он непригоден в тех случаях, когда требуется хорошее цветоразличение. Поскольку поверхность нити накала ничтожно мала, я­кость ламп накаливания значительно превышает ту, которая слепит . Для борьбы с яркостью применяют защищающую от ослепляющего действия прямых лучей света осветительную арматуру и подвешивают светильники вне поля зрения людей.

Различают осветительную арматуру прямого света, отраженного, полуотраженного и рассеянного . Арматура прямого света направляет свыше 90% света лампы на освещаемое место, обеспечивая его высокую освещенность. В то же время создается значительный контраст между освещенными и неосвещенными участками помещения. Образуются резкие тени, и не исключено ослепляющее действие. Эта арматура применяется для освещения вспомогательных помещений и санитарных узлов. Арматура отраженного света характеризуется тем, что лучи от лампы направляются на потолок и на верхнюю часть стен. Отсюда они отражаются и равномерно, без образования теней, распределяются по помещению, освещая его мягким рассеянным светом. Этот вид арматуры создает наиболее приемлемое с ги­гиенической точки зрения освещение, но оно не экономично, так как при этом теряется свыше 50% света. Поэтому для освещения жилищ, классов, палат часто применяют более экономную арматуру полуотраженного и рассеянного света. При этом часть лучей освещает помещение, пройдя через молочное или матовое стекло, а часть - после отражения от потолка и стен. Подобная арматура создает удовлетворительные условия освещения, она не слепит глаза и при ней не образуется резких теней.

Люминесцентные лампы отвечают большинству требований, приведенных выше. Люминесцентная лампа представляет собой трубку из обычного стекла, внутренняя поверхность которой покрыта люминофором. Трубка заполнена парами ртути, с обеих концов ее впаяны электроды. При включении лампы в электрическую сеть между электродами возникает электрический ток («газовый разряд»), генерирующий ультрафиолетовое излучение. Под воздействием ультрафиолетовых лучей начинает светиться люминофор. Путем подбора люминофоров изготавливают люминесцентные лампы с различным спектром видимого излучения. Наиболее часто применяют лампы дневного света (ЛД), лампы белого света (ЛБ) и тепло-белого света (ЛТБ). Спектр излучения лампы ЛД приближается к спектру естественного освещения помещений северной ориентации. При нем глаза утомляются наименьше даже при рассматривании деталей небольшого размера. Лампа ЛД незаменима в помещениях, где требуется правильное цветоразличение. Недостатком лампы является то, что кожа лица людей выглядит при этом свете, богатом голубыми лучами, нездоровой, цианотичной, из-за чего эти светильники не применяют в больницах, школьных классах и ряде подобных помещений. По сравнению с лампами ЛД спектр ламп ЛБ богаче желтыми лучами. При освеще­нии этими лампами сохраняется высокая работоспособность глаза и лучше выглядит цвет кожи лица. Поэтому лампы ЛБ применяют в школах, аудиториях, жилищах, палатах больниц и т. п. Спектр ламп ЛТБ богаче желтыми и розовыми лучами, что несколько снижает работоспособность глаза, но значительно оживляет цвет кожи лица. Эти лампы применяют для освещения вокзалов, вестибюлей ки­нотеатров, помещений метро и т. п.

Разнообразие спектра является одним из гигиенических п реимуществ этих ламп. Светоотдача люминесцентных ламп в 3-4 раза больше ламп накаливания (с 1 Вт 30-80 лм), поэтому они экономичней . Яркость люминесцентных ламп 4000- 8000 кд/м 2 , т. е. выше допустимой. Поэтому и их применяют с защитной арматурой. При многочисленных сравнительных испытаниях с лампами накаливания на производстве, в школах, аудиториях объективные показатели, характеризующие состояние нервной системы, утомление глаза, работоспособность, почти всегда свидетельствовали о гигиеническом преимуществе люминесцентных ламп. Однако для этого требуется квалифицированное применение их. Необходим правильный выбор ламп по спектру в зависимости от назначения помещения. Так как чувствительность зрения к свету люминесцентных ламп, так же, как и к дневному свету, ниже, чем к свету ламп накаливания, нормы освещенности для них устанавливают в 2-3 раза выше, чем для ламп накаливания (табл. 7.6.).

Если при люминесцентных лампах освещенность ниже 75-150 лк, то наблюдается «сумеречный эффект», т.е. освещенность воспринимается как недостаточная даже при рассматривании крупных деталей. Поэтому при люминесцентных лампах освещенность должна быть не ниже 75-150 лк.

В воздухе закрытых помещений могут содержаться загрязнения бактериальной и химической природы. Они являются следствием физиологических обменных процессов человека, бытовых действий (приготовления пищи и сжигания газа в бытовых приборах). В воздух помещений может поступать также комплекс продуктов деструкции полимерных отделочных материалов и др. Наконец, газовый состав воздуха закрытых помещений определяется газовым составом приточного атмосферного воздуха и химическими веществами-загрязнителями, выделяемыми внутри помещений.

Основная причина загрязнения воздуха помещений жилых и общественных зданий - накопление таких газообразных продуктов жизнедеятельности человека (антропоксины), как углерода диоксид, аммиак, аммонийные соединения, сероводород, летучие жирные кислоты, индол и др.

Обнаружено параллелизм между накоплением углекислого газа и других примесей в воздухе помещений. Он предложил судить о мере загрязнения воздуха по величине содержания в нем углерода диоксида. В настоящее время установлено, что содержание углерода диоксида в воздухе помещений до 0,7% и даже 1% само по себе не способно неблагоприятно влиять на организм человека и что его накопление не всегда происходит параллельно с накоплением вредных веществ и запахов.

Вместе с тем незначительные концентрации углерода диоксида не всегда свидетельствуют о чистоте воздуха в помещении. Концентрация углерода диоксида может оставаться низкой при существенном загрязнении воздуха пылью, бактериями и вредными химическими веществами. Особенно в том случае, если при строительстве используют синтетические материалы, концентрация которых не всегда возрастает одновременно с увеличением содержания углерода диоксида.

Следовательно, для оценки воздушной среды и эффективности вентиляции закрытых помещений знать содержания только углерода диоксида недостаточно. На данном этапе этот показатель не способен служить эталоном качества воздушной среды закрытых помещений.

Другим критерием, характеризующим качество воздушной среды, является содержание в воздухе аммиака и аммонийных соединений. В результате детального изучения вредного влияния измененного воздуха помещений на организм человека установлена высокая активность аммиака и аммонийных соединений, поступающих с поверхности кожи человека. При вдыхании аммонийных соединений, содержащихся в воздухе помещений, в течение нескольких часов у большинства людей появлялись головная боль, ощущение усталости, резко снижалась работоспособность. У некоторых даже отмечалось болезненное состояние, подобное отравлению. При этом физические свойства воздуха оставались в пределах гигиенических нормативов.

Аммиак и его соединения в концентрациях, наблюдаемых в жилых помещениях, влияют также на слизистые оболочки дыхательных путей. Однако определение содержания аммиака не приобрело существенного значения при гигиенической оценке качества воздуха. Этот показатель лишь относительно свидетельствует о наличии газообразных продуктов, загрязняющих воздух помещений.

Для определения уровня загрязнения воздуха был предложен интегральный показатель - окисляемость. Изучение уровня загрязнения воздуха органическими веществами показало, что по величине окисляемости можно судить о его чистоте. Органические вещества воздуха также задерживаются в дыхательных путях человека и всасываются. Для оценки загрязнения воздуха органическими веществами рекомендованы ориентировочные нормативы его окисля-емости. Так, чистым считается воздух, имеющих окисляемость до 6 мг кислорода в 1 м 3 , а загрязненным - от 10 до 20 мг кислорода в 1 м 3 .

Окисляемость является относительным показателем, так как в присутствии полимеров она также может изменяться. В то же время из-за широкого применения в строительстве полимерных покрытий (конструктивные, отделочные материалы) и их способности выделять в окружающую среду химические вещества, необходимо учитывать и этот фактор воздушной среды. Продукты выделения полимеров в большинстве случаев токсичны для человека.

Для ряда веществ, входящих в состав полимерных отделочных материалов и имеющих токсические свойства, разработаны ПДК. Этим регламентировано применение полимерных отделочных материалов в строительстве жилых и общественных зданий.

Воздушный куб. Во время вдыхания организм человека в течение 1 ч усваивает почти 0,057 м 3 кислорода, а во время выдоха выделяет 0,014 м 3 углерода диоксида. Если человек будет находиться в закрытом помещении, то естественно, что содержание кислорода уменьшается, а концентрация углерода диоксида возрастает. Но это положение справедливо лишь для герметически закрытых помещений. В обычных жилых и общественных зданиях за счет инфильтрации наружного воздуха через неплотно подогнанные окна и ограждения всегда происходит полуторакратный обмен воздуха. Однако, невзирая на обмен воздуха, человеку обычно бывает душно в закрытых помещениях. Жалобы на духоту, недостаток кислорода высказывают во время пребывания как в помещениях с естественным обменом воздуха, так и в домах, оборудованных разными системами вентиляции, включая, кондиционирование. Хотя содержание кислорода в закрытых помещениях отвечает естественному, воздух в них воспринимается человеком как несвежий. Возникает вопрос о причинах этого явления. Разве в закрытых помещениях недостаточно количество приточного свежего воздуха? Сколько вообще нужно человеку воздуха? Рекомендуемая величина объема свежего воздуха, которую следует подавать в помещения, определена на основании количества углерода диоксида, выделяемого в процессы дыхания человека за единицу времени. Эта начальная величина, входящая в расчеты объема вентиляционного воздуха, зависит от многих переменных составляющих: температуры воздуха помещений, возраста человека, его деятельности. При температуре воздуха в помещении 20 °С взрослый человек выделяет в среднем 21,6л углерода диоксида за 1 ч, находясь в состоянии относительного покоя. Необходимый объем вентиляционного воздуха для одного человека при этом будет составлять (при ПДК 0,1% по объему и содержанию углекислого газа в атмосферном воздухе 0,04%) 36 м 3 /ч. Если изменить любую из начальных величин, а именно, принять ПДК содержания углерода диоксида в воздухе жилых помещений за 0,07%, тогда необходимый объем вентиляции возрастет до 72 м 3 /ч.

В современных городах, где основными источниками С02 являются продукты сжигания топлива, норма, предложенная М. Петтенкофером (0,07%) еще в XIX в., теряет значение, так как повышение концентрации его при этих условиях лишь свидетельствуют о недостаточной вентиляции помещения. Тем не менее, содержание углерода диоксида как критерий качества воздуха сохраняет свое значение и его используют при расчетах необходимого объема вентиляции.

Отсутствие четко установленных и общепринятых нормативов допустимого содержания в воздухе различных помещений пыли и микроорганизмов не дает возможности широко применять эти показатели для нормирования воздухообмена.

Величины рекомендованного объема вентиляции очень вариабельны, так как на порядок отличаются между собой. Гигиенистами установлена оптимальная цифра -200 м 3 /ч, соответствующая строительным нормам и правилам, - не менее 20 м 3 /ч для общественных помещений, в которых человек находится беспрерывно не дольше 3 ч.